Computability and Complexity of Julia sets

Mark Braverman

Microsoft Research New England
November 21, 2009
Based on joint works with Ilia Binder and Michael Yampolsky

Julia Sets

Julia Sets

- Let c be a complex parameter.
- Consider the following discrete-time dynamical system on the complex plane:

$$
\mathrm{z} \rightarrow \mathrm{z}^{2}+\mathrm{c}
$$

- The simplest non-trivial polynomial dynamical system on the complex plane.

The Julia set

- The filled Julia set K_{c} is the set of initial z's for which the orbit does not escape to ∞.
- The Julia set J_{c} is the boundary of K_{c} :

$$
\mathrm{J}_{\mathrm{c}}=\partial \mathrm{K}_{\mathrm{c}}
$$

- J_{c} is also the set of points around which the dynamics is unstable.

Example: $\mathrm{c}=-0.12+0.665 i$

Iterating $\mathrm{z} \rightarrow \mathrm{z}^{2}-0.12+0.665 i$

The Julia set

- The filled Julia set K_{c} is the set of initial z's for which the orbit does not escape to ∞.
- The Julia set J_{c} is the boundary of K_{c} :

$$
\mathrm{J}_{\mathrm{c}}=\partial \mathrm{K}_{\mathrm{c}}
$$

- J_{c} is also the set of points around which the dynamics is unstable.

Example: $\mathrm{c}=0.29+0.005 i$

Iterating $\mathrm{z} \rightarrow \mathrm{z}^{2}+0.29+0.005 i$

Iterating $\mathrm{z} \rightarrow \mathrm{z}^{2}+0.29+0.005 i$

Example: $\mathrm{c} \approx-0.391-0.587 i$

Iterating $\mathrm{z} \rightarrow \mathrm{z}^{2}-0.391-0.587 i$

$$
\mathrm{z} \rightarrow \mathrm{z}^{2}+\mathrm{c}
$$

Iterating $\mathrm{z} \rightarrow \mathrm{z}^{2}-0.391-0.587 i$

$$
\mathrm{z} \rightarrow \mathrm{z}^{2}+\mathrm{c}
$$

"rotation" by an angle θ

Computing K_{c} and J_{c}

- Given the parameter c as an input, compute K_{c} and J_{c}.
- The parameter c describes the rule of the dynamics - "its world".

The BSS model and Julia sets

- Model by [BlumShubSmale89].
- Use precise arithmetic machines with exact $=,<,>$ and,$+ \bullet$ to describe the set.
- Connects with algebraic geometry.
- Theorem [BCSS98]: The Mandelbrot set and almost all Julia sets are not BSS decidable.

Couplixitiy avd Rbal Conputivion

BSS model for sets?

- The graph of e^{x} on the $[0,1]$ interval is not decidable in this model.

- Koch snowflake, having fractional Hausdorff dimension of $\log _{3} 4$, is not computable in this model.
- If we want to discuss computability of non-algebraically structured sets, need to make modifications.
- Once reasonable modifications are made, the BSS model becomes equivalent to Computable Analysis
- the model that we use.

Computability model

- We use the Computable Analysis notion, which accounts for the cost of the operations on a Turing Machine.

Input - giving c to TM

- The input c is given by an oracle $\varphi(\mathrm{m})$.
- On query m the oracle outputs a rational approximation of c within an error of 2-m.
- TM is allowed to query c with any finite precision.

Input - giving c to TM

- The input c is given by an oracle $\varphi(\mathrm{m})$.
- On query m the oracle outputs a rational approximation of c within an error of 2-m.
- TM is allowed to query c with any finite precision.
$c=-0.46768 \ldots+$

Input - giving c to TM

- The input c is given by an oracle $\varphi(\mathrm{m})$.
- On query m the oracle outputs a rational approximation of c within an error of 2-m.
- TM is allowed to query c with any finite precision.
$\mathrm{c}=-0.46768 \ldots+$

Input - giving c to TM

- The input c is given by an oracle $\varphi(\mathrm{m})$.
- On query m the oracle outputs a rational approximation of c within an error of 2-m.
- TM is allowed to query c with any finite precision.
$\mathrm{c}=-0.46768 \ldots+$

Output

- Given a precision parameter n, TM needs to output a 2^{-n}-approximation of J_{c}, which is a "picture" of the set.

Output

- A $2^{-\mathrm{n}}$-approximation of J_{c}, is made of pixels of size $\approx 2^{-n}$.
- For each pixel, need to decide whether to paint it white or black.

Coloring a Pixel

- We use round pixels equivalent up to a constant.
- A pixel is a circle of radius 2^{-n} with a rational center.
- Put it in if it intersects J_{c}.
- If twice the pixel does not intersect J_{c}, leave it out.
- Otherwise, don't care.
$\mathrm{f}(\mathrm{q}, \mathrm{n})=\left\{\begin{array}{cc}1, & \text { if } \mathrm{B}\left(\mathrm{q}, 2^{-\mathrm{n}}\right) \cap \mathrm{J}_{c} \neq \varnothing \\ 0, & \text { if } \mathrm{B}\left(\mathrm{q}, 2 \cdot 2^{-\mathrm{n}}\right) \cap \mathrm{J}_{c}=\varnothing \\ 0 \text { or } 1 & \text { otherwise }\end{array}\right.$

Complexity of real sets

- The time complexity $\mathrm{T}_{\mathrm{c}}(\mathrm{n})$ of computing J_{c} is defined as the worst-case time required to evaluate $\mathrm{f}(\mathrm{q}, \mathrm{n})$.
- Queries $\varphi(\mathrm{m})$ to the oracle are charged m time units.
- $\mathrm{T}_{\mathrm{c}}(\mathrm{n})$ measures the computational cost of zooming into J_{c}.

Cost of zooming in

- Drawing a portion of J_{c} with 2^{n}-zoom-in on a 1000×1000 pixel display, requires $\mathrm{O}\left(10^{6} \cdot \mathrm{~T}_{\mathrm{c}}(\mathrm{n})\right)$ time, for any n .

Computability and Complexity of Julia Sets

- Now that we have the model, we would like to address computational questions about Julia sets.
- Which Julia sets can be computed and how efficiently?

Discontinuity of J near $\mathrm{c}=1 / 4$.

No hope of uniform computability! (=computability by
 a single algorithm)

Summary

Type	Empirical and prior work	New
Hyperbolic	empirically easy; some shown in poly-time	poly-time computable
Parabolic	empirically computable (exp-time)	poly-time computable
Siegel	empirically computable in many cases	some are computable some are not
Cremer	no useful pictures to date	computable
Filled Julia set K	thought to be tightly linked to J	always computable

Types of Julia sets

Parameters map M

disconnected

Types of Julia sets

Parameters map M

hyperbolic disconnected

> hyperbolic connected

Prior work - empirical results

Hyperbolic Julia sets

Very efficiently computable; many algorithms including Milnor's Distance Estimator [Fisher' 88 , Milnor' 89 , Peitgen'88]; many programs.

Prior work - formal results

Hyperbolic polynomial
Julia sets

Hyperbolic quadratic
Julia sets with $|c|<1 / 4$

Computable
[Zhong'98]

Poly-time computable [Rettinger,Weihrauch'03]

New Results - Positive

Hyperbolic Julia sets

Poly-time computable.
[B.'04];
[Rettinger'04].

Types of Julia sets

Cremer Julia sets

- A special case of $K_{c}=J_{c}$.
- A Siegel disc does not exist for all rotation angles θ.
- For some rotation angles the disc "disappears".

Parameters map M

hyperbolic disconnected

Prior work - empirical results

Parabolic Julia sets	The Distance Estimator and other algorithms still work, but require exponential time. Still may be viable if we don't try to zoom into the set.

Prior work - empirical results

Julia sets with a Siegel disc	For "good" parameters, pictures can be produced for practical purposes.
Connected J's with $\mathrm{J}_{\mathrm{c}}=\mathrm{K}_{\mathrm{c}}$	Reasonable pictures in some cases. No useful pictures to date for Julia sets with Cremer points.

New Results - Positive

Connected J's with $\mathrm{J}_{\mathrm{c}}=\mathrm{K}_{\mathrm{c}}$, including Cremer Julia sets.

Parabolic Julia sets

Always computable. No running time guarantees. [Binder B. Yampolsky'07].

Poly-time computable.
[B. '06]
A possible building block for producing pictures of Cremer Julia sets.

New Results - Negative

Julia sets with a Siegel disc

There exist non-computable Julia sets with a Siegel disc [B.Yampolsky '06]

Can construct computable Julia sets with a Siegel disc of an arbitrarily high computational complexity [Binder B.Yampolsky '06]

New Results - Negative

Julia sets with a Siegel disc

Can construct an explicit computable parameter c such that computing J_{c} is as hard as solving the Halting Problem. [B.Yampolsky '07]
In contrast:
|Filled Julia sets
Theorem [B. Yampolsky'07]
The filled Julia set K_{c} is always (non-uniformly) computable.

Theorem [BY07]: There is an algorithm A that computes a number c such that no machine with access to c can compute J_{c}.

- Under a reasonable conjecture from Complex Dynamics, c can be made poly-time computable.

Conjugating to rotation

- The conformal Riemann $\operatorname{map} \varphi$ from the unit disc to the Siegel disc Δ_{θ} conjugates f_{θ} to an actual rotation.

Conjugating to rotation

- The conformal Riemann $\operatorname{map} \varphi$ from the unit disc to the Siegel disc Δ_{θ} conjugates f_{θ} to an actual rotation.

- $\mathrm{r}(\theta):=\left|\varphi^{\prime}(0)\right|$ is the conformal radius of Δ_{θ}.

Conformal radius

- The conformal radius $r(\theta)$ measures the size of the Siegel disc Δ_{θ}.
- Theorem [BBY'05]: A Julia set J_{c} with a Siegel disc Δ_{θ} is computable iff $r(\theta)$ is computable.

Proving the non-computability theorem

- Consider the family $z \rightarrow z^{2}+e^{2 \pi i \theta} z$.
- When is there a Siegel disc?
- Theorem [Brjuno'65]: When the function

$$
\Phi(\theta)=\sum_{n=1}^{\infty} \theta_{1} \theta_{2} \ldots \theta_{n-1} \log \frac{1}{\theta_{n}} ; \quad \theta_{1}=\theta, \quad \theta_{i+1}=\left\{\frac{1}{\theta_{i}}\right\}
$$

converges.

Geometric Meaning of $\Phi(\theta)$

$$
\Phi(\theta)=\sum_{n=1}^{\infty} \theta_{1} \theta_{2} \ldots \theta_{n-1} \log \frac{1}{\theta_{n}} ; \quad \theta_{1}=\theta, \quad \theta_{i+1}=\left\{\frac{1}{\theta_{i}}\right\}
$$

- Theorem [Yoccoz' 88], [Buff,Cheritat'03]: The function $\Phi(\theta)+\log r(\theta)$ is continuous.
- In particular, when $\Phi(\theta)=\infty, r(\theta)=0$.
- Theorem [BY'07]: There is an explicit polytime algorithm that generates a θ such that $\Phi(\theta)$ is as hard to compute as the Halting Problem.
the rotation angle
$2 \pi \theta$ of the Siegel disc
algebraic

Controlling r(q) through F (q)

- The key idea in the non-computability proof is that we can drop the value of $\mathrm{r}(\mathrm{q})$ by a prescribed amount $\mathrm{a}<\mathrm{r}(\mathrm{q})$ while changing q by no more than a given $\mathbb{T}>0$.
- When q tends to any rational number, $\mathrm{r}(\mathrm{q})$ tends to 0.
- Can carefully approach a rational with an arbitrarily small change.
- F (q) is used to show that the argument works.

Controlling r(q) in pictures

- $q_{1}=[1,1,20,1,1,1,1, \ldots]=$

» 0.511838

Controlling r(q) in pictures

- $\mathrm{q}_{2}(\mathrm{~N})=[1,1,20,1,1, \mathrm{~N}, 1, \ldots]=$
$\frac{1}{1+\frac{1}{1+\frac{1}{20+\frac{1}{1+\frac{1}{1+\frac{1}{N+\frac{1}{1+\frac{1}{\ddots}}}}}}}}$

Change in q small, but can implement any drop in $r(q)$.

$$
q_{1} \gg 0.511 \underline{838}<q_{2}(N)<0.511 \underline{195}
$$

Controlling r(q) in pictures

Controlling r(q) in pictures

Controlling r(q) in pictures

$$
\mathrm{N}=100
$$

Controlling r(q) in pictures

$$
\mathrm{N}=1000
$$

Controlling r(q) in pictures

$$
\mathrm{N}=10000
$$

r($\left.\mathrm{q}_{2}(\mathrm{~N})\right)$ fi 0 as N fi $¥$

Any drop possible!

Controlling r(q) in pictures

$$
\mathrm{N}=10000
$$

r($\left.\mathrm{q}_{2}(\mathrm{~N})\right)$ fi 0 as N fi $¥$

Any drop possible!

Summary

Type	Empirical and prior work	New
Hyperbolic	empirically easy; some shown in poly-time	poly-time computable
Parabolic	empirically computable (exp-time)	poly-time computable
Siegel	empirically computable in many cases	some are computable some are not
Cremer	no useful pictures to date	computable
Filled Julia set K_{c}	thought to be tightly linked to J_{c}	always computable

Theorem [BY09]: There is an algorithm A that computes a number c such that J_{c} is locally connected and no machine with access to c can compute J_{c}.

"Simplicity": topological vs. computational

	Computable		Non-computable			
Locally connected	e.g. hyperbolic		Siegel			
Not locally connected	e.g. Cramer	$?$	also Siegel		\quad	
:---:						

Prevalence of noncomputability

disconnected; poly-time

Thank You ${ }_{1}$

Accelerating parabolic computation

- Example: The simplest parabolic example is given by the map $\mathrm{f}: \mathrm{z} \rightarrow \mathrm{z}+\mathrm{z}^{2}$ (same as $\mathrm{z} \rightarrow$ $z^{2}+1 / 4$ via a change of coordinates).
- Want to iterate a point to see if its trajectory escapes.
- Suppose we are given $\mathrm{z}_{0}=2^{-\mathrm{n}}$.
- Need to see that its orbit escapes to ∞ in poly(n) steps.

Computing z_{0} 's orbit

- $\mathrm{z}_{0}=2^{-\mathrm{n}}$;
- $\mathrm{z}_{1}=\mathrm{f}\left(\mathrm{z}_{0}\right)=\mathrm{z}_{0}+\mathrm{z}_{0}{ }^{2}=2^{-\mathrm{n}}+2^{-2 \mathrm{n}}$;
- $\mathrm{z}_{2}=\mathrm{f}^{2}\left(\mathrm{z}_{0}\right)=\mathrm{f}\left(\mathrm{z}_{1}\right)=\mathrm{z}_{1}+\mathrm{z}_{1}^{2} \approx 2^{-\mathrm{n}}+2 \cdot 2^{-2 \mathrm{n}}$,
- $\mathrm{z}_{3}=\mathrm{f}^{3}\left(\mathrm{z}_{0}\right)=\mathrm{f}\left(\mathrm{z}_{2}\right)=\mathrm{z}_{2}+\mathrm{z}_{2}{ }^{2} \approx 2^{-\mathrm{n}}+3 \cdot 2^{-2 \mathrm{n}}$,
- Too slow! Will take 2^{n} steps to get anywhere!

Before:

Before:

Computing z_{0} 's orbit

- Instead, compute the orbit symbolically:

$$
\begin{aligned}
-\mathrm{f}^{1}(\mathrm{z}) & =\mathrm{f}(\mathrm{z})=\mathrm{z}+\mathrm{z}^{2} \\
-\mathrm{f}^{2}(\mathrm{z}) & =\mathrm{f}\left(\mathrm{f}^{1}(\mathrm{z})\right)=\mathrm{z}+2 \mathrm{z}^{2}+2 \mathrm{z}^{3}+\mathrm{z}^{4} \\
-\mathrm{f}^{3}(\mathrm{z}) & =\mathrm{f}\left(\mathrm{f}^{2}(\mathrm{z})\right)=\mathrm{z}+3 \mathrm{z}^{2}+6 \mathrm{z}^{3}+9 \mathrm{z}^{4}+\ldots \\
-\mathrm{f}^{4}(\mathrm{z}) & =\mathrm{f}\left(\mathrm{f}^{3}(\mathrm{z})\right)=\mathrm{z}+4 \mathrm{z}^{2}+12 \mathrm{z}^{3}+30 \mathrm{z}^{4}+\ldots
\end{aligned}
$$

- In general,
$-\mathrm{f}^{\mathrm{k}}(\mathrm{z})=\mathrm{z}+\mathrm{k} \mathrm{z}^{2}+\left(\mathrm{k}^{2}-\mathrm{k}\right) \mathrm{z}^{3}+\left(\mathrm{k}^{3}-2.5 \mathrm{k}^{2}+1.5 \mathrm{k}\right) \mathrm{z}^{4}+\ldots$
- Coefficients can be computed symbolically.
- To get a good approximation of $\mathrm{f}^{2^{\mathrm{n}}}\left(\mathrm{z}_{0}\right)$ enough to take $\mathrm{O}(\mathrm{n})$ terms in the expansion of $\mathrm{f}^{\mathrm{k}}\left(\mathrm{z}_{0}\right)$ and plug in $\mathrm{k}=2^{\mathrm{n}}$.

After:

After:

Thank You

