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Random dispersal

Reaction-diffusion models

A. Hastings (TPB, 83)

ut =

µ∆u +

uf (u + v , x) in Ω× (0,∞),

vt =

ν∆v +

vf (u + v , x) in Ω× (0,∞),

∂u
∂n = ∂v

∂n = 0 on ∂Ω× (0,∞).

(1)

u(x , t), v(x , t): densities of species

µ, ν > 0: random dispersal rates
No-flux boundary condition
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Random dispersal

Evolution of slow dispersal

Dockery et al. (JMB 98):

f (u + v , x) = m(x)− u − v , m(x) is positive and non-constant.
µ < ν.

Then (ũ,0) is globally asymptotically stable, where ũ is the unique
positive steady-state of

ũt = µ∆ũ + ũ(m − ũ) in Ω× (0,∞),

∂ũ
∂n = 0 on ∂Ω× (0,∞)

The slower diffuser is the winner.
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Random dispersal

Discrete models

A. Hastings (TPB, 83): discrete space and continuous time

McPeek and Holt (Am. Nat. 92): discrete space and time, two
patch

Kirkland et al (SIAM J. Appl. Math. 2006): discrete time and
space, n-patch
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Conditional dispersal

Conditional dispersal

Conditional dispersal: Organisms can sense and respond to local
environmental cues
Discrete models: McPeek and Holt (Am. Nat. 92)
Continuous model: Cantrell et al (Math. Biosci. 2006); Chen et al
(JMB 2008).

ut = µ∇ · [∇u − αu∇m] + u(m − u − v) in Ω× (0,∞),

vt = ν∇ · [∇v − βv∇m] + v(m − u − v) in Ω× (0,∞),

[∇u − αu∇m] · n = [∇v − βv∇m] · n = 0 on ∂Ω× (0,∞)
(2)
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Conditional dispersal

Monotone dynamical system

Two species Lotka-Volterra competition systems are monotone

Matano (1984), Hirsch (1988), Thieme and Smith (1990, 1991),
Dancer and Hess (1991), Hsu, Smith, and Waltman (1995), Smith
(1995), Jiang, Liang and Zhao (2005)...

Semi-trivial steady states: if m > 0, (ũ,0) and (0, ṽ) both exist

Coexistence state: If both semi-trivial steady states are unstable,
the system has one stable coexistence state
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Coexistence state: If both semi-trivial steady states are unstable,
the system has one stable coexistence state

Y.Lou (Ohio State Univ.) Evolution of dispersal Toronto, September 10-13 7 / 25



Conditional dispersal

Monotone dynamical system

Two species Lotka-Volterra competition systems are monotone

Matano (1984), Hirsch (1988), Thieme and Smith (1990, 1991),
Dancer and Hess (1991), Hsu, Smith, and Waltman (1995), Smith
(1995), Jiang, Liang and Zhao (2005)...

Semi-trivial steady states: if m > 0, (ũ,0) and (0, ṽ) both exist

Coexistence state: If both semi-trivial steady states are unstable,
the system has one stable coexistence state

Y.Lou (Ohio State Univ.) Evolution of dispersal Toronto, September 10-13 7 / 25



Conditional dispersal

Monotone dynamical system

Two species Lotka-Volterra competition systems are monotone

Matano (1984), Hirsch (1988), Thieme and Smith (1990, 1991),
Dancer and Hess (1991), Hsu, Smith, and Waltman (1995), Smith
(1995), Jiang, Liang and Zhao (2005)...

Semi-trivial steady states: if m > 0, (ũ,0) and (0, ṽ) both exist
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Conditional dispersal

Weak advection

Cantrell et al: µ = ν, β = 0 and α > 0 small.

If Ω is convex, (ũ,0) is globally asymptotically stable.

There exist non-convex domains and m(x) such that (0, ṽ) is
globally asymptotically stable.

Geometry of habitat matters
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If Ω is convex, (ũ,0) is globally asymptotically stable.

There exist non-convex domains and m(x) such that (0, ṽ) is
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Conditional dispersal

Advection induced coexistence

What about large α?

(Cantrell et al. 2007; Chen et al 2008) Suppose that m ∈ C2(Ω̄),
positive and non-constant. For any µ and ν, β ≤ 1/maxΩ m, if α is
large, both (ũ,0) and (0, ṽ) are unstable, and system (2) has a
stable positive steady state.

Chen and L. (Indiana Univ. Math. J, 08): for β = 0 and large α, if
m has a unique local maximum, the species u concentrates
around this maximum.
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Conditional dispersal

Advection-induced extinction

Chen et al. JMB 2008: Suppose that ∂m/∂n < 0 on ∂Ω, m has only
one critical point x0 in Ω, with x0 ∈ Ω and D2m(x0) < 0.

If β ≥ 1/minΩ m, (0, ṽ) is globally asymptotically stable for large
α.

Strong biased movement of single species can induce the
coexistence of both competing species

Strong biased movement of both species can induce the extinction
of the species with the stronger biased movement
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Conditional dispersal

Evolution of intermediate advection?

For µ = ν > 0 and convex habitats, we conjecture that there exists
some α∗ > 0 such that

If either β < α ≤ α∗ or α∗ ≤ α < β, (ũ,0) is globally asymptotically
stable.

If either α < α∗ < β or β < α∗ < α, both (ũ,0) and (0, ṽ) are
unstable and there is one stable positive steady state.

How to estimate α∗?
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Conditional dispersal

Two similar species

(Hambrock and L. 2009) Suppose µ = ν, Ω = (0,1), and mx > 0 on
[0,1].

If β < 1/maxΩ m, there exists δ1 > 0 such that for α ∈ (β, β + δ1),
(ũ,0) is globally asymptotically stable.

If β > 1/minΩ m, there exists δ2 > 0 such that for α ∈ (β − δ2, β),
(ũ,0) is globally asymptotically stable.

α∗ ∈ (1/maxΩ m,1/minΩ m)
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Ideal free dispersal

Ideal free distribution

Consider

ut = µ∇ · [∇u − αu∇P(x)] + u(m − u) in Ω× (0,∞),

[∇u − αu∇P(x)] · n = 0 on ∂Ω× (0,∞)
(3)

If P(x) = lnm, then ũ ≡ m is the unique positive equilibrium

The species with the dispersal strategy P = lnm can perfectly
match the environmental resource, which leads to its fitness
equilibrated across the habitats; i.e., m − ũ ≡ 0.

Y.Lou (Ohio State Univ.) Evolution of dispersal Toronto, September 10-13 13 / 25



Ideal free dispersal

Ideal free distribution

Consider

ut = µ∇ · [∇u − αu∇P(x)] + u(m − u) in Ω× (0,∞),

[∇u − αu∇P(x)] · n = 0 on ∂Ω× (0,∞)
(3)
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If P(x) = lnm, then ũ ≡ m is the unique positive equilibrium

The species with the dispersal strategy P = lnm can perfectly
match the environmental resource, which leads to its fitness
equilibrated across the habitats; i.e., m − ũ ≡ 0.
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Ideal free dispersal

Evolution of ideal free dispersal

(Cantrell et al, 2009)

ut = µ∇ · [∇u − αu∇P(x)] + u(m − u − v) in Ω× (0,∞),

vt = ν∇ · [∇v − βv∇Q(x)] + v(m − u − v) in Ω× (0,∞),

[∇u − αu∇P(x)] · n = [∇v − βv∇Q(x)] · n = 0 on ∂Ω× (0,∞)
(4)

Is the dispersal strategy P = lnm evolutionarily stable?
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Ideal free dispersal

Evolutionarily stable strategy

(Cantrell et al. 2009) Suppose that µ = ν, m ∈ C2(Ω̄) and m > 0 in Ω̄.

Suppose that P(x) = lnm, Q(x) = lnm(x) + εR(x), where
R ∈ C2(Ω̄). If R is non-constant, then (0, ṽ) is unstable and (ũ,0)
is globally asymptotically stable for 0 < |ε| � 1.

Suppose that P(x)− lnm is non-constant. There exists some
R ∈ C2(Ω̄) such that for Q(x) = P(x) + εR(x), (ũ,0) is unstable
for 0 < |ε| � 1.

P = lnm is a local evolutionarily stable strategy (ESS), and no
other strategy can be a local ESS.
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Ideal free dispersal

Convergent stable strategy

(Cantrell et al. 2009) Suppose that µ = ν, P(x) = lnm + αR,
Q(x) = lnm + βR, m > 0, Ω = (0,1) and Rx > 0 in [0,1].

If α < β < 0 or 0 < β < α, (ũ,0) is unstable and (0, ṽ) is stable.

Given any η > 0, there exists κ > 0 such that if either (i)
α, β ∈ [−η,0] and 0 < β − α < κ or (ii) α, β ∈ [0, η] and
−κ < β − α < 0, (0, ṽ) is globally asymptotically stable.

If either α < 0 < β or β < 0 < α, both (ũ,0) and (0, ṽ) are
unstable, and system (4) has one stable positive steady state.

P(x) = lnm is a CSS.
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Some ideas of the proofs

Stability of (0, ṽ)

Stability of (0, ṽ): The sign of the principal eigenvalue λ(α) of

µ∇ · [∇ϕ− αϕ∇m] + ϕ(m − ṽ) = −λϕ in Ω,

∂ϕ
∂n − αϕ

∂m
∂n = 0 on ∂Ω

Set ψ = e−αmϕ. Then ψ satisfies

−µ[∆ψ + α∇m · ∇ψ] + ψ(ṽ −m) = λ(α)ψ in Ω,

∂ψ
∂n = 0 on ∂Ω.

What is the behavior of λ(α) for large α?
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Some ideas of the proofs

Asymptotic behavior

Consider

−µ[∆ϕ+ α∇m · ∇ϕ] + c(x)ϕ = λϕ in Ω,
∂ϕ

∂n
|∂Ω = 0.

Chen and L. (Indiana Math Univ. J, 08): suppose that m ∈ C2(Ω̄)
and all critical points of m are non-degenerate. Then

lim
α→∞

λ(α) = min
x∈M

c(x),

whereM is the set of points of local maximum of m.
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Some ideas of the proofs

Back to dispersal

Recall

−µ[∆ψ + α∇m · ∇ψ] + ψ(ṽ −m) = λ(α)ψ in Ω,

∂ψ
∂n = 0 on ∂Ω.

It follows from previous result of Chen and L. that

lim
α→∞

λ(α) = min
M

(ṽ −m),

whereM=the set of points of local maximum of m(x).
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Some ideas of the proofs

Resource undermatching and overmatching

Recall

ν∇ · [∇ṽ − βṽ∇m] + ṽ(m − ṽ) = 0 in Ω,

∂ṽ
∂n − βṽ ∂m

∂n = 0 on ∂Ω.

If β ≤ 1/maxΩ m,

ṽ < max
Ω̄

m · eβ[m(x)−maxΩ̄ m], ∀x ∈ Ω̄.

If β ≥ 1/minΩ m,

ṽ > max
Ω̄

m · eβ[m(x)−maxΩ̄ m], ∀x ∈ Ω̄.
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ṽ > max
Ω̄

m · eβ[m(x)−maxΩ̄ m], ∀x ∈ Ω̄.

Y.Lou (Ohio State Univ.) Evolution of dispersal Toronto, September 10-13 20 / 25



Some ideas of the proofs

Overmatching resource

A. Bezugly: Let x0 ∈ Ω be a non-degenerate local maximum of
m(x). Then there exist some δ > 0 and Λ > 0 such that for every
|x − x0| < δ and β > Λ,

ṽ(x) > m(x0)eβ[m(x)−m(x0)].

Ni (private communication): At each local maximum x0 of m(x),

lim inf
β→∞

ṽ ≥ m(x0);

Furthermore, as β →∞, ṽ → 0 uniformly in any compact set
which does not contain any local maximum of m.
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Future directions

Questions

Resource with multiple peaks? Evolution branching?

Multiple traits: e.g., dispersal rate (µ) and advection rate (α);
Connections with IFD.

Density-dependent dispersal? Tracking fitness gradient?

Temporal variability? Include resource dynamics?
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Future directions

MBI 2010-2011 Emphasis Year Program

Evolution, Synchronization, and Environmental Interactions:
Insights from Plants and Insects

Workshop 1: Mathematical Modeling of Plant Development

Workshop 2: Circadian Clocks in Plants and Fungi

Workshop 3: Insect Self-organization and Swarming

Workshop 4: Ecology and Control of Invasive Species, Including
Insects

Workshop 5: Coevolution and the Ecological Structure of
Plant-insect Communities
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