
Adaptive movement and spatial scales inAdaptive movement and spatial scales in 
advection-dominated systems

Roger M. Nisbet, 
D t f E l E l ti d M i Bi lDept of Ecology, Evolution and Marine Biology,

University of California, Santa Barbara.

Based on collaborative work with: Kurt Anderson, Sebastian Diehl, Mark 
Lewis, Ed McCauley

Funding:  NSF grant DEB-0717259g g



Advection-dominated systems



Representation of an idealized river
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Population Dynamics

( ) ( ) ( )( ) xx tN∂ ∫{ ( ) ( ) ( )
0emigration

immigration
recruitment mortality

( , ) ( ) ( , ) ( , ) ( , ) ( )G G
x tN x e x x t m x x t e y N y t h x y dyR N Nt

∂ = − − + −
∂ ∫14424431442443

14444244443



Local Population Dynamics
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Spatially homegenous steady state is   
* * /N R m=  

 
 

dNLocal dynamics have the form     ( )   G
dN R I m e N
dt

= + − +  

 
R I+so local steady state is always given by  *

G

R IN
e m

+
=

+
 



Sensitivity of equilibrium to disturbances
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(a)    If R changes only locally,  
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(b)    If R changes globally,   1Rσ =   
 
[Note /J GN e m= is the mean number of jumps per lifetime][Note /J GN e m is the mean number of jumps per lifetime]



Summary of equilibrium sensitivities

Parameter Local Sensitivity Global Sensitivity

---

R ll lR small large
m small large

l 0
Ge large 0 



Steady State Response to Spatial Heterogeneity
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Define  ( )*( ) 1 ( )R x R r x= + ;      ( )*( ) 1 ( )m x m xμ= + ;  
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Steady State Response to Spatial Heterogeneity
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Define  ( )*( ) 1 ( )R x R r x= + ;      ( )*( ) 1 ( )m x m xμ= + ;  
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S b tit ti d di di d t f ll titi i ldSubstituting and discarding products of small quantities yields a 
linear equation:
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Spatial scale and the Laplace transform

Laplace transform of (say) n(x) is defined by:
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Interpretation: weighted measure with highest weighting 
to perturbations over a range of order 1/s.p g

Large s small scale↔g

Small s large scale
↔
↔



Solving the linearized equation
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Approximation to Transfer Functions

If s is “small”, then  
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= ∫  = mean distance per jump.   
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The transfer functions then take familiar forms: 
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NOTE:  Correction needed at large s: depends on kernel



Impulse response function

• Impulse response function = inverse L.T. of transfer function  

• Describes the steady state response to a localized (delta 
function) perturbation.   

• For a perturbation in R at x=0, downstream population density 
has the form 

/ L   /( ) Rx Ln x e−∝ ,    

• Response length R J DL N L=  = mean displacement in lifetime. 

• Note that response to an impulse in emigration rate has a 
singularity at x=0 



Magnitude of Response Length LR

avg. dispersal length 
where per cap emigration
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Examples of long (km) response lengths
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– Baetis in Kuparak River 
⇒ LR ≈ 2 km

- Gammarus in Lake District
⇒ LR ≈ 1.5 km

Coastal fish near Diablo Canyon- Coastal fish near Diablo Canyon
Power Plant (CA)

- ⇒ LR ≈ 5 km
- Stoneflies in Broadstone Creek 

(England)(England)
- ⇒ LR ≈ 0.13-7.6 km

-Examples of short (m) response lengths
- Many inverts in Convict Creeek (CA)      y ( )

⇒ LR ≈ 1-200 km



Spatially extended variabilitySpatially extended variability

Disney Channel 2-20cm tiles
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Steady state response to spatially extended 
environmental perturbationsenvironmental  perturbations

Assume spatial variation in recruitment R(x) represented as

Recruitment Population

Assume spatial variation in recruitment, R(x) represented as 
sum of sinusoids of wavelength LE

Recruitment Population

L Lag

Location (x)

LE Lag

amplidude of population variation
Amplification =

amplidude of population variation
amplitude of recrutiment variation



“Tracking” and “averaging” changes in emigration 
trate

Amplification and downstream lag are calculated by settingAmplification and downstream lag are calculated by setting

in transfer functions2 / Es i Lπ=

Amplification

Population distribution:

• “averages” large scale (small s) 
disturbances

• “tracks”  small scale disturbances

• “large” means much greater than LR

s



Spatio-temporal dynamics
Transient Dynamics are a key component of many advective systems
   
Measures of transient response for non spatial systems include:Measures of transient response for non-spatial systems include:

- Resilience 
- Reactivity 

A lifi i l- Amplification envelope  
 
For ODE system of form d

dt
=

x Jx : 
dt

- Resilience from leading eigenvalue of J.  
- Reactivity from leading eigenvalue of ( )1

2
T= +H J J  

2
- Amplification envelope from matrix norm of exp( )tJ  

In advective systems these calculations can be performed on the Laplace orIn advective systems, these calculations can be performed on the Laplace or 
Fourier transformed equations, thereby relating transient response to spatial 
scale.



Spatio-temporal dynamics

Amplification envelope related to response length 



Biotic interactions and the response length

trouttrout

insect
larvae

diatoms,
cyanobacteriacyanobacteria



Impacts of biotic interactions on
the response length LR

NEED TO SPECIFY RELATIONSHIP BETWEEN B(x) and N(x)



Direct Density DependenceDirect Density Dependence



Interactions via a (not quite) Ideal Free Predator



On-going work – benthic inverts in Merced River

• Evaluate response length concept through   
simulations with “pseudo” 3-D river model

• Parameters (except one) estimated for Baetis

M d l i fl d• Model transient response to floods

• Model food delivery for young salmon


