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Introduction: Data Analysis

Learn how to make inferences from data.

Related Fields: Data Mining, Machine Learning, Support Vector Machines,
Classification, Regression.

Given a (possibly huge) number of examples (“training data”) and the
known inferences for each data point, seek rules that can be used to make
inferences about future instances.

Among many possible rules that explain the examples, seek simple ones.

Provide insight into the most important features of the data: needles
in the haystack.

Simple rules are inexpensive to apply to new instances.

Simple rules can be more generalizable to the underlying problem -
don’t over-fit to the particular set of examples used.

Need to setting parameters that trade off between data fitting and
generalizability (tuning/validation data useful).
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Important Tool: Sparse Optimization

Optimization has been a key technology in data analysis for many years.
(Least squares, robust regression, support vector machines.)

The need for simple, approximate solutions that draw essential insights
from large data sets motivates sparse optimization.

In sparse optimization, we look for a simple approximate solution of
optimization problem, rather than a (more complicated) exact solution.

Occam’s Razor: Simple explanations of the observations are
preferable to complicated explanations.

Noisy or sampled data doesn’t justify solving the problem exactly.
Simple solutions sometimes more robust to data inexactness.

Often easier to actuate / implement / store / explain simple solutions.

May conform better to prior knowledge.

When the solution is represented in an appropriate basis, simplicity or
structure shows up as sparsity in x (i.e. few nonzero components).
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Optimization Tools Needed

Biological and biomedical applications use many tools from large-scale
optimization: quadratic programming, integer programming, semidefinite
programming.

The extreme scale motivates the use of other tools too, e.g. stochastic
gradient methods.

Sparsity requires additional algorithmic tools. (It often introduces
structured nonsmooth functions into the objective or constraints.)

Effectiveness depends critically on exploiting the structure of the
application class.
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This Talk

We discuss sparse optimization and other optimization techniques relevant
to problems in biological and medical sciences.

1. Optimization in classification (SVM); sparse optimization in sparse
classification.

2. Regularized logistic regression.

3. Tensor decompositions for multiway data arrays.

4. Cancer treatment planning.

5. Semidefinite programming for cluster analysis.

6. Integer programming for genetically optimal captive breeding
programs.

(More time for some topics than others!)
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1. Optimization in Classification

Have feature vectors x1, x2, . . . , xn ∈ Rm (real vectors) and binary
labels y1, y2, . . . , yn = ±1.

Seek a hyperplane wT x + b defined by coefficients (w , b) that
separates the points according to their classification:

wT xi + b ≥ 1⇒ yi = 1, wT xi + b ≤ −1⇒ yi = −1

for most training examples i = 1, 2, . . . , n.

Choose (w , b) to balance between

fitting this particular set of training examples,
... but not over-fitting — so that it would not change much if
presented with other training examples following the same (unknown)
underlying distribution.
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Linear SVM Classifier
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Separable Data Set: Possible Separating Planes
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More Data Shows Max-Margin Separator is Best
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For separable data, find maximum-margin classifier by solving

min
(w ,b)

‖w‖22 s.t.

{
wT xi + bi ≥ 1, if yi = +1

wT xi + bi ≤ −1, if yi = −1

Penalized formulation: for suitable λ > 0, solve

min
(w ,b)

λ

2
wTw +

1

m

m∑
i=1

max
(
1− yi [w

T xi + b], 0
)

.

(Also works for non-separable data.)

Dual formulation:

max
α

eTα− 1

2
αTY TKY α s.t. αT y = 0, 0 ≤ α ≤ 1

λm
1,

where y = (y1, y2, . . . , ym)T , Y = diag(y), Kij = xT
i xj is the kernel.
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Nonlinear Support Vector Machines
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Nonlinear SVM

To get a nonlinear classifier, map x into a higher-dimensional space
φ : Rn → H, and do linear classification in H to find w ∈ H, b ∈ R.

When the hyperplane is projected back into Rn, gives a nonlinear surface
(often not contiguous).

In “lifted” space, primal problem is

min
(w ,b)

λ

2
wTw +

m∑
i=1

max
(
1− yi [w

Tφ(xi ) + b], 0
)

.

By optimality conditions (and a representation theorem), optimal w has
the form

w =
m∑

i=1

αiyiφ(xi ).
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Kernel

By substitution, obtain a finite-dimensional problem in (α, b) ∈ Rm+1:

min
α,b

λ

2
αTΨα +

1

m

m∑
i=1

max (1−Ψi ·α− yib, 0) ,

where Ψij = yiyjφ(xi )
Tφ(xj). WLOG can impose bounds αi ∈ [0, 1/(λm)].

Don’t need to define φ explicitly! Instead define the kernel function k(s, t)
to indicate distance between s and t in H.

Implicitly, k(s, t) = 〈φ(s), φ(t)〉.

The Gaussian kernel kG (s, t) := exp(−‖s − t‖22/(2σ2)) is popular.

Thus define Ψij = yiyjk(xi , xj) in the problem above.
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The Classifier

Given a solution (α, b) we can classify a new point x by evaluating

m∑
i=1

αiyik(x , xi ) + b,

and checking whether it is positive (thus classified as +1) or negative
(class −1).

Difficulties: Ψ is generally large (m ×m) and dense. Specialized
techniques needed to solve the classification problem for (α, b). Classifier
can be expensive to apply (it requires m kernel evaluations).

Many specialized algorithms proposed since about 1998, drawing heavily
on optimization, but also exploiting the structure heavily.
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Approximate Kernel

Propose an algorithm that replaces Ψ by a low-rank approximation and
then uses stochastic approximation to solve it.

Using a Nystrom method [Drineas & Mahoney 05], choose c indices from
{1, 2, . . . ,m} and evaluate those rows/columns of Ψ. By factoring this
submatrix, can construct a rank-r approximation Ψ ≈ VV T , where
V ∈ Rm×r (with r ≤ c).

Replace Ψ← VV T in the problem and change variables γ = V Tα, to get

min
(γ,b)

λ

2
γTγ +

1

m

m∑
i=1

max
(
1− vT

i γ − yib, 0
)

,

where vT
i is the ith row of V .

Same form as linear SVM, with feature vectors yivi , i = 1, 2, . . . ,m.
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Stochastic Approximation

Can use any linear SVM method to solve it. We use stochastic
approximation (e.g. [Nemirovski et al 09]).

Basic step at iteration k:

Choose index ik ∈ {1, 2, . . . ,m};
Choose steplength ηk > 0 and take step:[

γk+1

bk+1

]
←

[
γk

bk

]
− ηk

[
λγk + dkvik

dkyik

]
,

where dk = −1 if 1− vT
ik

γ − yik b > 0 and dk = 0 otherwise. The step
vector is an unbiased estimate of the subgradient.

(These techniques were proposed for linear SVM in machine learning
community by Bottou, Srebro and others.)

Similar to incremental subgradient developed by Bertsekas and
collaborators for objectives of the form

∑m
i=1 fi (x).
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Steplengths and Averaging

When intercept b is omitted, objective is strongly convex with modulus λ.
Use steplengths ηk = 1/(λk) to get convergence in expectation with rate
1/k:

E [f (γk)− f (γ∗)] ≤ Q

k
,

for some Q depending on ‖γ0 − γ∗‖, λ.

When b is present, the problem is only weakly convex. Here use
steplengths of the form ηk = θ/

√
k for some θ > 0, and form a weighted

average of the iterates {(γk , bk)}.

The function value of this weighted average converges like 1/
√

k.
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A Sparse Classifier

Cost of performing classification of new data with kernel machines is often
overlooked. For this method, the solution (γ, b) can be used to recover a
“sparse,” inexpensive approximate classifier.

The “true” classifier would be
∑m

i=1 αiyikapprox(xi , x) + b for the
approximate kernel. This is unattainable for general x , as we don’t know
the kernel kapprox that corresponds to the approximate kernel matrix VV T .

Use instead the original kernel:
∑m

i=1 αiyik(xi , x) + b.

Choose α to be a solution of V Tα = γ with just r nonzeros.

Then need just r kernel evaluations to evaluate the classifier for general x .

Details (including computational tests) appear in
LW10 S. Lee and S. Wright, “Sparse nonlinear support vector machines via stochastic

approximation,” Technical Report, Feb. 2010.
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2. Regularized Logistic Regression

Given n feature vectors xi ∈ Rm, i = 1, 2, . . . , n and binary labels bi = ±1.

Seek to learn from them a weight vector z ∈ Rm such that the following
functions give the odds of a new feature vector x belonging to class +1
and −1, resp.:

p+(x ; z) =
1

1 + ezT x
, p−(x ; z) =

1

1 + e−zT x
.

Denote L+ := {i | bi = +1}, L− := {i | bi = −1}.

For xi ∈ L+, want zT xi � 0, so that p+(xi ; z) ≈ 1.

For xi ∈ L−, want zT xi � 0, so that p−(xi ; z) ≈ 1.
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`1 regularization

Negative, scaled a posteriori log likelihood function is

L(z) = −1

n

∑
i∈L−

log p−(xi ; z) +
∑
i∈L+

log p+(xi ; z)


= −1

n

∑
i∈L−

zT xi −
n∑

i=1

log(1 + ezT xi )

 .

We seek a solution z with few nonzeros, so add a regularization term
λ‖z‖1:

min
z

Tλ(z) := L(z) + λ‖z‖1.

Smaller λ ⇒ more nonzeros in solution z .
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Functions, Derivatives and What They Cost

Denote by X the n ×m matrix [xT
i ]ni=1. Main cost in evaluating function

L is Xz . This can be cheap if z is sparse.

Gradient is

∇L(z) =
1

n
XT y , where yi =

{
−(1 + ezT xi )−1, i ∈ L−,

(1 + e−zT xi )−1, i ∈ L+.

In block coordinate descent or similar schemes, may need only a subset
G ⊂ {1, 2, . . . ,m} of components of this vector.

Cost: Assuming that Xz is already known from the L evaluation, need
O(n) (to calculate y) plus the cost of a matrix-vector product involving
column submatrix X·G .

This is about a fraction |G|/n of the cost of a full gradient.
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Hessian and Sampling

∇2L(z) =
1

n
XTdiag(f )X , where fi =

ezT xi

(1 + ezT xi )2
.

Costs: Assuming Xz known, main cost is forming (weighted) product of
X·C and its transpose, where C ⊂ {1, 2, . . . ,m} is the subset of variables
for which we want to evaluate the reduced Hessian ∇2LCC .

Can use sampling (Nocedal et al., 2010) to approximate the projected
Hessian: take a subset S ⊂ {1, 2, . . . , n} and use XSC in place of X·C .
Reduces evaluation cost by a factor |S|/n.
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Strategy at Step k

Choose a subset Gk ∈ {1, 2, . . . , n} by taking the current nonzeros
and a random subset of the rest.

Evaluate ∇LGk
and solve (in closed form):

min
d
∇L(zk)Td +

αk

2
dTd + λ‖zk + d‖1, s.t. di = 0 for i /∈ Gk .

Define Ck ⊂ Gk by Ck := {i | (zk + d)i 6= 0} and calculate a reduced
Newton-like step on this subspace.

Replace Ck components of d by reduced Newton step (giving a
two-metric direction) and do a cursory line search if necessary.

If two-metric step fails, try first-order step.

Increase αk as needed to satisfy sufficient decrease condition: require
improvement of at least c1(αk/2)‖d‖2 for some c1 ∈ (0, 1).
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Continuation, Other Enhancements

Problems with small λ are often much harder to optimize. Here use a
continuation strategy of solving for a decreasing sequence
λ0 > λ1 > λ2 > · · · > λT , where λT is the target value, and using the
solution for λt−1 as a starting point for the problem with λt .

Effective in practice; still working on the theory.

Various other enhancements in progress, including extension to
group-separable regularizers P(z) =

∑G
g=1 λg‖z[g ]‖2, where the z[g ] are

disjoint subvectors of z .
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Application: Eye Study

W. Shi, G. Wahba, S. J. Wright, K. Lee, R. Klein, and B. Klein, “LASSO-Patternsearch
algorithm with application to opthalmology data,” Statistics and its Interface 1 (2008),
pp. 137-153. Code: http://pages.cs.wisc.edu/ swright/LPS/

Beaver Dam Eye Study. Examined 876 subjects for myopia.

7 risk factors identified: gender, income, juvenile myopia, cataract,
smoking, aspiring, vitamin supplements.
Bernoulli model: Chose a cutpoint for each factor, assign 1 for above
cutpoint and 0 for below.
Examine all 27 = 128 interacting factors.

The four most significant factors are:

cataracts (2.42)
smoker, don’t take vitamins (1.11)
male, low income, juvenile myopia, no aspirin (1.98)
male, low income, cataracts, no aspirin (1.15)

plus an intercept of −2.84.
A much larger application about genetic risk factors for rheumatoid
arthritis also studied (> 400, 000 variables).
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Application: Predicting Splice Sites

Problem from
V. Roth and B. Fischer, “The Group-Lasso for generalized linear models: Uniqueness of
solutions and efficient algorithms,” Proceedings of the 25th ICML, 2008.

Splice: region between coding and noncoding region in DNA segments
(introns and extrons)

The idea is to look at a sequence of nine base pairs (e.g. CAGGTAAGT)
and decide whether it has the “signature” of a splice site.

Represent each location by four binary variables e.g. A = 1000, T = 0100,
C = 0010, G = 0001. Also consider posisble interactions between base
paris at different locations — all possible pairs, triples, quads, quints.

Can leave out locations 3 and 4 which are alwats G and T. Need 33,068
binary variables to capture the remaining possible effects.
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Training and Validation

Have a data set of 8415 positive and 179458 negative examples. Select
from these an equal number of each for training.

Solve a group-regularized logistic regression problem, with groups
corresponding to the main effects and the various combinations.

Solve for range of values of λ. Use a validation set to choose the most
appropriate value.

Termination criterion is critical to the actual solution but may not make
much difference to predictive power. Preliminary plots follow:
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Convergence Tolerance 10−6
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3. Tensor Decompositions

Given an N-dimensional tensor X , the CP decomposition expresses X
approximately as an outer product of F rank-1 tensors:

Xi1,i2,...,iN ≈
F∑

f =1

a
(1)
i1,f

a
(2)
i2,f

. . . a
(N)
iN ,f .

Rank of a tensor is the smallest F for which exact equality holds. However
things are much more complicated than in the matrix case (N = 2):

Smallest F may be different over R and C.

Finding smallest F is NP-hard.

Maximum and typical ranks of random tensors may be different.

Minimum-rank decompositions are nonunique for matrices, but often
unique for tensors.

Can have a sequence of rank-F tensors approaching a rank-(F + 1)
tensor.

There is interest in solving “tensor completion” problems where we find a
rank-F tensor that closely approximates the observations in a given tensor.
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Tensors in Practice

Tensor problems arise in chemometrics (fluroescence excitation-emission),
processing auditory signals, psychometrics, sensor array processing,
neuroscience, EEG, functional MRI, image compression, data mining.

A low-rank approximate factorization allows the principal effects to be
identified — allows interpretation — and condenses the data without
significant loss of information.

Like PCA for matrix analysis, but better suited to situations in which the
data is “naturally” multidimensional.
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Tensor: Fluorescense Example

27 sample solutions containing 4 known fluorophores. Excite each sample
with each of 24 wavelengths (from 250-315 nm) and measure emissions at
each of 121 wavelengths (from 241-481 nm).

Measurements are assembled in a 27× 121× 24 array.

From a physical law the measurement should be given by a physical law
involving 4 terms (for the 4 fluorophores):

Xijk =
4∑

f =1

ζkf εif ηjf

ζkf is concentration of element f in solution k,

εif is excitation factor for element f at excitation wavelength i ,

ηjf is emission factor at emission wavelength j .

These terms can be estimated by finding a rank-4 tensor that best
approximates the measured data matrix X .

Can fit X in a least-squares sense. Can still do this if some data is missing!
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Algorithms for Tensor Decompositions

Despite the theoretical difficulties, plow ahead! Given 3D tensor X of
dimensions I × J × K , and rank F , seek vectors af , bf , cf , and scalars λf ,
f = 1, 2, . . . ,F , such that

X ≈
F∑

f =1

λf af ◦ bf ◦ cf .

Alternating Least Squares is an old technique but one that has not yet
been improved on much. At each step, solve three linear least squares
problems. In the first of these, hold bf and cf constant and solve for λf

and af , f = 1, 2, . . . ,F :

min
λ,A

∥∥∥∥∥X −
F∑

f =1

λf af ◦ bf ◦ cf

∥∥∥∥∥
2

F

.

(Calibrate so that ‖af ‖ = 1 for all f and λf ≥ 0.)

Problems for (λf , bj) and (λf , cf ) are similar.
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ALS Properties

Least-squares subproblems highly structured: more expensive to form the
right-hand side of the normal equations than the coefficient matrix.

ALS sometimes performs well enough in practice. Typically large
reductions in early iterations, then very slow.

Theoretically, ALS is not well understood. It cycles on some examples, and
may approach local minima (which may exist, by nonconvexity).

Many enhancements / alternatives proposed (e.g. in an April 2010
workshop at AIM, Palo Alto) but few yet tried:

sampling for the right-hand side in ALS;

alternative steplengths and non-monotone ALS;

more general “full space” optimization methods;

alternative loss functions to ‖ · ‖2F ;

imposing additional structure, e.g. nonnegativity of factors.
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4. Cancer Treatment Planning

Deliver radiation from an external device to an internal tumor.

Shape radiation beam, choose angles of delivery so as to deliver
prescribed radiation dose to tumor while avoiding dose to surrounding
tissue and organs.

Use just a few different beam shapes and angles, from many possible
choices, to simplify the treatment.

Avoids spending too much time in setup, reduce the likelihood of
treatment errors, and avoid over-optimizing to unreliable data.
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Linear accelerator, showing cone and collimators
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Multileaf collimator. Leaves move up and down to shape the beam.
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5. Kernel Estimation and Clustering via SDP

Application: Given a collection of N objects a set of distances dij between
certain pairs of objects (possibly redundant, incomplete, inexact).

Seek to find a Euclidean vector representation xi ∈ RN for each
i = 1, 2, . . . ,N, such that ‖xi − xj‖2 ≈ dij for the observed distance pairs
(i , j).

Could also seek a more compact representation, say xi ∈ R3.

From the set of xi so defined, can

perform cluster analysis;

given a new object and distances to some of the original objects
i = 1, 2, . . . ,N, can “place” the new object in the same space as the
xi , and possibly assign it to an existing cluster.
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Formulation

Get the xi ∈ RN indirectly, by seeking a “distance matrix” K whose (i , j)
element represents 〈xi , xj〉.

Distances induced by K are thus

dij(K ) = ‖xi − xj‖22 = Kii + Kjj − 2Kij ,

and K is N × N positive semidefinite (K � 0).

If Ω is the set of observed distance pairs, and the operator • is defined by
Y • Z =

∑N
i ,j=1 YijZij , the fitting problem can be written as

min
K�0

∑
(i ,j)∈Ω

|dij − Bij • K |,

where Bij is the N × N symmetric matrix with four nonzero elements:

Bij(i , j) = Bij(j , i) = −1, Bij(i , i) = Bij(j , j) = 1.

Note that Bij • K = Kii + Kjj − 2Kij = ‖xi − xj‖22.
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Semidefinite Program

The fitting problem is a semidefinite program. General form of SDP is

min
X

C • X subject to X � 0, Ai • X = bi , i = 1, 2, . . . ,m,

where C and Ai are all symmetric.

Usually solved with interior-point methods. Good codes are available:
SeDuMi, SDPT3, others.

Recovering xi : Having obtained K , perform an eigen-decomposition
K = ΛΓΛT (where Λ is orthogonal and Γ is diagonal), and define
X = ΛΓ1/2. Take xi to be the ith row of X .
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Regularized Fitting

Can suppress the rank of K (and thus the dimension of each xi ) by adding
this regularization term to the objective:

τ trace(K ) = τ

N∑
i=1

λi (K ).

(Sparse optimization again!)

Larger τ ⇒ forces more of the eigenvalues λi (K ) to zero. Often a “cutoff”
is revealed, e.g. the three largest eigenvalues dominate. This would yield
xi ∈ R3.
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Dimension matters!

This problem is challenging for SDP software because of the many
constraint: |Ω| in total, potentially up to N2/2. (In our data set below,
N ≈ 280 and |Ω| ≈ 14000.)

Alternative “incremental” approach: Place a subset N̄ of the objects as
above, to derive K ∈ RN̄×N̄ symmetric and rank r , and thus xi ∈ Rr ,
i = 1, 2, . . . , N̄.

For each remaining object j , place xj the space Rr to best fit the distances
to the points already placed (without moving those points). Can formulate
this problem approximately as a conic problem of smaller dimension.

Get a conic program with a 2× 2 SDP variable, a SOC variable of
dimension rank(K ), and 2|Ψj | linear terms, where Ψj is the number of
measured distance pairs involving the new point j .
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Application: Protein Clustering

Lu, F., Keles, S., Wright, S. J., and Wahba, G. “Framework for kernel regularization with
application to protein clustering,” Proceedings of the National Academy of Sciences 102
(2005), pp. 12332–12337.

Infer protein function from sequence similarity.

Use SDP to represent proteins in low-dimension space, then cluster
and classify.

Assigning new unannotated proteins to the nearest class.

Choose 280 proteins from a databse of 630. Four classes: alpha-globins,
beta-globins, myglobins, globins (heterogeneous).

Solve the SDP formulation and reduce to 3 dimensions. The four classes
appear as distinct clusters. (The three fish proteins are slightly removed
from the other myglobins.)
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Add three sets of test proteins to the previous set, solve the incremental
problem for each.

Hemoglobin zeta chain from a goat

Hemoglobin theta chain from a pig

17 Leghemoglobins.

Each of the 3 classes fits neatly within one of the existing clusters.
Consistent with results of previous studies based on hidden Markov models.
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6. Genetically optimal captive breeding programs.

(with Webb Miller, Penn State)

A pool of n animals with known genetic information.

Select k of them to breed in captivity, for later release into the wild.

Choose the subset to optimize some goal, e.g. achieve a target
genetic profile.

min
1

2
‖Ax − b‖22 s.t. Cx = d , x ∈ {0, 1}n.

n is number of animals. xj indicates whether animal j is selected for
breeding or not.

Aij = number of reference alleles (0,1,2) for animal j at SNP i .

bi = target total allele representation at SNP i .

Cx = d includes a constraint on total number of animals selected,
possibly other knapsack constraints based on age and gender.
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Solving as an Integer Program

Our data has n ≈ 172 and includes constraint
∑

j xj = 50. Hard!

We used CPLEX’s MIP solvers on various formulations:

Integer QP (above). After about 2 days of CPU time, finds
incumbent with objective 3.8113 and lower bound of 1.8878. Visits
13.5M nodes. Most progress made in the first minutes, but steady
improvements throughout.

Redefined objective as ‖Ax − b‖1 and call CPLEX MILP solver with
various options. Cuts are important; only 200 nodes examined. Best
incumbent was 2.2150 with lower bound .4717. Most progress occurs
in first seconds.

These problems have notoriously weak QP relaxations (Bienstock, 2008).
Special techniques can be used to find lower bounds at each node:

Compute distance from relaxed QP solution to nearest feasible point;

Use curvature of Hessian to raise the lower bound.

Customized lower bounding is hard to implement in CPLEX, however.
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QCQP and SDP Relaxation

Can formulate as a quadratically constrained quadratic program (QCQP)
by rewriting xj ∈ {0, 1} as linear and quadratic constraints:

min
1

2
‖Ax − b‖22 s.t. Ci ·x = di , 0 ≤ xj ≤ 1, xj(1− xj) = 0.

SDP can be used to solve relaxations of QCQP. General form of QCQP is

min xTA0x + bT
0 x s.t. xTAkx + bT

k x + ck ≤ 0, k = 1, 2, . . . ,m.

where Ak are symmetric n × n matrices, possibly indefinite, for
k = 0, 1, . . . ,m.
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Reformulation and Relaxation

Define

Bk :=

[
Ak bk/2

bT
k /2 ck

]
and redefine x := (x ; xn+1) (add a single component). Then rewrite QP as

min xTB0x s.t. xn+1 = 1, xTBkx ≤ 0, k = 1, 2, . . . ,m.

Defining X = xxT , and inner product Y • Z :=
∑

i ,j YijZij , can rewrite as

min B0•X s.t. Xn+1,n+1 = 1, Bk •X ≤ 0, k = 1, 2, . . . ,m, rank(X ) = 1.

Get SDP relaxation by dropping the rank constraint.

Obviously VSDP ≤ VQCQP, where V are the respective value functions.
Other issues include:

recovering a feasible solution for QCQP from the SDP solution
(possibly randomly) with provably good (expected) quality.

finding other bounds e.g. VQCQP ≤ αVSDP for some α ∈ (0, 1).
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SDP Relaxation Results

In the relaxation, the constraint xj = x2
j (which holds if and only if xj is

either zero or one) can be expressed as

(Xj ,n+1 + Xn+1,j)/2− Xjj = 0.

Various “tricks” can be applied to strengthen the relaxation.

add m constraints (Ci ·x)2 = d2
i .

add mn constraints xj(Ci ·x − di ) = 0.

Results: SeDuMi produces lower bounds of 3.367 to 3.409 depending on
which constraints are enforced, what scalings are used. Run times: 10
seconds to a few minutes.
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Element-wise nonnegativities in X

Too expensive to enforce Xjl ≥ 0 for all (j , l) are there are n2/2 of these.

Can add these in “constraint generation” fashion, solving multiple SDPs in
which violations of these bounds are successively added to the formulation.
Slow, yields gradual increase in objective.

Better: Use Burer’s code DNN for doubly nonnegative matrices (2009).

Represents X by two different variables X̃ and X̂ , and enforces X̃ � 0
and X̂ ≥ 0.

Uses augmented Lagrangian to enforce X̂ = X̃ .

Alternates between gradient projection steps in X̂ and X̃ . (Easy to
project onto the feasible set for these two variables separately.)

Results: Lower bound of 3.6111 (6% optimality gap).
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Conclusions

Optimization is relevant to any areas of bioinformatics, biology,
medicine.

Applications in these and other related areas are driving developments
in optimization algorithms and motivating new lines of work.

The possibilities for further interactions seem endless!
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