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Homoclinic tangencies

I , J,Z ⊂ R – intervals,
uµ : I → R2, sµ : J → R2 for µ ∈ Z , smooth also wrt to µ,

uµ0(tu) = sµ0(ts) = q0,

u′µ0
(tu) = const s ′µ0

(ts) − and nonzero.

Definition

If there exist µ-dependent smooth coordinates in a neighborhood
of q for µ close to µ0, such that in these coordinates

sµ(τ) = (τ, 0),

uµ(τ) = (τ, aτ2 + b(µ− µ0))

where a 6= 0, b 6= 0 then we say that the quadratic tangency of
u and s unfolds generically.
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Homoclinic tangencies

Μ<Μ0

Μ=Μ0

Μ>Μ0

sHΤL

sµ(τ) = (τ, 0),

uµ(τ) = (τ, aτ2 + b(µ− µ0))



Newhouse intervals

Theorem (Newhouse)

Assume

{fλ}λ∈Λ - C 3 diff of the plane

there is a curve of fixed points xλ with | det Df (xλ)| < 1

fλ0 admits quadratic homoclinic tangency

Then for every ε > 0 there is an interval I ⊂ [λ0 − ε, λ0 + ε] with a
dense subset J such that for λ ∈ J fλ has generic homoclinic
tangency.



Some further consequences

Dissipative case

Gavrilov, Shilnikov - sinks of unbounded periods accumulated
to tangency

Newhouse, Robinson - infinitely many coexisting sinks

Conservative case

Duarte and Gonchenko, Shilnikov - infinitely many coexisting
elliptic points

Gorodetski, Kaloshin - locally maximal invariant hyperbolic
sets of Hausdorff dimension arbitrary close to 2



Newhouse intervals computed numerically

Conjecture:
I. Kan, H. Koçak, J. Yorke, Physica D (1995)
Consider the Hénon map

fλ

(
x
y

)
=

(
λ− x2 + by

x

)
The following intervals [1.2702, 1.299], [1.3087, 1.3233],
[1.3238, 1.42] are Newhouse intervals for fλ.



Homoclinic tangencies

J. E. Fornaess and E. A. Gavosto,
Existence of Generic Homoclinic Tangencies for Hénon mappings,
Journal of Geometric Analysis, 2 (1992), 429–444.

J. E. Fornaess and E. A. Gavosto,
Tangencies for real and complex Hénon maps: an analytic method,
Experiment. Math., 8 (1999), 253–260.

high order Taylor expansion of invariant manifolds

hand made computations for certain parameter values of the
Hénon map

interval arithmetics with rational endpoints for other
parameter values



Conservative case

A. Gorodetski, V. Kaloshin,
Conservative homoclinic bifurcations and some applications,
to appear in Steklov Institute Proceedings, volume dedicated to
the 70th anniversary of Vladimir Arnold.

homoclinic tangencies for suitable Poincaré map for the
PCR3BP



Homoclinic tangencies

Z. Arai, K. Mischaikow, Rigorous computations of homoclinic
tangencies, SIAM J. App. Dyn. Sys. 5 (2006), 280–292.

Theorem

There exist parameter values close to (estimation is given)

a ≈ 1.392, b = 0.3
and

a ≈ 1.314, b = −0.3

such that the Hénon map

Ha,b(x , y) = (a− x2 + by , x)

has a quadratic homoclinic tangency which unfolds generically for
the fixed points in first and third quadruple, respectively.

Time of computations: 240 and 100 minutes on the
PowerMac G5 2GHz.
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Computational result for the Hénon map:

Theorem

There exists an open neighborhood B of the parameter value
b = −0.3 such that for each b ∈ B there is a parameter

a ∈ 1.3145271093265 + [−10−5, 10−5]

such that the Hénon map

Ha,b(x , y) = (a− x2 + by , x)

has a quadratic homoclinic tangency unfolding generically for the
fixed point

xa,b = ya,b =
1

2

(
b −

√
(b − 1)2 + 4a− 1

)
Time of computations: 0.2sec on the Intel Xeon 5160, 3GHz.
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Computational result for the forced-damped pendulum:

Pendulum equation

ẍ + βẋ + sin(x) = cos(t).

Poincaré map
Tβ(x , ẋ) = (x(2π), ẋ(2π)).

Theorem

For all parameter values

β ∈ B = 0.247133729485 + [−1, 1] · 1.2 · 10−10

there exists a hyperbolic fixed point for Tβ. Moreover, there exists
a parameter value β ∈ B such that the map Tβ has a quadratic
homoclinic tangency unfolding generically for that fixed point.

Time of computations: 30sec on the Intel Xeon 5160, 3GHz.
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Numerical simulations.

The Hénon map
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Let fa : R2 → R2 be a C 2 wrt to both arguments and parameter.

Following the paper by Arai and Mischaikow - consider
projectivization of the map Pf : R2 × S1 × R→ R2 × S1 × R

Pf (p, [u], a) = (fa(p), [Dfa(p) · u], a)

Pfa(p, [u]) = (fa(p), [Dfa(p) · u])

Observations: p – hyperbolic fixed point for fa with real
eigenvalues and eigenvectors u (unstable), s (stable)

(p, [u], a) is a fixed point for Pf with

two-dimensional stable manifold
one-dimensional unstable manifold
one-dimensional center manifold

(p, [s], a) is a fixed point for Pf with

one-dimensional stable manifold
two-dimensional unstable manifold
one-dimensional center manifold
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Main theorem

Theorem

p - hyperbolic fixed point for fa
’unstable’ and ’stable’ eigenvectors u, s.

If the map Pf has transversal heteroclinic connection between

(p, [u], a) and (p, [s], a)

then the map f admits quadratic homoclinic tangency for
parameter a which unfolds generically.

Remark

This means that the two-dimensional surfaces:

center-unstable manifold at (p, [u], a)

center-stable manifold at (p, [s], a)

must intersect transversally.
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Arai-Mischaikow approach

Tools:

the Conley index as a general method to prove connecting
orbit

apply it to the projectivization of the map to prove the
existence of tangency

apply it to the projectivization of projectivization to prove
generic unfolding - second order derivatives required,
given explicitly for the Hénon map

Computational tools:

CHOMP - Computational Homology Project

GAIO project
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Our approach

Tools:

The covering relations to prove connecting orbit

The cone conditions to estimate center-unstable and
center-stable manifolds

The cone conditions to prove their transversal intersection

Computational tools:

CAPD library for the interval arithmetics and linear algebra
package, http://capd.ii.uj.edu.pl

CAPD library for the C 2-Lohner algorithm to integrate the
pendulum equation and its variational equations
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Description of the method

Step 1 Parameterize the center-unstable manifold at (p, [u], a) as a
horizontal disc satisfying the cone conditions

Step 2 Parameterize the center-stable manifold at (p, [s], a) as a
vertical disc satisfying the cone conditions

Step 3 Construct a ’heteroclinic’ chain of covering relations for Pf
between the points (p, [u], a) and (p, [s], a)

Step 4 Verify the cone conditions along this chain of covering
relations

The above imply the existence of transversal heteroclinic orbit
between (p, [u], a) and (p, [s], a).
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Covering relations and cone conditions

Definition (Gidea, Zgliczyński 2003)

h-set N is an object consisting of

|N| - compact subset of Rn (called support)

u(N), s(N) ∈ {0, 1, 2, . . . },
such that u(N) + s(N) = n

a homeomorphism cN : Rn → Rn = Ru(N) × Rs(N) such that

cN(|N|) = Bu(N)(0, 1)× Bs(N)(0, 1).

dim(N) = n,

Nc = Bu(N)(0, 1)× Bs(N)(0, 1),

N−c = ∂Bu(N)(0, 1)× Bs(N)(0, 1)

N+
c = Bu(N)(0, 1)× ∂Bs(N)(0, 1)

N− = c−1
N (N−c ), N+ = c−1

N (N+
c )

N -

N -

h-set with u(N) = s(N) = 1
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N,M h-sets with u(N) = u(M) = u
f :|N|→ Rn – continuous, fc = cM ◦ f ◦ c−1

N : Nc → Ru × Rs(M).
Let w be a nonzero integer.

Definition (Gidea, Zgliczyński 2003)

N f -covers M with degree w (N
f ,w
=⇒ M) iff

1. There exists h : [0, 1]× Nc → Ru × Rs(M) such that

h(0, ·) = fc ,

h([0, 1],N−c ) ∩Mc = ∅,
h([0, 1],Nc) ∩M+

c = ∅.

2. There exists a map A : Ru → Ru such that

h1(p, q) = (A(p), 0), for p ∈ Bu(0, 1), q ∈ Bs(N)(0, 1),

A(∂Bu(0, 1)) ⊂ Ru \ Bu(0, 1),

deg(A,Bu(0, 1), 0) = w .
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M+

f(N−)

f(N−)

M+

M−M−

f(N)
f(N )−

N
f ,1

=⇒ M, where (left) u(N) = 1 and (right)

f(|N |)-

f(|N |)-

|M|

an example N
f ,1

=⇒ M, where s(N) = 1, s(M) = 2



N h-set, b : Bu(N) →|N| continuous.
Put bc = cN ◦ b.

Definition

We say that b is a horizontal disc in N if there exists a homotopy
h : [0, 1]× Bu(N) → Nc such that

h0 = bc

h1(x) = (x , 0), for all x ∈ Bu(N)

h(t, x) ∈ N−c , for all t ∈ [0, 1] and x ∈ ∂Bu(N)

N+

N+
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Definition

N ⊂ Rn be an h-set and Q : Rn → R be a quadratic form

Q(x , y) = α(x)− β(y), (x , y) ∈ Nc ⊂ Ru(N) × Rs(N),

where α : Ru(N) → R, and β : Rs(N) → R are positive definite
quadratic forms.
The pair (N,Q) will be called an h-set with cones.



Definition

(N,QN), (M,QM) are h-sets with cones, such that
u(N) = u(M) = u.

f : N → Rdim(M) and N
f

=⇒ M.
We say that f satisfies the cone condition (with respect to the
pair (N,M)), if any x1, x2 ∈ Nc with x1 6= x2 satisfy

QM(fc(x1)− fc(x2)) > QN(x1 − x2).

Here Q+
M(x2) = {x : QM(x − x2) > 0}.

fcHQN
+Hx2LL

fcHx2L

QM
+H fcHx2LL



Remark

This condition is computable in interval arithmetics. It is enough
to verify if the symmetric interval matrix

[Dfc(Nc)]TI QM [Dfc(Nc)]I − QN

is positive definite.



Definition

(N,Q) - h-set with cones.
b : Bu → |N| - a horizontal disk.
We will say that b satisfies the cone condition, if any
x1, x2 ∈ Bu with x1 6= x2 satisfy

Q(bc(x1)− bc(x2)) > 0.



Estimation of the center-stable manifold

(N,Q) – h-set with cones

Q has the form
Q(x , y) = α(x)− β(y) =

∑u
i=1 aix

2
i −

∑s
i=1 ai+uy 2

i .

C - compact interval

fλ : N → Rn, λ ∈ C smooth also wrt λ

Define

M = max
λ∈C ,z∈N

(∑
i

|ai |
∥∥∥∥∂πzi fλ

∂z
(z)

∥∥∥∥ · ∥∥∥∥∂πzi fλ
∂λ

(z)

∥∥∥∥
)
,

L = ‖β‖ · max
λ∈C ,z∈N

∥∥∥∥∂πy fλ
∂λ

(z)

∥∥∥∥2

.
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Estimation of the center-stable manifold

Theorem

N
fλ=⇒ N for λ ∈ C and the cone conditions are satisfied,

Choose ε > 0, A > 0 such that for all λ ∈ C , z1, z2 ∈ N

Q(fλ(z1)− fλ(z2))− (1 + ε)Q(z1 − z2) ≥ A(z1 − z2)2.

Choose Γ > 0 such that

A− 2MΓ− LΓ2 > 0.

Put

δ =
Γ2

‖α‖
.

Then the set W s
N(pλ, fλ) for λ ∈ C can be parameterized as a

vertical disk in C × N satisfying the cone condition for the
quadratic form Q̃(λ, z) = δQ(z)− λ2.
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Transversal intersection of manifolds

Theorem

Assume that

N0
f0=⇒ N1

f1=⇒ N2
f2=⇒ · · ·

fk−1
=⇒ Nk ,

and for each covering relation the cone conditions are satisfied.

b : Bs(Nk ) → |Nk | - a vertical disc in Nk satisfying the cone
condition.

Then there exists a vertical disc b0 : Bs(N0) → |N0| which satisfies

the cone condition and such that for all y ∈ Bs(N0) there holds

fi−1 ◦ fi−2 ◦ · · · ◦ f0(b0(y)) ∈ Ni , for i = 1, . . . , k

fk−1 ◦ · · · ◦ f0(b0(y)) = bk(y1), for some y1 ∈ Bs(Nk )
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How to construct the sets?

a0 - approximate ’tangency’ parameter
p - approximate fixed point for fa0

u, s - approximate eigenvectors of Dfa0(p)

We have to construct the chain of covering relations between
(p, [u], a) and (p, [s], a)

N0
Pf

=⇒ · · · Pf
=⇒ Nk

Pf
=⇒Ms

Pf
=⇒ · · · Pf

=⇒ M0

such that

in N0 the center-unstable manifold is a horizontal disc
satisfying the cone conditions

in M0 the center-stable manifold is a vertical disc satisfying
the cone conditions
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Key observations:

At the beginning of the sequence the sets Ni have two stable
directions. Therefore we must use the parameter as an
’unstable’ direction. This can be achieved by decreasing the
range of parameters along the sequence of Ni ’s.

At the end of the sequence the sets Mi have two unstable
directions. Hence, the parameter must be used as a ’stable’
direction. This can be achieved by increasing the range of
parameters along the sequence of Mi ’s.

In the switch between Nk and Ms we change the role of the
parameter.

parameter coord in Nk ’covers’ unstable coord in Ms

unstable coord in Nk ’covers’ tangent coord in Ms
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i 105 · (di )1 105 · (di )2 105 · (di )3 105 · (di )4

unstable dir. stable dir. tangent dir. parameter

0 7 1 2 (1.01)8

1 1 1 2 (1.01)7

2 1 1 2 (1.01)6

3 1 1 2 (1.01)5

4 1 1 2 (1.01)4

5 1 1 2 (1.01)3

6 1 1 2 (1.01)2

7 1 1 2 1.01

8 1 1 2 1

9 0.5 1.25 0.25 1.01

10 0.75 1.25 0.25 (1.01)2

11 1 1.25 0.25 (1.01)3

12 1 1.25 0.25 (1.01)4

13 1 1.25 0.25 (1.01)5

14 1 1.25 0.25 (1.01)6

15 1 2 0.25 (1.01)7



i (pi )1 (pi )2 (pi )3 (pi )4

unstable dir. stable dir. tangent dir. parameter

0 3/λ2 −µ2 −(µ/λ)2 2(1.5)−8

1 1/λ2 −0.1 −0.5 2(1.5)−7

2 1/λ2 −0.1 −1 2(1.5)−6

3 1/λ2 −0.1 −1 2(1.5)−5

4 1/λ2 −0.1 −1 2(1.5)−4

5 1/λ2 −0.1 −1 2(1.5)−3

6 1/λ2 −0.1 −1 2(1.5)−2

7 1/λ2 −0.1 −1 2(1.5)−1

8 0.5/λ2 −1 −1 2

9 100/λ2 −0.1 100(µ/λ)2 −2

10 40/λ2 −0.1 (µ/λ)2 −2(1.5)−1

11 10/λ2 −0.1 (µ/λ)2 −2(1.5)−2

12 1/λ2 −0.1 (µ/λ)2 −2(1.5)−3

13 1/λ2 −0.1 (µ/λ)2 −2(1.5)−4

14 1/λ2 −0.1 (µ/λ)2 −2(1.5)−5

15 0.3/λ2 −0.1 (µ/λ)2 −2(1.5)−6



Details in:

D. Wilczak, P. Zgliczyński,
Computer assisted proof of the existence of homoclinic tangency
for the Hénon map and for the forced-damped pendulum,
SIAM J. App. Dyn. Sys. to appear.


