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A family of maps fa,b

suggested for consideration by Don Zagier.

Let P = {(a, b) | a ≤ 0 ≤ b, b − a ≥ 1, −ab ≤ 1} ⊃
∆ = {−1 ≤ a ≤ 0 ≤ b ≤ 1, b − a ≥ 1};

G

∆∆ G′A

H

Let fa,b : R̄ → R̄ be defined as

fa,b(x) =















x + 1 if x < a

−1

x
if a ≤ x < b

x − 1 if x ≥ b .

-2 -1 0 1 2

T T−1S
a b

Tx = x + 1, Sx = − 1

x ,
T−1x = x − 1
generators of SL(2, Z)

The map fa,b defines what we call (a, b)-continued fractions using
a generalized integral part function (x)a,b:
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(a, b)-continued fractions: joint work with I. Ugarcovici

ba

(x)a,b

Theorem

If (a, b) ∈ ∆, then any x can be
expressed uniquely in the form

x = n0−
1

n1 −
1

. . .

= (n0, n1, · · · )a,b, ni 6= 0,

where n0 = (x)a,b, x1 = − 1

x−n0
and

ni+1 = (xi+1)a,b, xi+1 = − 1

xi−ni
, i.e.

rk = (n0, n1, . . . , nk)a,b = pk
qk

→ x.
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The natural extension map

Let Fa,b : R̄
2 → R̄

2, Fa,b(x, y) =















(x + 1, y + 1) if y < a

(−1

x
,−1

y
) if a ≤ y < b

(x − 1, y − 1) if y ≥ b

be the (natural) extension map of fa,b.

Numerical experiments led Zagier to conjecture that Fa,b possesses a
global attractor set Da,b = ∩∞

n=0F
n
a,b(R̄

2) with finite rectangular structure
on which it is essentially bijective, and every point of the plane is
mapped to Da,b after finitely many iterations of Fa,b.

If one identifies a geodesic of the upper half-plane with a pair of real
numbers (u,w) ∈ R̄

2, u 6= w — its endpoints, then Fa,b maps
geodesics to geodesics, and the existence of an attractor for Fa,b

corresponds to a reduction of geodesics, hence we perceive Fa,b as a
reduction map.
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Zagier’s Reduction theory conjecture

RTC: For any (a, b) ∈ P Fa,b has an attractor Da,b with finite rectangular
structure with the following additional property:

for every (u,w) ∈ R̄
2 ∃ N ≥ 0 s.t. FN

a,b(u,w) ∈ Da,b.

RTC holds for three classical cases:
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Mathematica experimentation: Stage 1
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attractor obtained by iterating
random points
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Definition of attractor via trapping region

Definition

Θa,b ⊂ R̄
2 is a trapping region for the reduction map Fa,b if

for every pair (x, y) ∈ R̄
2, ∃N > 0 such that FN

a,b(x, y) ∈ Θa,b;

Fa,b(Θa,b) ⊂ Θa,b.

Definition

We define the attractor starting with the trapping region:
Da,b =

⋂∞
n=0

Dn, where Dn =
⋂n

i=0
F i

a,b(Θa,b).
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Existence of a trapping region

Theorem

The region Θa,b is bounded by step-functions

u(x) =











b − 1 if x ≤ −1

min(−1/(b − 1) − 1,−1/a) if − 1 ≤ x ≤ 0

−1/(b − 1) if 0 ≤ x ≤ 1,

and

ℓ(x) =











−1/(a + 1) if − 1 ≤ x ≤ 0

max(−1/(a + 1) + 1,−1/b) if 0 ≤ x ≤ 1

a + 1 if x ≥ 1

is the trapping region for the reduction map Fa,b.

Observation: ℓ(x) and u(x) take the initial values of the orbits of a and
b.
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Mathematica experimentation: Stage 2
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Obtaining attractor from the trapping region

Observation: horizontal boundary levels belong to the orbits of a and b.
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Orbits of a and b

The map fa,b = f is discontinuous for x = a, b, however, we can look at
two maps, one on the left and one on the right of x = a, b, and the
corresponding split orbits:

Oℓ(a) = {Ta, fTa, f2Ta, . . . }, Ou(a) = {Sa, fSa, f2Sa, . . . }
and

Oℓ(b) = {Sb, fSb, f2Sb, . . . }, Ou(b) = {T−1b, fT−1b, f2T−1b, . . . }.

Observation: horizontal segments of the upper boundary of the
attractor belong to Ou(a) and Ou(b), and of the lower boundary - to
Oℓ(a) and Oℓ(b), hence we will refer to Oℓ(a) and Oℓ(b) as lower, and
to Ou(a) and Oub) as upper orbits of a and b.
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The cycle property

Our initial experiments showed that the following patern was prevalent
and generic:

Definition

We say that a (resp., b) has the cycle property if the upper and
lower orbits meet forming a cycle.

If the product over the cycle equals the identity we say that the
cycle property is strong, otherwise, the cycle property is weak.

Another pattern that we noticed was periodicity of the orbits.
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A generic example: a = −4
5 , b = 2

5 - the cycle property!
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Periodic expansion: a = 1−
√

5
2 , b = −1+

√
5

2

1+
√
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√
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√
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The finiteness condition

Definition

We say that (a, b) satisfies the finiteness condition if a and b either
have the cycle property or their expansions are eventually periodic.

Thus the sets La, Ua, Lb, and Ub, called the truncated orbits, are finite.

La =











Oℓ(a) if a has periodic expansion

lower part of a-cycle if a has the cycle property

lower part of a-cycle ∪{0} if a has weak cycle property,

Ua =











Ou(a) if a has periodic expansion

upper part of a-cycle if a has the cycle property

lower part of a-cycle ∪{0} if a has weak cycle property,

and,

similarly, Lb and Ub.
Observation: Only truncated orbits appear as horizontal levels of the
attractor, ends of the cycles appear only if = 0, i.e. if the cycle is weak.

Svetlana Katok (Penn State) Toronto, 11/16/2009 14 / 26



Mathematica experimentation: Stage 3
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a = −0.693; b = 0.351

The boundary of the attractor is
computed from the data (a, b): the
lower boundary consists of all levels
in La ∪Lb and the upper - of all lev-
els in Ua ∪ Ub. The x-levels are so-
lutions of the (overdetermined) sys-
tem of fractional-linear equations
that is consistent and equivalent to
the system of two equations at con-
secutive levels yu < Sa and yℓ >
Sb.

The system was solved and picture drawn by computer.
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Finiteness condition implies finite rectangular structure

Definition

We say that a proper subset of R̄
2 has finite rectangular structure if it

consists of two (or one, in degenerate cases) connected components
bounded by non-decreasing step-functions with finitely many steps.

The main result of our work is the following:

Theorem (FRS)

If (a, b) ∈ ∆ satisfies the finiteness condition, the attractor set
Da,b ⊂

6=
R̄

2 has finite rectangular structure, and Fa,b : Da,b → Da,b is a

bijection except for some images of the boundary of Da,b.

• Step 1: construction of a set Aa,b where Fa,b is bijective by starting
with 3 connected levels STa < Sb < yℓ and proving that all levels in
La ∪ Lb are connected, and similarly of upper levels.
• Step 2: Da,b = Aa,b. Aa,b ⊂ Dn for all ∀ n used for connectedness.
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The set of exceptions E to the finiteness condition

Theorem

For all (a, b) ∈ ∆ \ { the diagonal b = a + 1} the finiteness
condition is satisfied, hence Theorem FRS holds.

The exceptional set E ∈ ∆ is a uncountable Lebesgue measure 0
on the diagonal b = a + 1.

The finiteness condition is necessary for finite rectangular
structure of the attractor, i.e. if (a, b) ∈ E s.t. Ua ∪ Ub ∪ La ∪ Lb is
infinite, either the attractor Da,b is disconnected, or it consists of
two connected components whose boundary functions take all
values of Ua ∪ Ub ∪ La ∪ Lb, hence are not step-functions with
finitely many steps.
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Reduction theory conjecture

Theorem

If a, b ∈ ∆ and both have the strong cycle property, the RTC holds.
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Observation: levels corresponding to the ends of the cycles are inside
the attractor, hence any boundary component is mapped inside under
some iteration of Fa,b.
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Geometric code for the modular surface

M = PSL(2, Z)\H – modular surface F

θ
φ

The cross-section B

F = {z ∈ H | |z| ≥ 1, |Re z| ≤ 1

2
}

T−1 F T

SS i

- 1
2

u w1

2

T (z) = z + 1
S(z) = −1/z
[T, T, T, T, S, T−1, T−1, T−1, S] ⇒
[4,−3] ⇐ geometric code

Any geodesic not going to the cusp in either direction has a
geometric code [. . . n−2, n−1, n0, n1, n2, . . . ], ni 6= 0.
Any closed geodesic passing through B - axis of A ∈ SL(2, Z) -
has a periodic code [n1, n2, . . . , nm] and A = T n1ST n2S · · ·T nmS.
Left shift σ of the sequence corresponds to the first return to the
cross-section B.
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Which geometric codes are realized?

Denote the set of all admissible geometric codes by X.
X ⊂ N Z, where N = {n ∈ Z, |n| ≥ 1} – alphabet, is σ–invariant and
closed.

Not all sequences of non–zero in-
tegers are realized as geometric
codes of geodesics on M .

Example

[8, 2] is not a geometric code since
the geometric code of the axis of
T 8ST 2S is [6,−2] [K].

Mathematica experimentation: drawing geodesics on the modular
surface.

[K] S. Katok, Coding of closed geodesics after Gauss and Morse. Geom. Dedicata, 63 (1996), 123–145
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Mathematica experimentation: the geometric partition
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R(C1)
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R(C3)

R(C−3)
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R(C−1)

...

...

(π/6, −π/6)

(−π/6, π/6)

(π/6, π − π/6)

(−π/6, π + π/6)

Geometric partition and its image under the return map R

Partition: B = ⊔n∈NCn,
Cn = {v ∈ B | n1(v) = n}.

If n1(v) = n, n2(v) = m for
some vector v ∈ B, then
R(Cn) ∩ Cm 6= ∅. Therefore,
2 cannot be followed by
1, 2, 3, 4, 5.

R(Cn) and Cm intersect
transversally if and only if
|n|, |m| ≥ 2, and
|1/n + 1/m| ≤ 1/2:
geometrically Markov
geodesics
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A class of admissible geometric codes

Theorem ([KU])

Any bi–infinite sequence [. . . , n−1, n0, n1, n2, . . . ] such that
∣

∣

∣

1

ni
+ 1

ni+1

∣

∣

∣

≤ 1

2
for i ∈ Z, is realized as a geometric code of a geodesic

on M .
We denote this set by XM – geometrically Markov codes – it is

a maximal, 1–step countable topological Markov chain in X;

the maximal if XM is symmetric (i.e. given by a symmetric
transition matrix).

Theorem ([KU, KU1])

Complexity of the geometric code: the space X of geometric codes is
not a finite–step topological Markov chain.

[KU] S. Katok and I. Ugarcovici, Geometrically Markov geodesics on the modular surface, Moscow Math. J., 1 (2005), 135-155.
[KU1] S. Katok and I. Ugarcovici, Symbolic dynamics for the modular surface and beyond, Bull. Am. Math. Soc., 44 (2007) 87-132
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Positive geodesics

This class includes a class of codes of positive geodesics found earlier
in [GK]:[γ] = [. . . , n−1, n0, n1, . . . ], where 1

ni
+ 1

ni+1
≤ 1

2
for all i, i.e.

[γ] does not contain 2 and {3, 3}, {3, 4}, {4, 3}, {3, 5}, {5, 3}

all segments comprising γ in F are positively (clockwise) oriented.
the geometric code of γ coincides with its arithmetic code given by
minus continued fractions (a = −1, b = 0). It is obtained by
juxtaposing expansions of w = ⌈n0, n1, . . . ⌉ and and
1/u = ⌈n−1, n−2, . . . ⌉:

⌈γ⌉ = ⌈. . . n−2, n−1, n0, n1, n2, . . . ⌉,
where the geodesic from u to w is reduced, i.e. 0 < u < 1, w > 1.

[GK] B. Gurevich and S. Katok, Arithmetic coding and entropy for the positive geodesic flow on the modular surface, Moscow
Math. J., 1, no. 4 (2001), 569–582.
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Coding via (a, b)-continued fractions

(a, b)-continued fraction expansion can be used for coding if

it satisfies the RTC, and

has a dual (or is self-dual).

Definition

The (a, b)-expansion has a dual if the reflection of Aa,b in the line
w = −u is an attractor for some (a′, b′)-expansion.
If (a′, b′) = (a, b), the (a, b)-expansion is called self-dual.

Definition

A geodesic in H from u to w is called (a, b)-reduced if
(u,w) ∈ Λa,b = Fa,b(Da,b ∩ {a ≤ y ≤ b}).
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Coding via (a, b)-continued fractions

If (a, b) ∈ ∆, the (a, b)- reduced geodesic from u to w intersects the unit
half-circle, and let Ca,b = P ∪ Q1 ∪ Q2:

-2 -1 0 1 2

P

Q1Q2

P : γ is (a, b)-reduced
Q1: TS(γ) is (a, b)-reduced
Q2: T−1S(γ) is (a, b)-reduced

Ca,b is a cross-section, i.e. a surface inside SM that every
geodesic visits infinitely many times.
Λa,b is a (u,w)-parametrization of Ca,b.
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Coding via (a, b)-continued fractions

Reduction theory ⇒ every geodesic in H is PSL(2, Z)-equivalent
to a reduced one.

Reduced geodesic γ in H from u to w ⇔ (u,w) ∈ Λa,b

⇒ (γ) - arithmetic code obtained by juxtaposing of expansion for
w = (n0, n1, . . . )a,b and (dual) expansion for 1/u = (n−1, . . . )a′,b′

(γ) = (. . . n−2, n−1;n0, n1, n2, . . . )

The left shift σ corresponds to the first return to the cross-section
Ca,b

PSL(2, Z)-invariance is proved via the cross-section.

Closed geodesics have periodic coding sequences:
w = (n1, . . . nm)a,b, 1

u = (nm, . . . , n1)a′,b′ .

[GK] B. Gurevich and S. Katok, Arithmetic coding and entropy for the positive geodesic flow on the modular surface, Moscow
Math. J., 1, no. 4 (2001), 569–582.
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