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Dissipative PDEs

’Definition’ of Dissipative PDEs: - apparently

all interesting (asymptotic) dynamics is ’finite

dimensional’.

apparently= In numerical simulations increas-

ing the dimension of Galerkin projection does

not change the dynamics.

Examples:

ut(t, x) = Lu + N(u, Du, . . . , Dru) + f(x),

L - smoothing operator, Laplacian or its power

with correct sign. r < s, where s the order of

L.

Includes: Navier-Stokes , Ginzburg-Landau, re-

action diffusion, Kuramoto-Sivashinski PDEs
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Our goal: tools for rigorous study of
dissipative PDEs

Virtually all theorems and phenonomena from
finite dimensional dynamics, which are stable
with respect to multidimensional perturbations
should hold also for dissipative PDEs.

Mutlidimensional perturbation: we add a ’con-
tracting’ dimension.

Ex. f : R → R, F : R×Rs → R×Rs, such that

‖(f(x),0)−F (x, y)‖ is small in a suitable sense

Needs both:

• Constructive proofs of stability with respect
to multidimensional perturbations

• Effective algorithms - problem: this is an
infinite dimension
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Some related work

• ”Classical” PDEs setting, use of Schauder

or Banach fixed points in suitable func-

tion spaces : Nakao, Yamamoto, Plum,

McKenna, Watanabe and others. restricted

to static problems, no dynamics

• functional analytic approach: Arioli and Koch

- results on fixed points and bifurcations

for Kuramoto-Sivashinski PDE , periodic

orbits, dynamics ? work in progress

• self-consistent bounds - good for dynamics

of dissipative PDEs (and static problems

too).

– fixed points and heteroclinic connections

for Cahn-Hillard (gradient system): Maier-

Papper, Mischaikow, Wanner

4



– periodic orbits for Kuramoto-Sivashinski

PDE in 1D - P. Z.

– others: Swift-Hohenberg eq. - steady

states : Hiraoka, Ogawa, Mischaikow,

Day

– bifurcations of steady states for KS eq.

- P.Z.



Outline of this talk

1. Model problem - heteroclinic connection for

Kuramoto-Sivashinsky Eq.

2. Rigorous integration of dissipative PDEs

3. Proving the existence of fixed points

4. Rigorous bounds for basin of attraction

5. Rigorous bounds for the unstable(stable)

manifold

6. Some data from the proofs

7. Conclusions, future work
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A Model Problem - Kuramoto-Sivashinsky
PDE

Consider the Kuramoto-Sivashinsky (KS ) ej.

ut = −νuxxxx − uxx + 2uux, ν > 0

where (t, x) ∈ [0,∞) × R subject to periodic
and odd boundary conditions

u(t,0) = u(t,2π)

u(t,−x) = −u(t, x)

For various values of ν a variety of dynamics,

fixed points,
periodic orbits,
heteroclinic orbits,
chaotic dynamics,

have been observed numerically.

Goal: A rigorous means of proving these nu-
merical results.
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A Model Problem - Kuramoto-Sivashinsky
PDE, Fourier expansion

Fourier expansion is: u(t, x) =
∑∞

k=−∞ bk(t)e
ikx

Substituting in KS and applying boundary con-
ditions gives:

ȧk = k2(1−νk2)ak−k
k−1∑

n=1

anak−n+2k
∞∑

n=1

anan+k

where bk = iak and k = 1,2,3, . . ..

Linearization: ȧk = k2(1− νk2)ak

• k-th mode is unstable for k < 1√
ν

• k-th mode is stable for k > 1√
ν

• the modes with k >> 1√
ν

should be irrele-
vant for the dynamics
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A Model Problem - Kuramoto-Sivashinsky

PDE, known results

Known results:

• the existence of global attractor, the func-

tions from attractor are analytic - Fourier

series converge at geometric rate (Foias,

Temam)

• the existence of finite dimensional inertial

manifold (Foias, Nicolaenko, Sell, Temam,

Rossa, Jolly) ( not of much use in rigorous

numerics)

No analytical results dynamics more compli-

cated than fixed points bifurcating from zero

solution
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Our rigorous results for

Kuramoto-Sivashinsky PDE

• the existence of multiple periodic orbits for

various parameter values ν ≈ 0.1215, 0.1212,

0.125, 0.032, 0.02991, both stable and un-

stable orbits

• the existence of multiple fixed points for

various values o f ν and their bifurcations

• the existence of attractive fixed points for

various values of ν

• today: the existence of heteroclinic con-

nection between zero and unimodal fixed

point for ν = 0.75
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How to establish the existence of

heteroclinic connection in the flow?

Draw picture on the blackboard, discuss

how to do it for ODEs

The proof consists of the following stages:

1) the proof of the existence of two fixed points,

”the source” and ”the target”

2) rigorous estimates for the attracting region

around the target point

3) rigorous estimates for one dimensional un-

stable manifold of the source point

4) rigorous integration of PDE - the propa-

gation of the unstable manifold of the source

until it enters the basin of attraction of the

target point.
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Challenge of infinite dimension

Our PDE ẋ = f(x), x - a sequence of Fourier

coefficients

Problems:

• f is not continuous and only densely de-

fined

• how to represent in finite form elements of

our phasespace? What phasespace?

Our approach: We restrict our attention to

the sets of the form

W ⊕Π∞k>m[a−k , a+
k ], a±k = ±C/ks

W ⊂ Rm - compact set, s - large enough
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Why W ⊕Π∞k>m[−C/ks, C/ks]

Let T = Π∞k>m[a−k , a+
k ], where a±k = C/ks

W ⊕Π∞k>m[a−k , a+
k ] =

{(ak)k∈N | (a1, . . . , am) ∈ W,

ak ∈ [a−k , a+
k ], for k > m}

• any continuous periodic odd function of

class Cs is contained in some W ⊕ T

• W⊕T is compact in topology of component-

wise convergence, l2 etc

• on W ⊕ T our vector field becomes very

smooth, we can use Taylor formula, every-

thing what is needed converges
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• on W ⊕ T our PDE defines local semiflow,

the flows for Galerkin projections on W ⊕
T have uniformly bounded Lipschitz con-

stants on a compact time intervals and

converge uniformly to the semiflow for full

system (logarithmic norms)

Most important: While W⊕T is not invariant

under the flow of our PDE, it may have an

important dynamical property - an isolation for

the tail.



ISOLATION for n > m

For a ∈ W ⊕ T and k > m holds

ak = a+
k ⇒ ȧk < 0

ak = a−k ⇒ ȧk > 0

————————–

Gives some kind of invariance for tail (high

modes): draw picture , explain

This is an infinite set of inequalites, but it turns

out to be relatively easy to satisfy!!!
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Why it is a easy to find a good tail =

self-consistent bounds

ut = Lu + N(u, Du, . . . , Dru)

x ∈ Tn (periodic boundary conditions),

L - linear, diagonal, N - polynomial

Fourier expansion u(t) =
∑

k∈Zn ak(t)e
ik·x

Lemma. Let s > s0. If |ak| ≤ C/|k|s, |a0| ≤ C,

then there exists D = D(C, s)

|Nk| ≤
D

|k|s−r
, |N0| ≤ D

This is in fact a statement about regularity. a

is of ”class Cs” then N(a) is of ”class Cs−r”

Isolation. Assume L(a)k = −|k|pak, p > r.
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Assume |ak| ≤ C
|k|s, |ak0

| = C
|k0|s, then

d|ak0
|

dt
≤ −|k0|p|ak0

|+ |Nk0
(a)| ≤

−C|k0|p−s + D|k0|r−s

d|ak0
|

dt
< 0, |k0| > M



Rigorous integration of dissipative

PDEs - the general idea

ut = Lu + N(u, Du, . . . , Dru) + f(x), (1)

u ∈ Rn, x ∈ Td, L is a linear, N - a polynomial

(or analytic), f smooth enough.

L is diagonal in the Fourier basis {ekx}k∈Zd

Leikx = λkeikx, (2)

λk = −v(|k|)|k|p (3)

0 < v0 ≤ v(|k|) ≤ v1, for |k| > K−(4)

p > r. (5)
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1 We replace PDE by an infinite ladder of
ODEs for Fourier coefficients of u(t, x).

duk

dt
= λkuk + Nk(u), for all k ∈ Zd. (6)

2 we split ’the phase space’ for (6) into two
parts: the finite dimensional part, X, contain-
ing the Fourier modes most relevant for the
dynamics of (1) and the tail in X⊥. Now prob-
lem (6) is replaced by two problems (7) and
(8).

3 The first part consist of a finite dimensional
differential inclusion for p ∈ X, given by

dp

dt
∈ P (Lp + N(p + T )), p ∈ X (7)

P is a projection onto X. The second part is
concerned with the evolution of T

λkuk,j+N−
k,j <

duk,j

dt
< λkuk,j+N+

k,j, ”k not in X”

(8)
where N±

k,j are suitably chosen constants.
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Obviously, to infer from (7) and (8) any in-

formation on the behavior of solutions of the

full system (6) one needs some consistency

conditions and fast decay of of Fourier co-

efficients.

Tails T = Πk>m[−C
ks,−C

ks] do the job through

the isolation property.

Our algorithm gives uniform and compact bounds

for all Galerkin projections of PDE. The solu-

tion of PDE is obtained through passing to the

limit with the dimension of Galerkin projection.
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The method of self-consistent bounds

H - Hilbert space,

e1, e2, . . . - an orthogonal basis in H

The corresponding projections are

pm = Pma := (a1, a2, . . . , am)

qm = Qma := (am+1, am+2, . . .)

The problem:

ȧ = F (a) (9)

F is not continuous, with dense domain in H.

Fk ◦ Pn is a C1-function for n, k ∈ N

Later F (a) = L(a) + N(a), L - linear, N- non-

linear

e1, e2, . . . - eigenvectors of L - very helpful
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The method:

Def. Fix m, M ( m ≤ M). A compact set
W ⊂ Pm(H) and a sequence of pairs {a±k ∈ R |
a−k < a+

k , k ∈ Z+} are self-consistent a-priori
bounds for F if:

C1 For k > M , a−k < 0 < a+
k .

C2 Let âk := max |a±k | and set û =
∑∞

k=0 âkek.
Then, û ∈ H, ({âk} ∈ l2)

C3 The function u 7→ F (u) is continuous on

W ⊕
∞∏

k=m+1

[a−k , a+
k ] ⊂ H.

Moreover, if we define
f̂k = max

u∈W⊕∏∞
k=m+1[a

−
k ,a+

k ]
|Fk(u)| and set

f̂ =
∑

f̂kek, then f̂ ∈ H. ({f̂k} ∈ l2)

Notation: T =
∏∞

k=m+1[a
−
k , a+

k ] - Tail
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C4. ISOLATION for n > m

For a ∈ W ⊕ T and k > m holds

ak = a+
k ⇒ ȧk < 0

ak = a−k ⇒ ȧk > 0

——————————————————-

C1,C2,C3 - give convergence

C4 - gives a priori bounds

C1,C2,C3,C4 - easy to satisfy (later). It is

enough to take |ak| ≤ C
|k|s for s large enough
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Finite dimensional part

Basic Differential Inclusion:

ṗ ∈ PmF (p) + Γm, p ∈ Rm, (10)

where Γm = {PmF (p + q)−PmF (p) | p ∈ W, q ∈
T}

We say a multivalued map pI : [0, h] → H is

upper attainable set (uas) map for (10) if the

following is true

• any C1 function satisfying (10) and defined

on the maximum interval of existence is

defined on [0, h]

• if a C1-function p : [0, h] → Xm satisfies

(10), then p(t) ∈ pI(t) for t ∈ [0, h]

21



Theorem: Assume W ⊕ T are self-consistent

bounds for F . If pI : [0, t1] → Xm = Pm(H) is

uas map for (10), such that pI([0, t1]) ⊂ W .

Then for any q0 ∈ T , the problem u′ = F (u)

(and all its Galerkin projections u′ = PnF (u),

n > M) has a solution u(t) = (p(t), q(t)) for

t ∈ [0, t1], such that

p(t) ∈ pI(t), q(t) ∈ T, for t ∈ [0, t1]
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Basin of attraction. Logarithmic

norms

Logarithmic norm: Q ∈ Rn×n

µ(Q) = lim
h>0,h→0

‖I + hQ‖ − 1

h

can be negative !!!

• for Euclidean norm

µ(Q) = the largest eigenvalue of 1/2(Q+QT ).

• for max norm ‖x‖ = maxk |xk|

µ(Q) = max
k

(qkk +
∑

i,i 6=k

|qki|)
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• for norm ‖x‖ =
∑

k |xk|

µ(Q) = max
i

(qii +
∑

k,k 6=i

|qki|)



Convergence of Galerkin projections.
Logarithmic norms - Fundamental lemma

Lemma: Let φ(t, x) be a flow induced by

x′ = f(x).

Assume that Z is a convex set,

y([0, T ]), ϕ([0, T ], x0) ∈ Z

µ

(
∂f

∂x
(η)

)
≤ l, for η ∈ Z

∥∥∥∥
dy

dt
(t)− f(y(t))

∥∥∥∥ ≤ δ.

Then for 0 ≤ t ≤ T we have

‖ϕ(t, x0)−y(t)‖ ≤ elt‖y(0)−x0‖+δ
elt − 1

l
, if l 6= 0.

For l = 0 we have

‖ϕ(t, x0)− y(t)‖ ≤ ρ + δt.

In particular: elT is a Lipschitz constant for
φ(t, ·) in Z (if Z is forward invariant).
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Convergence of Galerkin projections.

x′ = F (x) = Lx + N(x) (11)

e1, e2, . . .- eigenvectors for L, Lek = λkek, λk →
−∞

W ,{a±k } - self-consistent bounds,

T = Π∞k=m+1[a
−
k , a+

k ]
W - convex
Pn(W ⊕ T ) is a trapping region (an isolating
block with W− = ∅) for n-dim Galerkin projec-
tions of (11), n > m

Condition D: there exists l ∈ R such that for
all k = 1,2, . . ., a ∈ W ⊕ T

∞∑

i=1

∣∣∣∣∣
∂Nk

∂xi

∣∣∣∣∣(a) + λk ≤ l

Idea: the logarithmic norms for all Galerkin
projections are uniformly bounded.
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Convergence of Galerkin projections:

Theorem:

1. Uniform convergence and existence For
x0 ∈ W ⊕ T , let xn : [0,∞] → Pn(W ⊕ T ) be
a solution of x′ = Pn(F (x)), x(0) = Pnx0.

Then xn converges uniformly on compact
intervals to a function x∗ : [0,∞] → W ⊕ T ,
which is a solution of (11) and x∗(0) = x0.
The convergence of xn on compact time
intervals is uniform with respect to x0 ∈
W ⊕ T .

2. Lipschitz constant. Let x : [0,∞] → W⊕T

and y : [0,∞] → W⊕T be solutions of (11),
then

|y(t)− x(t)| ≤ elt|x(0)− y(0)|
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Convergence of Galerkin projections -

comments

• We got a semiflow on W ⊕ T

• A computable expression for a Lipschitz

constant of the induced semiflow

Application: If W ⊕ T - a trapping region

isolating a fixed point and l < 0, then we

have an attracting fixed point - gives the

verified basin of attraction

• we have a formula for the error of Galerkin

projection
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Cone condition - bounds on the

unstable manifold

x′ = F (x) = Lx + N(x) (12)

N1 ×N2 ⊂ Rm,{a±k } - self-consistent bounds,

T = Π∞k=m+1[a
−
k , a+

k ]

N1 ⊂ Ru is u-dimensional cube

N2 ⊂ Rm−u is m− u-dimensional cube

Pn((N1 × N2) ⊕ T ) is an isolating block for a

fixed point ”with u-unstable directions” for n-

dim Galerkin projections of (12), n > m

V = (N1 ×N2)⊕ T

Coordinates on V : (x, y), x ∈ Ru, y ∈ Rm−u⊕T .

Quadratic form: Q((x, y)) =
∑

i x2
i −

∑
i y2

i
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Cone condition - bounds on the

unstable manifold

Theorem Let V , Q be as above. Assume that

wt
(
[dF (V )]TQ + Q[dF (V )]

)
w > 0 (13)

for all w 6= 0 and such that w = x − y, where

x, y ∈ V .

Then there exists a unique fixed point z ∈ V ,

such that the local unstable manifold of z

Wu
V (z) = {p | ϕ((−∞,0], p) ∈ V, lim

t→∞ϕ(t, p) = z}
is a graph of a Lipschitz function:

Wu
V (z) = {(x, y(x)), x ∈ N1}

, where y : N1 → N2 ⊕ T . Moreover,

Q(p1 − p2) > 0, for pi ∈ Wu
V (z), p1 6= p2
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Meaning of cone condition (13):

Cone condition(13) implies that:

d

dt
Q(ϕ(t, p1)−ϕ(t, p2)) = (p1−p2)

tDtQ+QD(p1−p2),

where D =
∫ 1
0 dF (p2 + t(p1 − p2))dt.

L(p1, p2) = Q(p1 − p2) is a two-point Lapunov

function. It is increasing along the orbits.

L(z0, ·) is our usual Lapunov function.
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Verification of cone condition (13):

Cone condition (13) is implied by the following

one:

for some ε > 0 and all i holds

2 inf
x∈V

∣∣∣∣∣
∂Fi

∂xi
(x)

∣∣∣∣∣−
∑

j,j 6=i

sup
x∈V

∣∣∣∣∣Qjj
∂Fj

∂xi
(x) + Qii

∂Fi

∂xj
(x)

∣∣∣∣∣ ≥ ε.

(14)

which implies that the i-th diagonal element

of dF t(V )Q+QdF (V ) is larger then half of the

sum of all elements in the i-th row and i-th

column.

Likely to hold when the diagonal in dF domi-

nates.

For KS-equation: ∂Fi
∂xi

≈ −i4, ∂Fi
∂xj

≈ iD
|i−j|s
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Data from the proof of the connection

Source: the zero point

• m = 8, M = 16

• the half-size of the neighborhood δ = 0.075

in the unstable direction

• next directions: 7e−4, 1.2e−5, 6e−8, . . ..

Tail - 1.28151e + 007/k16

• cone condition: ε = 0.0329203
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Target: ≈ (0.712361,−0.123239,0.0101786)

• m = 3, M = 10

• δ = 0.06 - the half-size of the neighbor-

hood - in the dominant directions

• tail: 9077.32/k10

• l = −0.022517 - logarithmic norm
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The integration:

• m = 8, M = 16

• order = 4, h = 5e− 4

• a time needed to get from the source to

the target t = 12.4, around 6.2 · 104 time

steps

• size of the set at the end of computations:

4.50517e− 005, tail: 3.926578e− 004/k14
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Conclusions

• computer assisted proofs in the dynamics

of dissipative PDEs are possible

• rigorous numerics for time evolution of dis-

sipative PDEs is possible

• the global existence and the uniqueness the-

orems are not required, interesting solu-

tions are constructed

• could be applied to (I hope): Ginzburg-

Landau, Navier-Stokes in 2D and 3D
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Future work

• prove chaos (symbolic dynamics) for KS ν ≈
0.029 or ν ≈ 0.1212

• Construct an rigorous C1-algorithm for dis-

sipative PDE.

This will make possible to rigorously apply a

lot of dynamical system theory to dissipative

PDEs.
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