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Julia Sets
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Julia Sets

• Let c be a complex parameter.

• Consider the following discrete-time 
dynamical system on the complex plane:

z → z2 + c

• The simplest non-trivial polynomial 
dynamical system on the complex plane. 
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The Julia set

• The filled Julia set Kc is the set of initial z’s
for which the orbit does not escape to ∞.

• The Julia set Jc is the boundary of Kc: 

Jc = ∂Kc.

• Jc is also the set of points around which the 
dynamics is unstable. 
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Example: c = -0.12 + 0.665 i

z → z2 + c
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Iterating z → z2 - 0.12 + 0.665 i

z → z2 + c
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Iterating z → z2 - 0.12 + 0.665 i

z → z2 + c
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Iterating z → z2 - 0.12 + 0.665 i

z → z2 + c
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Iterating z → z2 - 0.12 + 0.665 i

z → z2 + c
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Iterating z → z2 - 0.12 + 0.665 i

z → z2 + c
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Iterating z → z2 - 0.12 + 0.665 i

z → z2 + c
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The Julia set

• The filled Julia set Kc is the set of initial z’s
for which the orbit does not escape to ∞.

• The Julia set Jc is the boundary of Kc: 

Jc = ∂Kc.

• Jc is also the set of points around which the 
dynamics is unstable. 
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Example: c = 0.29 + 0.005 i
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Iterating z → z2  + 0.29 + 0.005 i

z → z2 + c
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Iterating z → z2  + 0.29 + 0.005 i

z → z2 + c
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Example: c ≈ - 0.391 - 0.587 i
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Iterating z → z2 - 0.391 - 0.587 i

z → z2 + c
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Iterating z → z2 - 0.391 - 0.587 i

“rotation” by an angle θ

z → z2 + c
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Computing Kc and Jc

• Given the parameter c as an input, compute 
Kc and Jc.

• The parameter c describes the rule of the 
dynamics – “its world”. 
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The BSS model and Julia sets

• Model by [BlumShubSmale89].

• Use precise arithmetic machines with 
exact =, <, > and +,• to describe the 
set. 

• Connects with algebraic geometry. 

• Theorem [BCSS98]: The Mandelbrot 
set and almost all Julia sets are not 
BSS decidable. 
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BSS model for sets?
• The graph of ex on the [0,1]

interval is not decidable in this 
model.

• Koch snowflake, having fractional 
Hausdorff dimension of  log34, is 
not computable in this model. 

• If we want to discuss computability 
of non-algebraically structured sets, 
need to make modifications.

• Once reasonable modifications are 
made, the BSS model becomes 
equivalent to Computable Analysis 
– the model that we use.
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Computability model

• We use the Computable Analysis notion, 
which accounts for the cost of the operations 
on a Turing Machine. 

TM

c = −0.46768… + 
0.56598…i

Jc
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Input – giving c to TM

• The input c is given by an oracle φ(m).

– On query m the oracle outputs a rational 
approximation of c within an error of 2-m.

• TM is allowed to query c with any finite

precision.

TM

c = −0.46768… + 
0.56598…i



Input – giving c to TM

• The input c is given by an oracle φ(m).

– On query m the oracle outputs a rational 
approximation of c within an error of 2-m.

• TM is allowed to query c with any finite

precision.

TM

c = −0.46768… + 
0.56598…i φ(m)m=2

φ(2) = −0.4+0.5 i



Input – giving c to TM

• The input c is given by an oracle φ(m).

– On query m the oracle outputs a rational 
approximation of c within an error of 2-m.

• TM is allowed to query c with any finite

precision.

TM

c = −0.46768… + 
0.56598…i φ(m)m=10

φ(10) = −0.468+0.566 i



Input – giving c to TM

• The input c is given by an oracle φ(m).

– On query m the oracle outputs a rational 
approximation of c within an error of 2-m.

• TM is allowed to query c with any finite

precision.

TM

c = −0.46768… + 
0.56598…i φ(m)m=7

φ(7) = −0.466+0.567 i
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Output

• Given a precision parameter n, TM needs to 
output a 2-n-approximation of Jc, which is a 
“picture” of the set.  

TM

φ(m)
Jc
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Output

• A 2-n-approximation of Jc, is made of pixels 
of size ≈2-n.

• For each pixel, need to decide whether to 
paint it white or black.

Jc



29

Jc

Coloring a Pixel

• We use round pixels –

equivalent up to a constant.

• A pixel is a circle of radius 2-n

with a rational center. 

No

???
Yes

otherwise

 J)2B(q,2 if     

J)B(q,2 if

1or  0

,0

,1

  n)f(q, n-

n- 

∅=∩⋅
∅≠∩









= c

c

• Put it in if it intersects Jc. 

• If twice the pixel does not 

intersect Jc, leave it out.

• Otherwise, don’t care.
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Complexity of real sets

• The time complexity Tc(n) of computing Jc

is defined as the worst-case time required to 

evaluate f(q,n).

• Queries φ(m) to the oracle are charged m

time units.

• Tc(n) measures the computational cost of 

zooming into Jc.
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Cost of zooming in

• Drawing a portion of Jc

with 2n-zoom-in on a 

1000x1000 pixel 

display, requires 

O(106·Tc(n)) time, for 

any n. 
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Computability and Complexity  

of Julia Sets

• Now that we have the model, we would like to 

address computational questions about Julia sets. 

• Which Julia sets can be computed and how 

efficiently?



Discontinuity of J near c=1/4.
c=1/4

No hope of 

uniform 

computability! 
(=computability by 

a single algorithm)
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Summary

Type Empirical  and  prior 

work

New 

Hyperbolic empirically easy; some 

shown in poly-time

poly-time 

computable

Parabolic empirically computable 

(exp-time)

poly-time 

computable

Siegel empirically computable 

in many cases

some are computable 

some are not

Cremer no useful pictures to date computable

Filled Julia       

set Kc

thought to be tightly 

linked to Jc

always computable

?
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Types of Julia sets

Jc

0 escapes to ∞?

≡ c not in M?

M = the 

Mandelbrot set

connected disconnected

yesno
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Parameters map M

disconnected

connectedconnected
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Types of Julia sets

Is the Julia set 

hyperbolic?

hyperbolic

noyes

?
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Parameters map M

hyperbolic 

disconnected

hyperbolic 

connected

hyperbolic 

connected
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Prior work – empirical results

Hyperbolic Julia sets Very efficiently computable; 

many algorithms including 

Milnor’s Distance Estimator 

[Fisher’88, Milnor’89, 

Peitgen’88]; many programs.
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Prior work – formal results

Hyperbolic polynomial

Julia sets

Computable

[Zhong’98]

Hyperbolic quadratic 

Julia sets with |c|<1/4

Poly-time computable 

[Rettinger,Weihrauch’03]
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New Results – Positive

Hyperbolic Julia sets Poly-time computable.  

[B.’04];

[Rettinger’04].
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Siegel disc

Types of Julia sets

Jc is connected but not 

hyperbolic

empty interior?

Kc=Jc?

noyes

parabolicKc=Jc
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Siegel disc

Cremer Julia sets

Cremer point

?

• A special case of Kc=Jc.

• A Siegel disc does not exist for all rotation angles θ.

• For some rotation angles the disc “disappears”.
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Parameters map M

hyperbolic 

disconnected

hyperbolichyperbolic

parabolic

Siegel 

Cremer
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Prior work – empirical results

Parabolic Julia sets The Distance Estimator and 

other algorithms still work, 

but require exponential time.

Still may be viable if we 

don’t try to zoom into the set. 
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Prior work – empirical results

Julia sets with a Siegel disc For “good” parameters, 

pictures can be produced for 

practical purposes.

Connected J’s with Jc=Kc Reasonable pictures in some 

cases. 

No useful pictures to date for 

Julia sets with Cremer 

points. 
?
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New Results – Positive

Connected J’s with Jc=Kc,

including Cremer Julia sets.

Parabolic Julia sets

?

Always computable. No 

running time guarantees. 

[Binder B. Yampolsky’07]. 

Poly-time computable.           

[B. ‘06]

A possible building block 

for producing pictures of 

Cremer Julia sets. 



New Results – Negative

Julia sets with a Siegel 

disc
There exist non-computable Julia 

sets with a Siegel disc 

[B.Yampolsky ‘06]

Can construct computable Julia 

sets with a Siegel disc of an 

arbitrarily high computational 

complexity [Binder B.Yampolsky

’06]
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New Results – Negative

Julia sets with a Siegel 

disc
Can construct an explicit 

computable parameter c such 

that computing Jc is as hard as 

solving the Halting Problem. 

[B.Yampolsky ’07]

Theorem [B. Yampolsky’07]

The filled Julia set Kc is 

always (non-uniformly) 

computable. 

Filled Julia sets

In contrast:
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Theorem [BY07]: There is an algorithm A that 

computes a number c such that no machine with 

access to c can compute Jc. 

• Under a reasonable conjecture from Complex 

Dynamics, c can be made poly-time computable.

TM

c

JcA

?
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c such that Jc has 

a Siegel disc 

Jc

TM

?

A

the rotation angle

2πθ of the 

Siegel disc 
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Jc

TM

?

A

c such that Jc has 

a Siegel disc 

the rotation angle

2πθ of the 

Siegel disc 



Conjugating to rotation

• The conformal Riemann map φ from the 

unit disc to the Siegel disc ∆θ conjugates f θ
to an actual rotation.

z → z2 + e2πiθ z 

φ

z → e2πiθ z



Conjugating to rotation

• The conformal Riemann map φ from the 

unit disc to the Siegel disc ∆θ conjugates f θ
to an actual rotation.

• r(θ) := | φ’(0)| is the conformal radius of ∆θ.

z → z2 + e2πiθ z z → e2πiθ z

φ
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Conformal radius

• The conformal radius r(θ) measures the size 
of the Siegel disc ∆θ.

• Theorem [BBY’05]: A Julia set Jc with a 
Siegel disc ∆θ is computable iff r(θ) is 
computable. 
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Jc

TM

?
A

the rotation angle

2πθ of the 

Siegel disc r(θ)
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TM

A

the rotation angle

2πθ of the 

Siegel disc r(θ)

Jc

?

?

algebraic geometric
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Proving the non-computability 

theorem

• Consider the family z → z2 + e2πiθ z.

• When is there a Siegel disc?

• Theorem [Brjuno’65]: When the function

converges. 
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Geometric Meaning of Φ(θ)

• Theorem [Yoccoz’88], [Buff,Cheritat’03]:

The function Φ(θ) + log r(θ) is continuous.

• In particular, when Φ(θ)=∞, r(θ)=0.

• Theorem [BY’07]: There is an explicit poly-

time algorithm that generates a θ such that 

Φ(θ) is as hard to compute as the Halting 

Problem. 
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TM

A

the rotation angle

2πθ of the 

Siegel disc r(θ)

?∑
∞

=
−=Φ

1

121

1
log)(

n n

n θ
θθθθ K

Continuous

algebraic geometric

algebraic



Controlling r(q ) through F (q )

• The key idea in the non-computability proof is that 
we can drop the value of r(q ) by a prescribed 
amount a < r(q ) while changing q by no more 
than a given ¶ > 0.

• When q tends to any rational number, r(q ) tends 
to 0. 

• Can carefully approach a rational with an 
arbitrarily small change.

• F (q ) is used to show that the argument works. 



Controlling r(q ) in pictures

• q 1 = [1,1,20,1,1,1,1,…] = 

» 0.511838
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Controlling r(q ) in pictures

• q 2 (N) = [1,1,20,1,1,N,1,…] =

q 1 » 0.511838 < q 2 (N) < 0.511905

O

1
1

1

1
1

1
1

1
20

1
1

1
1

1

+
+

+
+

+
+

+

N

Change in q

small, but can 

implement any 

drop in r(q ).



Controlling r(q ) in pictures
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Controlling r(q ) in pictures
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Controlling r(q ) in pictures
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Controlling r(q ) in pictures
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Controlling r(q ) in pictures
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as N fi ¥
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possible!



Controlling r(q ) in pictures
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Summary

Type Empirical and    prior 

work

New 

Hyperbolic empirically easy; some 

shown in poly-time

poly-time 

computable

Parabolic empirically computable 

(exp-time)

poly-time 

computable

Siegel empirically computable 

in many cases

some are computable 

some are not

Cremer no useful pictures to date computable

Filled Julia       

set Kc

thought to be tightly 

linked to Jc

always computable

?
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Theorem [BY09]: There is an algorithm A that 

computes a number c such that Jc is locally  

connected and no machine with access to c can 

compute Jc. 

TM

c

Jc is l.c.A

?



“Simplicity”: topological vs. 

computational

Computable Non-computable 

Locally 

connected

Not locally 

connected

e.g. hyperbolic

?e.g. Cramer

Siegel

also Siegel
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The map of parameters c

disconnected; 

poly-time connected;   

poly-time

poly-

time

Non-

computable

Prevalence of non-

computability
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Thank You1
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Accelerating parabolic computation

• Example: The simplest parabolic example is 

given by the map f: z → z + z2 (same as z →

z2+1/4 via a change of coordinates). 

• Want to iterate a point to see if its trajectory 

escapes. 

• Suppose we are given z0 = 2-n.

• Need to see that its orbit escapes to ∞ in poly(n)

steps. 
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Computing z0’s orbit

• z0 = 2-n;

• z1 = f(z0) = z0 + z0
2 = 2-n + 2-2n;

• z2 = f2(z0) = f(z1) = z1 + z1
2 ≈ 2-n + 2·2-2n;

• z3 = f3(z0) = f(z2) = z2 + z2
2 ≈ 2-n + 3·2-2n;

…

…

• Too slow! Will take 2n steps to get anywhere!
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Before:
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Before:
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Computing z0’s orbit

• Instead, compute the orbit symbolically:

– f1(z) = f(z)      = z + z2

– f2(z) = f(f1(z)) = z + 2 z2 + 2 z3 + z4

– f3(z) = f(f2(z)) = z + 3 z2 + 6 z3 + 9 z4 + …

– f4(z) = f(f3(z)) = z + 4 z2 + 12 z3 + 30 z4 + …

• In general, 

– fk(z) = z + k z2 + (k2-k) z3 + (k3-2.5 k2 +1.5k) z4 +…

• Coefficients can be computed symbolically.

• To get a good approximation of f2n
(z0) enough to 

take O(n) terms in the expansion of fk(z0) and 
plug in k=2n.
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After:
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After:
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Thank You2


