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OOutline

Our problem: some intriguing observations
Dynamical entrainment as a seizure y
predictor (drug, electrical stimulation)
Seizure control concepts
Simulation models
Electrical stimulation results
Focus localization
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Some Observations

Our Problem

Looking for a mechanism of seizure 
generation and ways to control them
Simulation models to study fundamental 
issues

coupling, entrainment (synchronization), seizures
Design of feedback controllers for seizure 
suppressionsuppression

controllability, observability
control objectivescontrol objectives
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Electrical Stimulation as a 
Some Observations

Treatment for Epilepsy

No systemic and central nervous system side effects 
Periodic (fixed-form) stimulation: biphasic pulses

Cyberonics (Vagus nerve, US FDA approved), 
Medtronic, Neuropace (deep brain stimulation)
Recent results: still not a complete solutionRecent results: still not a complete solution
30% of patients experience >50% reduction of 
seizure frequency but < 10% become seizure 
free 

Proposed: feedback decoupling (taking advantage of 
postulated structure)postulated structure)

Fields Inst. June 12, 2010 5



Average T index over multiple sites

Some Observations

Average T-index over multiple sites

Synchronization/entrainment of brain sites indicates 
upcoming seizures (or, at least, susceptibility to them)

Iasemidis, 1997
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Epileptic Brain Stimulation Results: 
Some Observations

Warning based stimulation of

feedback v. feedforward

Warning–based stimulation of 
epileptic brain (thalamus) in rat leads 
to reduction of seizure frequency. But 
after the 4th day, the entrainment 
measure (PEP) increases and seizures 
reappear despite continuing 
stimulation, indicating loss of effective 
seizure controlseizure control. 

In the same rat, perodic stimulation 
shows no reduction in the 
entrainment measure (PEP) of brain 
sites, nor in seizure frequency. 
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ANIMAL STUDIES:  ELECTRICAL 
Some Observations

STIMULATION 

130Hz electrical stimulation (constant current square biphasic pulses 
of 100 msec width, intensity of 750 mA and duration of 1 minuteof 100 msec width, intensity of 750 mA and duration of 1 minute 
applied to the left thalamic electrode)
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Rat EMU: Low-light CCTV video camera multiplexed system, 
Grass-Telefactor Beehive® Millennium EEG monitoring stations,  

Some Observations

g ,
Plexiglas cages and commutator wiring 
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From Microscopic to Macroscopic Level: 
T l d S i T l i

Dynamical Entrainment

Temporal and Spatio-Temporal summation
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Epilepsy: Dynamical Entrainment, 
Dynamical Entrainment

Disentrainment and Resetting

1

2

Amplitude 
Synchronization

Convergence of STLmax Phase synchronization
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Increasing coupling increases synchronization
(Observer-based Stabilization)
⇒Coupling – Synchronization
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Dynamical entrainment: Convergence of Chaos at 
lti l il ti b i it ti

Dynamical Entrainment

multiple epileptic brain sites over time

Maximum Short-term Lyapunov ExponentMaximum Short term Lyapunov Exponent
STLmax and T-index profiles over time
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Dynamical Disentrainment: Brain Resetting by Seizures

Dynamical Entrainment

y g y
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Dynamical Entrainment

Dynamical Disentrainment: Brain Resetting by AEDs

                        
Rectal Diazepam (10 mg) 

                           
IV Lorezepam (0.1 mg / Kg) 
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The T-index profile over time (2 HOURS) for a human status epilepticus 6-year old patient. 
The patient was administered 10 mg of diazepam rectally 24 minutes into the recording 
(end of EEG stage III), and 0.1 mg/kg of Lorezepam intravenously 61 minutes into the 

di (EEG t IV) h b th ti l

Time (Minutes)

recording (EEG stage IV) as shown by the vertical arrows. 
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Dynamical Entrainment
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Dynamical Disentrainment: Brain Resetting by AEDs
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Lithium-pilocarpine induced SE rodent model:  AED 
treatment results to long-term resetting of brain dynamics. 
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BASIC PRINCIPLES: Control

Seizure Control

BASIC PRINCIPLES: Control

O scilla to r
N etw ork

O scilla to r
N etw ork C orrela to rC orre la to rΣ

In ternal
F eedback
In ternal

F eedback

1 Normal brain: Internal feedback disentrains the entrained brain

C onjectu red  F unctional
D escrip tion  o f the  B rain  

1. Normal brain: Internal feedback disentrains the entrained brain 
sites fast 

2. Epileptic Brain: Pathology in the internal feedback fails to 
disentrain the epileptogenic focus from the normal brain sites fast p p g
enough
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C j t

Seizure Control

Conjectures

1. Seizures are predictable  on the basis of  dynamical 
ientrainment

2. Seizures reset the brain dynamics
3. Electrical stimulation and/or AEDs can reset the brain. 

Then seizures do not occur.
4. Where, How, When to stimulate
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Seizure Control

Underlying Concepts

1. Predictable v. unpredictable seizures. Failure modes: cell/neuron-level, 
network-level

2. Seizures  appear occasionally with normal operation most of the time 
(learning systems and adaptation bursting)(learning systems and adaptation bursting)

3. Pre-ictal increasing synchronization (increased coupling, observer 
feedback)

4. Primary Pathology: The epileptogenic focus  acts as an attractor for the 
dynamics of  normal sites and “attempts” to dynamically entrain normal 
brain sites

5. Secondary Pathology: Normal sites are not disentrained fast enough by 
the focus due to malfunctioning internal feedback that controls thethe focus due to malfunctioning internal feedback that controls  the 
magnitude and duration of entrainment

6. Seizures disentrain the normal sites from the focus (resetting power of 
seizures)
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Corroborative Evidence for the Underlying 

Seizure Control

y g
Concepts

1 Dynamical Analysis of EEG1. Dynamical Analysis of EEG 
Type of seizures

Focal (Temporal Lobe; Frontal Lobe), Primary Generalized
Subclinical, Clinical
Clinical versus Electrographic seizures
Status Epilepticus

Type of electrodes
IntracranialIntracranial
Scalp

2. Sources of Data 
Patients
A i l d l (R d t )Animal models (Rodents)
Simulation models (coupled nonlinear oscillators, cortex, 
thalamus)
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Key Observations

Seizure Control

Key Observations

Spatially distributed properties vs. lumped ones
coupling and synchronization
network vs cell/group destabilizationnetwork vs. cell/group destabilization 

Seizure controllability correlates well with the ability 
to disentrain the brain

Seizure frequency was reduced when the stimulation 
achieved disentrainment
Seizure frequency was not reduced when the stimulation 
did not affect entrainment
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M d l St t

Simulation Models for Control

Model Structures

FBK
FBK

FBK FBK

I. Evolved network, internal feedback (adaptive learning)

Bus signal
Avg(y_i)

Master
Decorrelator
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Si l i d l f il i i

Simulation Models for Control

Simulation models of epileptic seizures

T b (SUNY D t t 1981 )Traub (SUNY Downstate, 1981- …):
First-principles, compartmental model of interconnected neurons, 
electrical current by Hodgkin-Huxley equations, 200 cells

Freeman (Berkeley, ~1975 - …): 
Spatio-temporal lattice of nonlinear processing elements, Emulation 
of basic oscillation patterns, Stochastic chaos

Lopes da Silva, et al. (Epilepsia, 2003): 
Semi-physical models with “intermediate level” modules

Iasemidis et al (Vienna 2003; Patras 2001):Iasemidis et al. (Vienna, 2003; Patras, 2001): 
Chaotic oscillators with diffusive coupling
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Simulation models of epileptic seizures: 

Simulation Models for Control

interconnected chaotic oscillators

G l f ti l h t i ti b t t ilGeneral functional characteristics but not necessarily 
precise prediction

mechanisms of seizure generationg
Epilepsy as a system characteristic

Importance of interconnections (coupling)
S i t k tSeizures as a network property

Feedback for homeostasis 
with learning interpretationsg p

Suggestions for viable feedback control strategies
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Simulation models of epileptic seizures: 

Simulation Models for Control

interconnected chaotic oscillators

Coupled oscillator models show synchronization but no 
instability

NN
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iiii yx
dt

αω +

)()(
iiiii

i xzx
dt

tdz γβ −+=

*}][{)( cxxcorrPIkxxku IIII −=−=

Internal feedback - local destabilization 

}],[{),( cxxcorrPIkxxku jiijjiijij −=−=

Parameter adaptation-like term: feedback gain kij
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Simulation Models for Control

Model seizure details

“SeizureSeizure
”

“Entrainment
Coupling estimator
(Information transmisson)

“Normal” “Epileptic”
”

Normal p p
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Simulation Models for Control

Details on controller design

E t l

OscillatorOscillator
C l t
InternalSExternalExternal

Stimulation EEG
Correlator
External
CorrelatorDefinition of the 

Control Objective:
Stabili ation? Oscillator

NetworkNetwork CorrelatorCorrelator

Internal
Feedback
Internal

SExternal
FeedbackFeedback 

PIE

Proposed Feedback
Stimulator to Feedback 

Stabilization?
Model Matching?
Desynchronization Feedback

Conjectured Functional
Description of the Brain 

Stimulator to
Prevent Seizures PII

Desynchronization
?

R l i bRecover normal operation by 
undoing the pathology: Feedback 
DecouplingDecoupling
– Minimal interferenceFields Inst. June 12, 2010 26



Simulation Models for Control

Details on controller design
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Adaptive feedback decoupling
Design of a PI controller/estimator
Recovery of normal behavior  
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Feedback stimulation of the “Epileptic Brain”

Simulation Models for Control

Feedback stimulation of the Epileptic Brain

Continuous Feedback (pulses) Feedback Decoupling

Periodic stimulation does not suppress seizures
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Increasing the network complexity
Simulation Models for Control

Impulse-train vs. Decoupling feedback

Consistent explanation of observations:Consistent explanation of observations:
failure of stimulation to suppress seizures 
possibly related to number of pathological 

ticonnections.
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Ne roph siolog based models

Simulation Models for Control

The occurrence of seizures and their control via feedback 
d li h b ifi d d di d i i

Neurophysiology-based models

decoupling have been verified and studied in various neuron 
population models that have been proposed in the literature.
– Jansen’s model of cortical neural mass,  modified by David and Friston, y
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» Jansen, Zouridakis, Brandt, ``A neurophysiologically-based mathematical model of flash visual 
evoked potentials”, Biological Cybernetics, 68, 275-283, 1993
D id d F i ``A l d l f MEG/EEG li d l d i ”

0 500 1000 1500 2000 2500 3000 3500 4000
-20

0 500 1000 1500 2000 2500 3000 3500 4000
-200

» David and Friston, ``A neural mass model for MEG/EEG: coupling and neuronal dynamics”,                   
NeuroImage, 20, 1743-1755, 2003
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Neurophysiology-based models

Simulation Models for Control

Interacting cortical populations

Neurophysiology based models

Interacting cortical populations 
(Suffczynski et al. 2004)

homeostasis: balance of inhibition-
excitation
interconnection through excitatory neurons 
only (AMPA)
c2, c4: PI feedback adjustment to maintain c , c eedbac adjust e t to a ta
an average firing rate output 
lack of adjustment can cause seizure-like bursts
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Electrical Stimulation Results

Warning based stimulation of

Epileptic Brain Stimulation Results

Warning–based stimulation of 
epileptic brain (thalamus) in rat leads 
to reduction of seizure frequency. But 
after the 4th day, the entrainment 
measure (PEP) increases and seizures 
reappear despite continuing 
stimulation, indicating loss of effective 
seizure controlseizure control. 

In the same rat, perodic stimulation 
shows no reduction in the 
entrainment measure (PEP) of brain 
sites, nor in seizure frequency. 
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Electrical Stimulation Results

8 Seizure Warning Stimulation Control SYNCHRONIZATION 
DETAILS BEFORE DURING

Epileptic Brain Stimulation Results

6

7

de
x

Baseline Post Control

DETAILS BEFORE, DURING 
AND AFTER CONTROL.
“T-index synchronization 
measure:” When elevated, there 

4

5

T
-in

d

are no seizures. When control is 
lost, T-index level drops back to 
baseline levels and seizures return.

10 12 14 16 18 20 22 24
3

Time (days)

STATISTICALLY QUANTIFIED 
REDUCTION OF SEIZURES 
WITH CONTINUOUS 
FEEDBACK
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Electrical Stimulation Results

CORRELATION BETWEEN T

Epileptic Brain Stimulation Results

CORRELATION BETWEEN T-
INDEX LEVEL AND SEIZURE 
FREQUENCY IN RESPONDING 
RATS.

LACK OF CORRELATION 
BETWEEN T-INDEX LEVEL 
AND SEIZURE FREQUENCY IN 
NON-RESPONDING RATS. 

L.B. Good, S. Sabesan, S.T. Marsh, K. Tsakalis, L.D. Iasemidis & D.M. Treiman, 
“Automatic seizure prediction and deep brain stimulation control in epileptic rats,” 
American Epil.Soc., 2007. 
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Electrical Stimulation: Focus localization

A dynamical view of focus localization

Dynamical view of Focus 
Localization: 

Epileptogenic focus acts as

Existing Approaches
Synchronization-based 
measures

“Pure” measures: Cross-Epileptogenic focus acts as 
the driver for all electrodes 
preictally, highly synchronized 
network. 

Pure  measures: Cross
correlation, Cross-
coherence, Mutual 
Information
“Hybrid” measures: T-index y
based dynamical measures

Directional measures
Parametric measures: Multi-Focus

Non-focal

Non-focal Parametric measures: Multi
variate local –linear 
AR/ARMA, global error 
reduction models
Non-parametric measures: Non-focal p
Transfer Entropy
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Electrical Stimulation: Focus localization

Quantifying causal interactions

Transfer Entropy (TE):

∑ +→
N l

n
k

nnlk yxxPyxxPXYTE
)()(

1)()( ),|(log)()(

P(xn+1|xn
(k)): a priori transition probability of process X
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+=→

n
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nn

nnn
nnn xxP

yxxPXYTE
1

)(
1

1)()(
1 )|(

log),,()(

P(xn+1|xn
(k) ,yn

(l))): the true underlying transition probability of the
combined process of X and Y.

Problems ImprovementsProblems

k, l: How to select them ?

r: How to select the optimal radius for 
multi dimensional probability

Improvements

k: first minimum of mutual information

l =1; l>1 for indirect connections

TE d t i t di tmulti-dimensional probability 
estimation

r: TE was averaged at an intermediate 
range of r (σ/5-2σ/5)
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T f E t A li ti t EEG

Electrical Stimulation: Focus localization

Transfer Entropy: Application to EEG

Transfer Entropy (TE): Measure ofTransfer Entropy (TE): Measure of
Information flow

RST

RTD
TE (RTD RST)
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T f E t A li ti t EEG

Electrical Stimulation: Focus localization

Transfer Entropy: Application to EEG
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S f G

Electrical Stimulation: Focus localization

Summary of Analyzed Depth EEG data
Shands Hospital, FL Barrow Neurological Institute, AZp , g ,

Number of Patients Analyzed = 2

Number of seizures=53

Number of Patients Analyzed = 2

Number of seizures = 43 

Days of recording=6.16 days/patient
Focus: Left Amygdala (LA)

Days of recording=9.03 days/patient
Focus: Right temporal depth (RTD) 
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Electrical Stimulation: Focus localization

SANTE over time (short-term)

Focus: RTD2, RTD3 Focus: LA1, LA2, LA3

Hypothesis: The epileptogenic focus drives other brain sites for the longest period of timeHypothesis: The epileptogenic focus drives other brain sites for the longest period of time
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SANTE over time (long-term):

Electrical Stimulation: Focus localization

Focus localization results

Probability of driving

∑
=

>Θ=
NT

t

t
D iSANTE

NT
iP

1
)0)((1)(

Probability of driving

O tli d t ti th d iOutlier detection method using 
Chebyshev inequality

2
1)(
k

kXP ≤≥− σµ

Two Stage Process:

Stage 1: Choose p=0.1 Calculate 
k--> remove outliers Estimate 

k

sample µ and σ

Stage 2: Choose p=0.01 Calculate 
k--> Estimate Threshold

σµ kTu +=
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Electrical Stimulation: Focus localization

Focus localization results: Patient 2
Primary versus secondary y y
focus ?
Primary focal sites drive 
more frequently the sites 

idi i th iresiding in their own 
hemisphere than the ones 
in the contralateral 
hemispherehemisphere

OR

Two independent foci  ?
The two focal sites drive 
each other equally or do not 
d i h th t ll

P<0.001 P<0.6
drive each other at all (Mann-Whitney U test)
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F l li ti lt S

Electrical Stimulation: Focus localization

Focus localization results: Summary

PATIENT ID Focus
(clinical assessment)

Focus localization
(SANTE and P )

Focus lateralization
(SANTE and P )(clinical assessment) (SANTE and PD) (SANTE and PD)

Patient 1 Right temporal lobe
(RTD: RTD2, RTD3)

Right temporal lobe 
(RTD2)

Right hemisphere
Right temporal lobe (RTD)

Patient 2 Right temporal lobe Right/Left Right+Left hemispherePatient 2 Right temporal lobe
(RTD: RTD3, RTD4)

Right/Left
temporal lobe
(RTD3>LST3)

Right+Left hemisphere
Right/Left temporal lobe

(RTD, LST)

Patient 3 Left Amygdala
(LA: LA1 LA2 LA3)

Left Amygdala
(LA1> LA2)

Left hemisphere
Left Am gdala (LA)(LA: LA1, LA2, LA3) (LA1> LA2) Left Amygdala (LA)

Patient 4 Left Amygdala
(LA:LA1, LA2, LA3)

Left Amygdala
(LA1> LA2> LA3)

Left hemisphere
Left Amygdala (LA)
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Di iDiscussion

Seizure Predictability 
characteristic changes prior to a seizure’s electrographic onset  across seizures in 
the same patient and across patients.

Seizure Prediction
real-time prospective algorithm that can reliably detect the preictal changes early

Seizure Resetting
inability of the epileptic brain to reset begets seizures. 
AEDs, electrical stimulation reset the brain too.

S i S ibili I iSeizure Susceptibility – Ictogenesis: 
A dynamical view: brain’s homeostatic mechanisms for resetting of dynamical 
entrainment do not function properly

Seizure Control
bi l i ll l ibl t i l ti d l l t i l ti l ti i lbiologically plausible computer simulation models, electrical stimulation animal 
models, and Status Epilepticus drug studies

Epileptogenic Focus Localization
important byproduct of the dynamical analysis 

Fields Inst. June 12, 2010 44



Di iDiscussion

Models of interacting populations (neuropysiology-
based)

coupling-induced seizures, synchronization p g y
Conjectured model structure suggests a potentially 
viable control strategy

neurophysiological effect of electrical stimulation, chargeneurophysiological effect of electrical stimulation, charge 
balance, tissue damage, etc. to be addressed
Unified treatment algorithms for AED and electrical stimulation

Single-electrode stimulation may be the limiting factor S g e e ect ode st u at o ay be t e t g acto
for reliable reduction of seizure frequency
Simple strategies may be inadequate to suppress all 
seizuresseizures
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