Computability and Complexity of Julia sets

Mark Braverman Microsoft Research New England November 21, 2009 Based on joint works with Ilia Binder and Michael Yampolsky

Julia Sets

Julia Sets

- Let c be a complex parameter.
- Consider the following discrete-time dynamical system on the complex plane:

 $z \rightarrow z^2 + c$

• The simplest non-trivial polynomial dynamical system on the complex plane.

The Julia set

- The filled Julia set K_c is the set of initial z's for which the orbit does not escape to ∞ .
- The Julia set J_c is the boundary of K_c :

 $J_c = \partial K_c$.

• J_c is also the set of points around which the dynamics is unstable.

The Julia set

- The filled Julia set K_c is the set of initial z's for which the orbit does not escape to ∞ .
- The Julia set J_c is the boundary of K_c :

 $J_c = \partial K_c$.

• J_c is also the set of points around which the dynamics is unstable.

Example: c = 0.29 + 0.005 i

Example: $c \approx -0.391 - 0.587 i$

Iterating $z \rightarrow z^2 - 0.391 - 0.587 i$

Iterating $z \rightarrow z^2 - 0.391 - 0.587 i$

"rotation" by an angle θ

Computing K_c and J_c

- Given the parameter c as an input, compute K_c and J_c.
- The parameter c describes the rule of the dynamics "its world".

The BSS model and Julia sets

- Model by [BlumShubSmale89].
- Use precise arithmetic machines with exact =, <, > and +,• to describe the set.
- Connects with algebraic geometry.
- <u>Theorem [BCSS98]</u>: The Mandelbrot set and almost all Julia sets are not BSS decidable.

BSS model for sets?

- The graph of e^x on the [0,1] interval is not decidable in this model.
- Koch snowflake, having fractional Hausdorff dimension of log_34 , is not computable in this model.
- If we want to discuss computability of non-algebraically structured sets, need to make modifications.
- Once reasonable modifications are made, the BSS model becomes equivalent to Computable Analysis – the model that we use.

Computability model

• We use the Computable Analysis notion, which accounts for the cost of the operations on a Turing Machine.

- The input **c** is given by an oracle $\varphi(\mathbf{m})$.
 - On query m the oracle outputs a rational approximation of c within an error of 2^{-m}.
- TM is allowed to query c with any *finite* precision.

- The input **c** is given by an oracle $\varphi(\mathbf{m})$.
 - On query m the oracle outputs a rational approximation of c within an error of 2^{-m}.
- TM is allowed to query c with any *finite* precision.

- The input **c** is given by an oracle $\varphi(\mathbf{m})$.
 - On query m the oracle outputs a rational approximation of c within an error of 2^{-m}.
- TM is allowed to query c with any *finite* precision.

- The input **c** is given by an oracle $\varphi(\mathbf{m})$.
 - On query m the oracle outputs a rational approximation of c within an error of 2^{-m}.
- TM is allowed to query c with any *finite* precision.

Output

Given a precision parameter n, TM needs to output a 2⁻ⁿ-approximation of J_c, which is a "picture" of the set.

Output

- A 2⁻ⁿ-approximation of J_c, is made of pixels of size ≈2⁻ⁿ.
- For each pixel, need to decide whether to paint it white or black.

Coloring a Pixel

- We use round pixels equivalent up to a constant.
- A pixel is a circle of radius 2⁻ⁿ with a rational center.
- Put it in if it intersects J_c.
- If twice the pixel does not intersect J_c, leave it out.
- Otherwise, don't care.

 $f(q,n) = \begin{cases} 1, & \text{if } B(q,2^{-n}) \cap J_c \neq \emptyset \\ 0, & \text{if } B(q,2\cdot 2^{-n}) \cap J_c = \emptyset \\ 0 \text{ or } 1 & \text{otherwise} \end{cases}$

Complexity of real sets

- The time complexity T_c(n) of computing J_c is defined as the *worst-case* time required to evaluate f(q,n).
- Queries φ(m) to the oracle are charged m time units.
- T_c(n) measures the computational cost of zooming into J_c.

Cost of zooming in

Drawing a portion of J_c with 2ⁿ-zoom-in on a 1000x1000 pixel display, requires O(10⁶·T_c(n)) time, for any n.

Computability and Complexity of Julia Sets

- Now that we have the model, we would like to address computational questions about Julia sets.
- Which Julia sets can be computed and how efficiently?

Discontinuity of J near c=1/4.

No hope of uniform computability! (=computability by a single algorithm)

Summary

Туре	Empirical and prior work	New
Hyperbolic 🥎	empirically easy; some shown in poly-time	poly-time computable
Parabolic	empirically computable (exp-time)	poly-time computable
Siegel	empirically computable in many cases	some are computable some are not
Cremer ?	no useful pictures to date	computable
Filled Julia set K _c	thought to be tightly linked to J _c	always computable

Prior work – empirical results

Hyperbolic Julia sets

Very efficiently computable; many algorithms including Milnor's *Distance Estimator* [Fisher'88, Milnor'89, Peitgen'88]; many programs.

Prior work – formal results

New Results – Positive

Hyperbolic Julia sets

Poly-time computable. [B.'04]; [Rettinger'04].

Cremer Julia sets

- A special case of $K_c = J_c$.
- A Siegel disc does not exist for all rotation angles θ .
- For some rotation angles the disc "disappears".

Prior work – empirical results

Parabolic Julia sets

The *Distance Estimator* and other algorithms still work, but require exponential time. Still may be viable if we don't try to zoom into the set.

Prior work – empirical results

Julia sets with a Siegel disc		For "good" parameters, pictures can be produced for practical purposes.	
Connected J's with $J_c = K_c$		Reasonable pictures in some	
and the second second		cases.	
		No useful pictures to date for Julia sets with Cremer	
and the second sec	•	points.	
		46	

New Results – Positive

New Results – Negative

Julia sets with a Siegel disc

There *exist* non-computable Julia sets with a Siegel disc [B.Yampolsky '06]

Can construct computable Julia sets with a Siegel disc of an arbitrarily high computational complexity [Binder B.Yampolsky '06]

New Results – Negative

Julia sets with a Siegel disc

Can construct an explicit *computable* parameter **c** such that computing J_c is as hard as solving the Halting Problem. [B.Yampolsky '07]

In contrast:

Filled Julia sets

<u>Theorem</u> [B. Yampolsky'07] The *filled* Julia set K_c is always (non-uniformly) computable.

49

<u>Theorem</u> [BY07]: There is an algorithm A that computes a number c such that no machine with access to c can compute J_c .

• Under a reasonable conjecture from Complex Dynamics, c can be made *poly-time* computable.

Conjugating to rotation

• The conformal Riemann map φ from the unit disc to the Siegel disc Δ_{θ} conjugates f_{θ} to an actual rotation.

Conjugating to rotation

• The conformal Riemann map φ from the unit disc to the Siegel disc Δ_{θ} conjugates f_{θ} to an actual rotation.

• $r(\theta) := | \phi'(0) |$ is the *conformal radius* of Δ_{θ} .

Conformal radius

- The conformal radius $r(\theta)$ measures the size of the Siegel disc Δ_{θ} .
- Theorem [BBY'05]: A Julia set J_c with a Siegel disc Δ_{θ} is computable iff $r(\theta)$ is computable.

the rotation angle $2\pi\theta$ of the Siegel disc

Proving the non-computability theorem

• Consider the family $z \rightarrow z^2 + e^{2\pi i \theta} z$.

- When is there a Siegel disc?
- <u>Theorem</u> [Brjuno'65]: When the function

$$\Phi(\theta) = \sum_{n=1}^{\infty} \theta_1 \theta_2 \dots \theta_{n-1} \log \frac{1}{\theta_n}; \ \theta_1 = \theta, \ \theta_{i+1} = \left\{ \frac{1}{\theta_i} \right\}$$

converges.

Geometric Meaning of
$$\Phi(\theta)$$

$$\Phi(\theta) = \sum_{n=1}^{\infty} \theta_1 \theta_2 \dots \theta_{n-1} \log \frac{1}{\theta_n}; \ \theta_1 = \theta, \ \theta_{i+1} = \left\{\frac{1}{\theta_i}\right\}$$

- <u>Theorem</u> [Yoccoz'88], [Buff,Cheritat'03]: The function Φ(θ) + log r(θ) is continuous.
 In particular, when Φ(θ)=∞, r(θ)=0.
- <u>Theorem</u> [BY'07]: There is an explicit polytime algorithm that generates a θ such that Φ(θ) is as hard to compute as the Halting Problem.

Controlling r(q) through F (q)

- The key idea in the non-computability proof is that we can drop the value of r(q) by a prescribed amount a < r(q) while changing q by no more than a given ¶ > 0.
- When q tends to *any* rational number, r(q) tends to 0.
- Can *carefully* approach a rational with an arbitrarily small change.
- F (q) is used to show that the argument works.

Controlling r(q) in pictures • q₁ = [1,1,20,1,1,1,1,...] =

» 0.511838

Controlling r(q) **in pictures** • $q_2(N) = [1,1,20,1,1,N,1,...] =$

Change in q small, but can implement any drop in r(q).

 $q_1 \gg 0.511 \underline{838} < q_2 (N) < 0.511 \underline{905}$

N=10

N=100

N=1000

N=10000

 $r(q_2(N)) fi 0$ as N fi ¥ Any drop possible!

N=10000

 $r(q_2(N)) fi 0$ as N fi ¥ Any drop possible!

Summary

Туре	Empirical and prior work	New
Hyperbolic	empirically easy; some shown in poly-time	poly-time computable
Parabolic	empirically computable (exp-time)	poly-time computable
Siegel	empirically computable in many cases	some are computable some are not
Cremer ?	no useful pictures to date	computable
Filled Julia set K _c	thought to be tightly linked to J _c	always computable

<u>Theorem</u> [BY09]: There is an algorithm A that computes a number c such that J_c is locally connected and no machine with access to c can compute J_c .

"Simplicity": topological vs. computational

	Computable	Non-computable
Locally connected	e.g. hyperbolic	Siegel
Not locally connected	e.g. Cramer	also Siegel

Thank You₁

Accelerating parabolic computation

- Example: The simplest parabolic example is given by the map f: $z \rightarrow z + z^2$ (same as $z \rightarrow z^2+1/4$ via a change of coordinates).
- Want to iterate a point to see if its trajectory escapes.
- Suppose we are given $z_0 = 2^{-n}$.
- Need to see that its orbit escapes to ∞ in poly(n) steps.

Computing z_0 's orbit

• $z_0 = 2^{-n}$; • $z_1 = f(z_0) = z_0 + z_0^2 = 2^{-n} + 2^{-2n}$; • $z_2 = f^2(z_0) = f(z_1) = z_1 + z_1^2 \approx 2^{-n} + 2 \cdot 2^{-2n}$; • $z_3 = f^3(z_0) = f(z_2) = z_2 + z_2^2 \approx 2^{-n} + 3 \cdot 2^{-2n}$;

• • •

• Too slow! Will take 2ⁿ steps to get anywhere!

Computing z_0 's orbit

• Instead, compute the orbit symbolically:

$$-f^{1}(z) = f(z) = z + z^{2}$$

- $-f^{2}(z) = f(f^{1}(z)) = z + 2 z^{2} + 2 z^{3} + z^{4}$
- $-f^{3}(z) = f(f^{2}(z)) = z + 3 z^{2} + 6 z^{3} + 9 z^{4} + \dots$
- $\overline{f^4(z)} = f(f^3(z)) = z + 4 z^2 + 12 z^3 + 30 z^4 + \dots$
- In general,

 $-f^{k}(z) = z + k z^{2} + (k^{2}-k) z^{3} + (k^{3}-2.5 k^{2}+1.5k) z^{4} + \dots$

- Coefficients can be computed symbolically.
- To get a good approximation of $f^{2^n}(z_0)$ enough to take O(n) terms in the expansion of $f^k(z_0)$ and plug in k=2ⁿ.

Thank You₂

