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The bifurcation diagram

Every textbook on dynamical systems has the following picture:

But how large portion of the parameter space is really chaotic?
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Basic definitions

Definition

A parameter a is called regular if Qa has an attracting cycle.

In this case the cycle is unique, and attracts almost all orbits in
[0, 1].

Definition

A parameter a is called stochastic if Qa has an absolutely
continuous invariant measure.

In this case, the measure is unique, and almost all orbits in [0, 1]
are asymptotically equidistributed with respect to it.

For convenience, let us denote the set of regular parameters by R,
and the stochastic parameters by S.
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Known facts about Qa

Let | · | denote Lebesgue measure.

Known facts

(1) The set of regular parameters has positive measure: |R| > 0;

This follows immediately by openess of conditions.

(2) The set of stochastic parameters has positive measure:
|S| > 0;

First result 1981 by Jakobson; improved 1985 by Benedicks
and Carleson. Uses parameter exclusion principle.

(3) Almost every parameter a ∈ [0, 4] is either regular or
stochastic: |R|+ |S| = 4.

Established 2002 by Lyubich. Uses complex techniques.

Quantative questions

What are the sizes of R and S?



Known facts about Qa

Let | · | denote Lebesgue measure.

Known facts

(1) The set of regular parameters has positive measure: |R| > 0;

This follows immediately by openess of conditions.

(2) The set of stochastic parameters has positive measure:
|S| > 0;

First result 1981 by Jakobson; improved 1985 by Benedicks
and Carleson. Uses parameter exclusion principle.

(3) Almost every parameter a ∈ [0, 4] is either regular or
stochastic: |R|+ |S| = 4.

Established 2002 by Lyubich. Uses complex techniques.

Quantative questions

What are the sizes of R and S?



Known facts about Qa

Let | · | denote Lebesgue measure.

Known facts

(1) The set of regular parameters has positive measure: |R| > 0;

This follows immediately by openess of conditions.

(2) The set of stochastic parameters has positive measure:
|S| > 0;

First result 1981 by Jakobson; improved 1985 by Benedicks
and Carleson. Uses parameter exclusion principle.

(3) Almost every parameter a ∈ [0, 4] is either regular or
stochastic: |R|+ |S| = 4.

Established 2002 by Lyubich. Uses complex techniques.

Quantative questions

What are the sizes of R and S?



Known facts about Qa

Let | · | denote Lebesgue measure.

Known facts

(1) The set of regular parameters has positive measure: |R| > 0;

This follows immediately by openess of conditions.

(2) The set of stochastic parameters has positive measure:
|S| > 0;

First result 1981 by Jakobson; improved 1985 by Benedicks
and Carleson. Uses parameter exclusion principle.

(3) Almost every parameter a ∈ [0, 4] is either regular or
stochastic: |R|+ |S| = 4.

Established 2002 by Lyubich. Uses complex techniques.

Quantative questions

What are the sizes of R and S?



Known facts about Qa

Let | · | denote Lebesgue measure.

Known facts

(1) The set of regular parameters has positive measure: |R| > 0;

This follows immediately by openess of conditions.

(2) The set of stochastic parameters has positive measure:
|S| > 0;

First result 1981 by Jakobson; improved 1985 by Benedicks
and Carleson. Uses parameter exclusion principle.

(3) Almost every parameter a ∈ [0, 4] is either regular or
stochastic: |R|+ |S| = 4.

Established 2002 by Lyubich. Uses complex techniques.

Quantative questions

What are the sizes of R and S?



Known facts about Qa

Let | · | denote Lebesgue measure.

Known facts

(1) The set of regular parameters has positive measure: |R| > 0;

This follows immediately by openess of conditions.

(2) The set of stochastic parameters has positive measure:
|S| > 0;

First result 1981 by Jakobson; improved 1985 by Benedicks
and Carleson. Uses parameter exclusion principle.

(3) Almost every parameter a ∈ [0, 4] is either regular or
stochastic: |R|+ |S| = 4.

Established 2002 by Lyubich. Uses complex techniques.

Quantative questions

What are the sizes of R and S?



Known facts about Qa

Let | · | denote Lebesgue measure.

Known facts

(1) The set of regular parameters has positive measure: |R| > 0;

This follows immediately by openess of conditions.

(2) The set of stochastic parameters has positive measure:
|S| > 0;

First result 1981 by Jakobson; improved 1985 by Benedicks
and Carleson. Uses parameter exclusion principle.

(3) Almost every parameter a ∈ [0, 4] is either regular or
stochastic: |R|+ |S| = 4.

Established 2002 by Lyubich. Uses complex techniques.

Quantative questions

What are the sizes of R and S?



Known facts about Qa

Let | · | denote Lebesgue measure.

Known facts

(1) The set of regular parameters has positive measure: |R| > 0;

This follows immediately by openess of conditions.

(2) The set of stochastic parameters has positive measure:
|S| > 0;

First result 1981 by Jakobson; improved 1985 by Benedicks
and Carleson. Uses parameter exclusion principle.

(3) Almost every parameter a ∈ [0, 4] is either regular or
stochastic: |R|+ |S| = 4.

Established 2002 by Lyubich. Uses complex techniques.

Quantative questions

What are the sizes of R and S?



The measure of R and S

The stochastic parameters

The only non-trivial result is the (partial) lower bound by Luzzatto
and Takahashi from 2006 (for 1− bx2):

|S ∩ [2− ε, 2]|/ε > 0.97 with ε = 10−4990.

The regular parameters

Computationally much easier due to openess. A lower bound for
|R| translates to an upper bound for |S| (and vice versa).

Theorem (Main Theorem)

The set of regular parameters for the quadratic map satisfies the
lower bound: |R ∩ [2, 4]| ≥ 1.61394210853560604222.
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The measure of R and S

An upper bound for |S|
We know that also (0, 1) ∪ (1, 2] ⊂ R, so we get the upper bound

|S| < 4− 3.61394210853560604222 < 0.38605789146439395778

Question

How good is this bound, really?

The first period doubling cascade ends at a∗ ≈ 3.56994567187083.
Beyond this, we show that ca 10.23% of the parameters are regular.

According to non-rigorous numerical experiments (Simó and Tatjer
1991) the regular parameters in [a∗, 4] make up no more than
10.66%. The comparison is non-trivial since they use a different
map: x→ 1− bx2.
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We also prove the existence of
period doubling bifurcations.

Although |PD| = 0, we spend
effort on this step.

This produces larger con-
nected parameter sets within
each period doubling cascade,
and thus adds measure to our
final bound.



The measure of R

0.0 0.2 0.4 0.6 0.8 1.0 1.2
3.990

3.992

3.994

3.996

3.998

4.000

We also prove the existence of
period doubling bifurcations.

Although |PD| = 0, we spend
effort on this step.

This produces larger con-
nected parameter sets within
each period doubling cascade,
and thus adds measure to our
final bound.



Strategy of the proof

We use the following three methods for verifying the existence of
stable orbits:

the Brouwer theorem,

the method of backward shooting,

the modified interval Krawczyk operator.

The three methods are increasing in computational complexity, and
therefore, when prove the existence of a stable orbit, we first use
the Brouwer theorem. If this method fails, we apply the method of
backward shooting. If we still have no success, we switch to the
modified interval Krawczyk method, provided the assumptions of
this method are satisfied.
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Computational approach

Where and why

Brouwer’s method is very fast, but has some disadvantages:
the condition QpA(X1) ⊂ X1 might fail due to the width of A.
This also forces X1 to be “large”, which makes stability hard
to establish close to a bifurcation parameter.

The backward shooting relies upon Newton’s method, and
thus requires C1-computations. It breaks down on/near
superstable periodic orbits.

In general, Krawczyk’s method has a cubic (in period)
complexity, which is prohibitive. But using special structures
from the superstable setting, we can obtain quadratic
complexity only.

Period doublings can be established/isolated by verifying some
inequalities involving the derivatives of Qa(x) and x−Q2

a(x)
(Zgliczynski and Wilczak).
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Set-valued computations

Interval analysis

All our computations are set-valued, and are based on the inclusion
principle:

R(f ; X) = {f(x) : x ∈ X} ⊆ F (X)

Interval Computations Web Page

http://www.cs.utep.edu/interval-comp
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Backward shooting

Given a smooth function F : Rn → Rn, an interval vector X, and a
point x ∈ X, we define the interval Newton operator by

N(F, x,X) = x− [DF ]−1(X)F (x). (1)

Theorem

Let X be an interval vector, x ∈ X, and F : Rn → Rn be smooth.
Assume that DF (X) is invertible as an interval matrix. If the
interval Newton operator satisfies

N(F, x,X) ⊂ X

then the map F has a unique zero x∗ in the box X. Moreover,
x∗ ∈ N(F, x,X).
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Backward shooting

Main idea: Trade iterations for dimension.

Instead of solving the scalar problem fp(x) = x, we solve the
p−dimensional problem F (x) = 0, where

F (x1, . . . , xp) = (x2 − f(x1), . . . , xp − f(xp−1), x1 − f(xp)). (2)

x1

x2

x3

x4

A period−p orbit of f corresponds to a zero of F . We use f = Qa.



Backward shooting

Main idea: Trade iterations for dimension.

Instead of solving the scalar problem fp(x) = x, we solve the
p−dimensional problem F (x) = 0, where

F (x1, . . . , xp) = (x2 − f(x1), . . . , xp − f(xp−1), x1 − f(xp)). (2)

x1

x2

x3

x4

A period−p orbit of f corresponds to a zero of F . We use f = Qa.



Backward shooting

Main idea: Trade iterations for dimension.

Instead of solving the scalar problem fp(x) = x, we solve the
p−dimensional problem F (x) = 0, where

F (x1, . . . , xp) = (x2 − f(x1), . . . , xp − f(xp−1), x1 − f(xp)). (2)

x1

x2

x3

x4

A period−p orbit of f corresponds to a zero of F . We use f = Qa.



Backward shooting

Main idea: Trade iterations for dimension.

Instead of solving the scalar problem fp(x) = x, we solve the
p−dimensional problem F (x) = 0, where

F (x1, . . . , xp) = (x2 − f(x1), . . . , xp − f(xp−1), x1 − f(xp)). (2)

x1

x2

x3

x4

A period−p orbit of f corresponds to a zero of F . We use f = Qa.



Backward shooting

Theorem (Galias’02)

Let X = (X1, . . . ,Xp) be an interval vector, x = (x1, . . . , xp) ∈ X,
and let f : R→ R be a smooth map. Define F as in (2). Assume
that (for k = 1, . . . , p) Sk, Gk, and Hk are intervals such that

f ′(Xk) ⊂ Sk and 0 /∈ Sk
f(xk)− x(k mod p)+1 ∈ Gk(

1− S−1
1 · · · S

−1
p

) p∑
i=1

S−1
1 · · · S

−1
i Gi ⊂ H1

S−1
k

(
H(k mod p)+1 + Gk

)
⊂ Hk, (k = 2, . . . , p)

Then [DF ]−1(X)F (x) ⊂ H, and N(F, x,X) ⊂ x−H.



Superstable orbits

For superstable orbits, the backward shooting approach fails since
0 ∈ Si for some i. Assuming that Q′a(x1) = 0, we have

DF (x1, . . . , xp) =


0 1 0 . . . 0
0 −Q′a(x2) 1 . . . 0
...

...
. . .

...
...

0 0 · · · −Q′a(xp−1) 1
1 0 · · · 0 −Q′a(xp)

 .

This means that the linear equation DF (x) · y = z has the solution

y2 = z1

y3 = z2 +Q′a(x2)y2

...

yp = zp−1 +Q′a(xp−1)yp−1

y1 = zp +Q′a(xp)yp

(3)
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Superstable orbits - Krawczyk’s method

But for intervals A and X1, we only have inclusion: 0 ∈ Q′A(X1).
Thus we cannot solve explicitly for the Newton correction term,
and Gaussian elimination has high (O(p3)) complexity.

A modified Krawczyk operator

For superstable orbits, we use Galias’ approach applied to the
interval Krawczyk operator.

The interval Krawczyk operator is defined by

K(F, x,X, C) = x− C · F (x) + (Id− C ·DF (X))(X− x). (4)

Theorem

Let C be an invertible matrix, and let x ∈ X ∈ IRp. If the interval
Krawczyk operator (4) satisfies

K(F, x,X, C) ⊂ int X

then F has a unique zero x∗ ∈ X. Moreover, x∗ ∈ K(F, x,X, C).
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Superstable orbits - Krawczyk’s method

Our strategy is to form the matrix J ≈ DF (x) with J11 = 0.

Taking C = J−1, the value of C · F (x) can be computed via (3).

What remains for us to show is the algorithm for the computation
of (Id− C ·DF (X))(X− x).

Lemma

Assume that Algorithm 1 is called with its arguments, and assume
that s1 = 0. Then the algorithm always stops and returns an
interval vector Y which is an enclosure for the interval vector
(Id− C ·D)(X− x), where

D =


−S1 1 0 . . . 0
0 −S2 1 . . . 0

.

.

.

.

.

.
. . .

.

.

.

.

.

.
0 0 · · · −Sp−1 1
1 0 · · · 0 −Sp

 , C =
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0 1 0 . . . 0
0 −s2 1 . . . 0

.

.

.
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.
. . .

.
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.

.

.

.
0 0 · · · −sp−1 1
1 0 · · · 0 −sp


−1
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Superstable orbits - Krawczyk’s method

Algorithm 1: Modified interval Krawczyk method (O(p2))

Data: double s1, . . . , sp;
interval S1, . . . , Sp;
vector x = (x1, . . . , xp);
box X = (X1, . . . ,Xp);

begin1

box Y = (Y1, . . . ,Yp);2

Y← 0;
for i← 1 to p do

interval σ ← Si − si;3

Y(i mod p)+1 ← Y(i mod p)+1 + σ × (Xi − xi);
for j ← i+ 1 to p do

σ ← σ × sj ;4

Y(j mod p)+1 ← Y(j mod p)+1 + σ × (Xj − xj);

return Y;5

end6



Putting it all together

Our method results in a non-uniform partition of the original
search domain A = ∪i∈IAi.

Brief strategy

Search for superstable orbits of some maximal length N , using
the midpoint of Ai as seed.

Once found, estimate the size of the corresponding periodic
window.

Try to verify that the endpoints have periodic orbits with the
correct period.

Try to fill in the entire window.

Scan for possible period doublings.

Merge compatible parameter domains.
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Computational results

Implementation

The algorithm was coded in C++ using the CAPD library. The
program was run on the machine - a 32 core HP DL785 G5 (8
AMD Opteron 8354 processors) equipped with 32 GB DDR2 RAM.

level N measure wall time (h:m:s) per. doublings

1 256 1.60620127942955014935 2 : 05 : 05 14

2 256 1.61118596303518551971 3 : 05 : 08 78

3 256 1.61287812977207803823 1 : 43 : 51 335

4 256 1.61349027421762439933 2 : 39 : 44 1381

5 256 1.61372268390076635341 5 : 18 : 22 4019

6 256 1.61381346643292467144 8 : 47 : 48 9075

7 512 1.61389940246044893686 67 : 26 : 04 20128

8 512 1.61391413966146151119 95 : 46 : 06 41692

Table: Here, the reported wall time corresponds to the current
subdivision level only – not the accumulated time. The listed values of
the measure and period doublings, however, correspond to the
accumulated amount from all previous levels.
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Computational results
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Figure: A plot of the search level versus the verified measure.



Computational results - verified periods

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104

105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130

131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156

157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182

183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208

209 210 211 212 213 214 215 216 217 218 219 220 221 222 224 225 226 227 228 230 231 232 233 234 235 236

237 238 239 240 242 243 244 245 246 247 248 249 250 252 253 254 255 256 258 259 260 261 262 263 264 265

266 267 268 270 272 273 274 275 276 279 280 282 284 285 286 287 288 289 290 291 292 294 295 296 297 298

299 300 301 303 304 305 306 308 309 310 312 315 316 318 319 320 322 323 324 325 326 327 328 329 330 332

333 334 336 338 340 341 342 343 344 345 348 350 351 352 354 356 357 358 360 361 362 363 364 366 368 369

370 371 372 374 375 376 377 378 380 384 385 387 388 390 391 392 393 395 396 399 400 402 403 404 405 406

407 408 410 412 413 414 416 418 420 423 424 425 426 427 428 429 430 432 434 435 436 437 438 440 441 442

444 448 450 451 452 455 456 459 460 462 464 465 468 469 470 472 473 474 475 476 477 480 481 483 484 486

488 490 492 493 494 495 496 497 498 500 502 504 506 507 510 512 513 516 518 520 522 525 528 532 539 540

544 546 550 552 556 558 560 561 564 567 570 572 574 575 576 578 580 585 588 592 594 595 598 600 605 608

609 612 616 620 621 624 625 627 630 637 638 640 644 646 648 650 656 660 665 666 672 675 676 680 682 684

686 688 690 693 696 700 702 704 710 714 715 720 722 726 728 729 730 735 736 740 744 748 750 752 754 756

759 760 765 768 770 780 782 784 792 798 800 805 810 812 816 819 820 825 828 832 833 836 840 850 855 858

864 868 870 875 880 882 884 891 896 900 910 912 918 920 924 928 930 931 935 936 938 940 945 950 952 960

966 968 972 975 980 984 988 990 992 1000 1001 1008 1012 1014 1020 1024 1040 1050 1056 1072 1080 1088

1092 1100 1104 1120 1125 1134 1140 1144 1152 1170 1176 1184 1188 1200 1215 1216 1224 1232 1248 1260 1280

1296 1300 1320 1344 1350 1352 1360 1368 1372 1386 1392 1400 1408 1428 1440 1456 1458 1500 1512 1520 1536

1540 1560 1568 1584 1600 1620 1632 1664 1680 1728 1744 1760 1764 1792 1800 1824 1848 1872 1904 1920 1944

1960 1980 2000 2016 2040 2048 2080 2100 2112 2156 2160 2176 2184 2200 2240 2268 2304 2340 2352 2376 2400

2464 2496 2520 2560 2592 2640 2688 2700 2720 2800 2816 2880 2912 2940 3000 3024 3040 3072 3120 3136 3168

3200 3240 3328 3360 3456 3520 3528 3584 3600 3640 3696 3780 3840 3888 3920 3960 4000 4032 4096 4160 4200

4224 4320 4416 4480 4500 4608 4704 4752 4800 4928 4992 5000 5040 5120 5184 5280 5376 5400 5600 5632 5760

6000 6048 6144 6272 6300 6336 6400 6480 6720 6912 7040 7168 7200 7680 7776 7840 8000 8064 8192 8400 8448

8640 8960 9216 9408 9600 10080 10240 10368 10752 11200 11264 11520 12288 12544 12800 13440 13824 14336

15360 16000 16128 16384 17280 17920 18432 19200 20480 21504 23040 24576 25600 27648 28672



Computational results
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Figure: A plot of log2 of the period versus log10 of the verified measure.
Note how the prime periods form the lower line, whereas periods of the
form 2k form the upper line. Also note the lack of some primes after
period 222.



Computational results

The density point at a = 4
In the table below, we illustrate the fact that the parameter a = 4
is a (one-sided) Lebsgue density point of S. As such, the relative
measure of the regular parameters should tent to zero as the
density point is approached.

δ |R ∩ Aδ|/|Aδ| − log10(|R ∩ Aδ|/|Aδ|)
10−1 2.542× 10−2 1.595
10−2 7.596× 10−3 2.119
10−3 3.148× 10−4 3.502
10−4 1.555× 10−5 4.808
10−5 4.145× 10−6 5.382
10−6 1.466× 10−7 6.834

Table: The relative measure of the stable set, localised to increasingly
small sets Aδ = [4− δ, 4].



Computational results

Tweaking the measure

In order to obtain the stability measure reported in the Main
Theorem, we first compute according to Table 1.

We also compute through 18 subdivision levels with the
restriction on the maximal period set to 33000, but with no
searching for superstable orbits. (ca one year of CPU time.)

The gain is not impressive: ≈ 3× 10−5.

As of today:

Total measure: 1.61395259973507788887

Number of distinct windows: 24 495 993

Number of period doublings: 97 873
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Computational results

Low periods only

If we only look for periods p ≤ 33, we get

Total measure: 1.611598655726128416455 (99.85%)

Number of distinct windows: 20 316 378 (82.94%)

Number of period doublings: 3 477 (3.55%)

In this search, we manage to find all periodic windows up to period
16. For period 17, we are missing one (out of 3855).

This took 3 months of wall-time, i.e., 8 years of CPU-time.

CONJECTURE:

The set S has measure near 0.3860474.
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