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Introduction

The goal of Dynamical Systems: To study the dynamics of a system in
evolution. Everything that moves can be considered as a DS.

Mathematical models:

x′ =
dx

dt
= f (t, x, µ) ODE

∂u

∂t
= F (t, x, u,

∂u

∂x
,
∂2u

∂x2
, . . .) evolution PDE

x 7→ T (x) discrete maps, diffeomorphisms

and one can include the effect of noise, history, etc.

x moves in a continuous or discrete way in a phase space or state
space E and parameters are in a space P . The best way to study systems
is to consider the product space E × P .

One can include also many numerical algorithms.



Some topics to study in general:

• topology of the E × P space, singularities,

• identify simple invariant objects in E , like fixed points (in a fixed or
moving frame), periodic and quasi-periodic solutions ... ,

• stability/instability of these objects and stable/unstable mani-
folds,

• connections between unstable/stable manifolds, homo/heteroclinic
orbits, complicated dynamics, diffusion, strange attractors, chaos,

• dependence on parameters, bifurcations, structural stability, persis-
tence in measure

• statistical properties, etc

When applied to Celestial Mechanics one can be more specific.



Some topics in Celestial Mechanics

1) Topology of E , of the energy-momentum manifolds, central
configurations and relative equilibria,

2) Regularity of the solutions and the role of collisions,

3) Stability of simple solutions and Normal Forms around them,

4) Periodic orbits: how they appear/disappear, stability, some excep-
tional classes like choreographies, the problem of the density of p.o.,

5) Invariant tori of different dimensions, bifurcations, creation/
destruction, local behaviour around them, reducibility properties,

6) Invariant Cantorian sets, like Aubry-Mather sets, the dynamics
around them, their role in the rate of diffusion,

7) Checking conditions for the existence of bifurcations, tori, etc, away
from simple solutions. The jet transport and applications,

8) Splitting phenomena between the invariant manifolds of quite differ-
ent invariant objects (perhaps partially weakly hyperbolic), responsi-
ble of creation of chaotic dynamics,

9) Escape/Capture boundaries and the mechanisms creating them:
non-analytic invariant manifolds of invariant objects at infinity,



10) Normally Hyperbolic Invariant Manifolds, like centre man-
ifolds which include p.o., q-p.o. and chaotic zones, related codimen-
sion 1 manifolds, “practical” stability,

11) Return Maps to the vicinity of some (perhaps partially, weakly) hy-
perbolic invariant object, like separatrix maps and extensions
(multiseparatrix maps) or projections (scattering maps),

12) The regular and chaotic solutions taking into account the role of
resonances and different temporal scales,

13) Statistical Properties, like rates of diffusion, rates of escape, mass
transport, ergodicity in most of the phase space,

14) Applications to Astronomy, like motion of comets and aster-
oids, asteroids coming close to the Earth (NEO), detection and analysis
of orbits of exoplanets,

15) Applications to Astrodynamics, like orbits of AES, space de-
bris, etc and missions far away from the Earth, close to libration
points, close to binary or larger systems, formation flights, etc.



Relative equilibria solutions (RES) and topology

Equations of the N -body problem (Newton)

d2qi

dt2
=

N∑

j=1,j 6=i

Gmj
qj − qi

r3
i,j

, ri,j = ||qj − qi||2, pj = mjdqj/dt .

Due to the homogeneity the total energy can be normalised to 0,±1.

The system has no fixed points at finite distance, but it has relative equi-
libria, e.g., when the bodies move in circles around the c.o.m. and the
centrifugal force cancels the gravitational attraction.

For N=3 Lagrange found that there are 5 non-equivalent RES, inde-
pendently of the values of the masses mj.

For N=4 there are 50 solutions if the masses are equal (Albouy-Chenciner).
But #(RES) depends on the masses, with a minimum of 34 so-
lutions. The study of #(RES) as a function of mj has only been done
numerically. It is ≤ 50. Rough theoretical bounds exist (≈ 8000, Moeckel).



P S

Tp Tr

RES for N =5 equal masses. P denotes a regular pentagon, S a square
with a central mass, Tp a trapezoid with a central mass and Tr a triangle
with 2 symmetric inner masses. The 60 collinear RES are not displayed.



For N=5 results of a numerical exploration show that the total number of
non-equivalent RES for equal masses is 354. For other sets of masses the
number of RES has been found to range between 294 and 450.

N 3 4 5 6 7 8 9 10
RES(N ) 5 50 354 4104 53640 676080 13905360 250185600
RES(N)

Γ(1.2N+1)
0.37 0.58 0.49 0.54 0.56 0.47 0.57 0.52

Estimated RES(N ) for equal masses. The number seems to largely exceed
the factorial.

Up to N = 7 all RES seem to have some symmetry. For N = 8, 9, 10 one
has found, respectively, 2,3 and 12 geometric configurations without
any symmetry.

It is not know how the number of RES changes as a function of N
and even if it is finite for all N .



A related problem is the structure of the energy-momentum manifolds
for the N-body problem, that is

Ihc = {(qj,pj), j = 1, . . . , N, | energy = h, angular momentum = c}.

In fact Ihc are stratified objects instead of differentiable or topological
manifolds.

Due to homogeneity the relevant parameter to study Ihc is hc2. Changes
in the topology can be related to the values of hc2 at the RES.

For N=3 the number of connected components of Ihc (Hill’s regions)
depends on hc2. It can be 1,2,3. Unfortunately:

Theorem If N > 3 then Ihc has a unique connected component for all
values of hc2.



Collisions and regularisation

Solutions of the N -body equations are not defined on ∆ = ∪1≤i<j≤N∆ij,
∆ij = {qi = qj} = {ri,j}=0, the set of collisions.

Some special cases: a) Binary collision (BC), not a problem for the New-
tonian potential; b) Total collision (GC). And between these extreme
cases we can find intermediate ones: c) Triple collision (TC); d) Simul-
taneous binary collision (SBC).

Relevant questions: Is it possible to regularise collisions?

First one should understand what means to regularise. There are dif-
ferent approaches:
1) Analytic or Siegel’s regularisation, for solutions analytic in t1/m, m
odd,
2) Surgery or Easton’s regularisation, using isolating blocks and a
suitable homeomorphism,
3) Geometric regularisation, by recovering (at least) continuous depen-
dence w.r.t. initial conditions.

Interesting problems appear for other homogeneous potentials, even for
the two-body problem.



Let w(t) = (q(t),p(t)) be a solution of the N -body problem (or any other
having singularities), defined in (t0, 0), t0 < t1 < 0 and ending in collision

when t → 0−. Let w
(i)
c = w(t1).

Assume that there are initial conditions (i.c.), w
(i)
i , in any neighbour-

hood of w
(i)
c , not leading to any singularity and such that w(t; t1, w

(i)
i ) is

defined until some fixed t3 >0. Let w
(f)
i = w(t2; t1, w

(i)
i ) for some fixed

0 < t2 < t3.

Definition: For any sequence {w(i)
i } of i.c. not leading to collision (ex-

cept, perhaps, simple BC) with limi→∞w
(i)
i =w

(i)
c assume that limi→∞w

(f)
i

exists. Then we definew
(f)
c as that limit and look at it as w(t2; t1, w

(i)
c ).

We denote this extension as the natural or geometric regularisation.

For regularisable problems one can ask about the regularity of the map

w
(i)
i 7→ w

(f)
i extended to w

(i)
c .



Some results:

a) The general triple collision is not geometrically regularisable
except, at most, for a zero measure set of masses.

b) All SBC problems are at least C0 geometrically regularisable.

c) Consider four bodies and let m1 − m2 and m3 − m4 masses colliding
simultaneously at t = 0 and qj, j = 1, . . . , 4 their positions. Let

Q1 = q2 − q1, Q2 = q4 − q3, Q = q34 − q12,

q12 and q34 the c.o.m. of q1,q2 and q3,q4.

Definition The problem is said to be 1D–reducible if Q1,Q2,Q have
constant direction along the motion. This happens in some subproblems.

Theorem: In the 1D–reducible 4-body problems the SBC is C8/3−ǫ reg-
ularisable for any ǫ > 0, but it is not C8/3 regularisable.

Conjecture: Assume the limit directions of Q1,Q2,Q, say u1,u2,u ex-
ist. Then, for all u1,u2,u and all masses mj > 0, except by sets of zero

measure, the SBC is C8/3−ǫ regularisable in the 4–body problem. The
exceptional cases have a higher regularity.



The TC in the planar 3-body problem

To learn about passages near TC it is useful to study the flow on the
4D non-rotating TC manifold N . Suitable changes: a) Blow up of

variables and then appear 10 critical points L
i,s
± , E

i,s
j , j = 1, 2, 3 (5 for

collision, 5 for ejection); b) compactification by adding “hard” binaries

B
i,s
j , j = 1, 2, 3 to get ¯N . In total 16 critical points (8 for collision, Xi,

8 for ejection, Xs) all of them hyperbolic and the flow is gradient-like.

dim Wu,s(L
i,s
+,−)=2, dim Wu(Bi

j)=dimW s(Bs
j ) = 4, j =1, 2, 3,

dim Wu(Ei
j)=dim W s(Es

j )=3, dim W s(Ei
j)=dim Wu(Es

j )=1.

Theorem If two of the values of the masses are close enough and there are
not connections Li

+,− → Ls
+,− then points Bi

j, E
i
j, j = 1, 2, 3 connect to all

points Xs, and Li
+,− connect to Bs

j , E
s
j , j = 1, 2, 3.

Conjecture This holds for all positive masses.

Theorem If m3 = ε,m1 = m2 = (1 − ε)/2 the set of ε for which Li
+,− →

Ls
+,− occurs is countable, and ε(n) = π2/n2 + O(n−3) for n large.

Conjecture In the mass triangle Li → Ls occur only in a countable set of
lines.



Some choreographies

Planar simple choreographies: Periodic solutions of planar N -body
problem with equal masses with all the bodies moving in the same path.

A sample of choreographies for N = 4 is presented. Newtonian case.
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And some additional examples come.
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How many?
A relevant question is whether the number even for N = 3 is finite or not.
The answer is NOT (a routine Computer Assisted Proof can prove it).

Top: A choreography of the 3-body problem. Bottom: A magnification
of the central part. In each one of the binary portions, the bodies in the
binary make 200 revolutions around their centre of masses.



Jet transport and application to NEO

Consider an IVP for an ODE like ẋ = f (t, x), x(t0) = x0, Assuming f
analytic in a neighbourhood of (t0, x0) ∈ Ω ⊂ R × R

n or Ω ⊂ C × C
n

Goal: to easily obtain the Taylor expansion x(t0 + h) for suitable values
of h and use it as a one-step method.

For a very large class of functions the evaluation of f can be split in simple
expressions

e1 = g1(t, x),
e2 = g2(t, x, e1),

...
ej = gj(t, x, e1, . . . , ej−1),

...
em = gm(t, x, e1, . . . , em−1),

f1(t, x) = ek1
,

...
fn(t, x) = ekn

.

Each expressions ej contains a sum of arguments, a product or quotient of
two arguments or an elementary function (like sin, cos, log, exp,√, . . .)
of a single argument.



Basic idea: to compute in a recurrent way the power series expan-
sion of all the ej. The gj have to be seen as operations with (trun-
cated) power series.

Input: t and the coefficients of order 0 of the components of x0.

Step s: from arguments of gj at order s we obtain order s of ej. In particular
for fj(t, x), which gives order s + 1 for xj (dividing by s + 1).

The representation of x(t0 + h) = (xi) is xi =
∑N

s=0 a
(s)
i hs for suitable

N,h, such that the truncation error
∑

s>N a
(s)
i hs can be considered as

negligible in front of the (unavoidable) round off error.

Example: a(t)=
∑

k≥0 akt
k, a0 6=0, α∈R and b(t)=a(t)α=

∑
k≥0 bkt

k:

b0 = aα
0 , bn = − 1

na0

n−1∑

k=0

bkan−k[k − α(n − k)], n > 0,

the determination being fixed by the one used for b0. To compute to order
N has a cost O(N2). This is true for the most expensive elementary
operations and functions.

Similar recurrences can be obtained for any elementary function.



For (near) integrable Hamiltonian systems and Λmax ≈ 0 (zero maximal

Lyapunov exponent) the errors in actions are O(t1/2) and in angles

are O(t3/2) due to random walk-like behaviour of round off.

Jet transport: Assume the i.c. are x0 + ξ, where ξ are some variations of
i.c. It is enough to replace all operations with numbers by operations
with polynomials in ξ up to the desired order. It is elementary to include
as components of ξ all relevant parameters.

Can be implemented in efficient way, to produce rigorous esti-
mates of the tails at every step and to obtain intervals which contain
the correct values of all the coefficients.

If the initial data are in some uncertainty set

a) The coordinates can be adapted according to the shape of the initial
uncertainty set.

b) The effect of the uncertainty in parameters can be easily included.

c) It can be be modified to take into account different distributions for
the uncertainty.



The case of the asteroid (99942) Apophis, which will experience close
approaches with the Earth in 2029 and, perhaps, between 2036 and
2037. We want to understand the effect of initial uncertainties. Stan-
dard deviations are ≈ 1.5 km and ≈ 3 km across and along the orbit.

In 2029 Apophis will get at about 36000 km w.r.t. the centre of the
Earth (on Friday, April 13, near 9 pm UT). An accurate description of that
passage can be obtained by means of a 3rd order integration in ξ.

Most significant changes of Apophis orbit at the close encounter: inclina-
tion, semi-major axis and thus period, slowing down ≈ 3 km/s.
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Escape/Capture boundaries

One of the outstanding problems in Celestial Mechanics is the detection
and computation of capture and escape boundaries.

They are related to the existence of some invariant objects at in-
finity which have invariant manifolds.

But these invariant objects are not hyperbolic. They are only parabolic
in the sense of Dynamical Systems.

It is well known that this fact was partially analysed by Moser and
McGehee. The manifolds exists and they are analytic except, per-
haps, at infinity. Related results are due to C.Robinson.

Standing question: Which is the regularity class of these manifolds?
How can we compute them with rigorous error control, so that they can
be used to obtain capture and escape boundaries?

The simplest problem to analyse is the Sitnikov problem:

q′ = Ψq3p, p′ = Ψq4
(
1 + Ψ2q4

)−3/2
, Ψ = (1−e cos(E))/4, ′ = d/dE.



We look for a parametric representation of the manifolds of the p.o. as

p(E, e, q) =
∑

k≥1

bk(e, E)qk =
∑

k≥1

∑

j≥0

∑

i≥0

ci,j,ke
i sc(jE) qk,

where bk(e, E) are trigonometric polynomials in E with polynomial coeffi-
cients in e, ci,j,k are rational coefficients, sc denotes sin or cos functions.

Theorem: The manifolds W
u,s
± are exactly Gevrey-1/3 in q uniformly

for E ∈ S
1, e ∈ (0, 1]. Concretely, let an denote the norm of bn. Then

there exist constants c1, c2, 0 < c1 < c2 such that, for n ≥ 5 except for
n = 6, 7, 10 one has

c1ρ
n < an/Γ((n + 1)/3) < c2ρ

n, ρ = (3/4)1/3.

Recall: a formal power series
∑

n≥0 anξn is of Gevrey class s if∑
n≥0 an(n!)−sξn is analytic around the origin.

Theorem: The formal expansion gives an asymptotic representation
of the invariant manifolds of p.o.∞. Concretely, the truncation of the
series at order n has an error which is bounded by the sum of the norms
of next three terms

C(an+1q
n+1 + an+2q

n+2 + an+3q
n+3), C ≈ 1.



Given q the optimal order is nopt ≈ 4/q3. Using optimal order the

error bound is < N exp(−4/(3q3)), N < 1.

The method opens the way to other more relevant problems, like
2DCR3BP, 3DCR3BP, 3DER3BP, general 3BP, etc.

In these problems there are parameters playing quite different roles:
small eccentricity and masses play an ≈ linear role while some energy
plays and exponentially small role.

One recovers and enlarges previous results about splitting of separatri-
ces obtained so far for 2DCR3BP, 2DER3BP, planar general 3BP.

Combined with return maps: separatrix maps and extensions one
obtains barriers or “practical” barriers for escape.

In next page these ideas are applied to a comet outside Jupiter orbit, in
the planar RTBP, µ = 10−3, C = 3.6, and escape is not possible if
e <0.75.

The blue curves identify approximate locations of KAM tori.
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Practical stability and codimension 1 manifolds

The triangular libration points of the RTBP (and many other exam-
ples) are practically stable in the sense that the rate of escape is expo-
nentially small w.r.t. the distance ρ to the fixed point. Time to move to
a finite distance behaves like exp(c/ρd), c > 0, d > 0 (Nekhorosev-like
estimates).

This follows from Normal Forms estimates and/or averaging theory.

But plenty of numerical simulations (in many families of problems) show a
practically “stable domain” much larger than the one following from
these estimates.

We consider the case µ = 0.0002 because:

a) it is small enough so that perturbation theory can be useful,

b) it is large enough so that some escapes do not require too much
computational time,

c) it is also close to the Saturn–Titan mass-ratio.
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X = µ + (1 + ρ) cos(2πα), Y = (1 + ρ) sin(2πα), Z

Escape criterion: Y (t) < Y ∗ for some Y ∗ < 0 (e.g. Y ∗ = −0.5).

Time span: 104 revolutions of primaries (circa 400 years). No essential
differences with 105, 106.

Displayed results: Z =0.0, 0.3, 0.4, 0.5, 0.6, 0.7 and 0.8



Comments on results

1) For the planar case the domain of non-escaping points is bounded by
the intersection of Wu,s(W c

L3
) (a codimension 1 manifold of the pla-

nar problem) and vsyn=0. If the ZV C on the L3 level is given by ρ =

K±(α)µ1/2 +O(µ) then the domain boundary is ρ ≈ 1
2K±(α)µ1/2 +O(µ).

2) The full set of points in the “practical stability” zone with vsyn = 0, in
the spatial RTBP, is on a thin shell. Its shape is near circular in
(X,Y ) and parabolic in the vertical direction. Cutting the “stable” zone
by α = 1/3, the central point, as a function of Z, is close to ρ = −0.245Z2.

3) There are families of unstable 2D tori which play also a role in the
boundary of the “stability” region, see next plots. If the initial Z is
small these tori reach a vicinity of L3 and their sections through Z = 0
have positive X values. For large initial Z, the sections through Z = 0
of these 2D tori have negative X values.

4) Continuation of these 2D shows that they belong to the W c of a
family of p.o. which is partially hyperbolic: W c

p.o.family. The Wu,s

of that object is a codimension 1 manifold. Several of them play a role
in different parts.



α = 1/3, Z = 0.8, ρ = −0.1506066340 vs ρ = −0.1506066339 and T
2.
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Libration point orbits

Our interest in now to understand the structure of the set of non-escaping
orbits around L1,2 in the RTBP. One has to skip the unstable terms
of the Hamiltonian around an E×E×H point. This is done by reduction
to the 4D centre manifold W c.

After linear symplectic change the Hamiltonian is

M = λx1y1 +
1

2
ω1(x

2
2 + y2

2) +
1

2
ω2(x

2
3 + y2

3) +
∑

j≥3

Mj(x1, x2, x3, y1, y2, y3),

where Mj denotes a homogeneous polynomial of degree j.

One must cancel all terms of total degree 1 in x1, y1. No small
divisors show up, there is no convergence in general (but the divergence
is mild). We obtain

M̃ = M0(x2, x3, y2, y3) +
∑

j1+j2>1

x
j1
1 y

j2
1 M j1,j2(x2, x3, y2, y3)

and x1 = y1=0 gives W c.
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Poincaré section of the flow of the Hamiltonian reduced to W c of the L2
point in the Earth-Moon case, for a given level of the energy, h. The Moon
is located outside the figure, in the negative vertical axis of the plot.



One can read off the structure from this plot on a section Σ which is
≈ {z = 0} in the initial variables.

The boundary p.o. corresponds to the planar Lyapunov orbit, un-
stable inside W c for that value of h.

Near the centre of the plot there is a fixed point, corresponding to the
vertical Lyapunov orbit.

The two additional fixed points correspond to halo orbits.

Invariant curves around fixed points correspond to tori (also named
Lissajous orbits for that problem).

The zones between the domains of curves contain the intersections
of Wu,s of the planar Lyapunov orbits with Σ. Tiny chaos appears there,
hard to see.

The plot helps the preliminary design of space missions around the
libration point. Improvement using perturbations of other bodies is re-
quired. In particular the solar effects are quite relevant.



Summary and Outlook

The systematic use of invariant objects and, when applicable its centre,
stable, unstable manifolds, that is the skeleton of the system,
provides useful tools to understand the global dynamics.

I consider the most challenging problem to study statistical prop-
erties like rates of diffusion, rates of escape, mass transport, “practical”
ergodicity.

One has to face diffusion problems which are highly heterogeneous
and highly anisotropic.


