Evolution of Conditional Dispersal in Spatially Heterogeneous Habitats

Yuan Lou

Department of Mathematics Mathematical Biosciences Institute Ohio State University

Talk Outline

- Random dispersal
- Conditional dispersal
- Ideal free dispersal
- 4 Some ideas of the proofs
- Future directions

Reaction-diffusion models

A. Hastings (TPB, 83)

$$u_t = uf(u+v,x) \text{ in } \Omega \times (0,\infty),$$

$$v_t = vf(u+v,x) \text{ in } \Omega \times (0,\infty),$$
 (1)

• u(x, t), v(x, t): densities of species

Reaction-diffusion models

A. Hastings (TPB, 83)

$$u_t = \mu \Delta u + u f(u + v, x)$$
 in $\Omega \times (0, \infty)$,
$$v_t = \nu \Delta v + v f(u + v, x)$$
 in $\Omega \times (0, \infty)$, (1)

- u(x, t), v(x, t): densities of species
- $\mu, \nu > 0$: random dispersal rates

Reaction-diffusion models

A. Hastings (TPB, 83)

$$u_t = \mu \Delta u + u f(u + v, x)$$
 in $\Omega \times (0, \infty)$,
 $v_t = \nu \Delta v + v f(u + v, x)$ in $\Omega \times (0, \infty)$, (1)
 $\frac{\partial u}{\partial n} = \frac{\partial v}{\partial n} = 0$ on $\partial \Omega \times (0, \infty)$.

- u(x,t), v(x,t): densities of species
- $\mu, \nu > 0$: random dispersal rates
- No-flux boundary condition

Dockery et al. (JMB 98):

• f(u+v,x) = m(x) - u - v, m(x) is positive and non-constant.

- f(u+v,x) = m(x) u v, m(x) is positive and non-constant.
- \bullet $\mu < \nu$.

- f(u+v,x) = m(x) u v, m(x) is positive and non-constant.
- \bullet $\mu < \nu$.
- Then $(\tilde{u}, 0)$ is globally asymptotically stable,

- f(u+v,x) = m(x) u v, m(x) is positive and non-constant.
- \bullet $\mu < \nu$.
- Then $(\tilde{u},0)$ is globally asymptotically stable, where \tilde{u} is the unique positive steady-state of

$$\tilde{u}_t = \mu \Delta \tilde{u} + \tilde{u}(m - \tilde{u})$$
 in $\Omega \times (0, \infty)$,

$$\frac{\partial \tilde{u}}{\partial n} = 0$$
 on $\partial \Omega \times (0, \infty)$

Dockery et al. (JMB 98):

- f(u+v,x) = m(x) u v, m(x) is positive and non-constant.
- \bullet $\mu < \nu$.
- Then $(\tilde{u},0)$ is globally asymptotically stable, where \tilde{u} is the unique positive steady-state of

$$\tilde{u}_t = \mu \Delta \tilde{u} + \tilde{u}(m - \tilde{u})$$
 in $\Omega \times (0, \infty)$,

$$\frac{\partial \tilde{u}}{\partial n} = 0$$
 on $\partial \Omega \times (0, \infty)$

The slower diffuser is the winner.

Discrete models

• A. Hastings (TPB, 83): discrete space and continuous time

Discrete models

- A. Hastings (TPB, 83): discrete space and continuous time
- McPeek and Holt (Am. Nat. 92): discrete space and time, two patch

Discrete models

- A. Hastings (TPB, 83): discrete space and continuous time
- McPeek and Holt (Am. Nat. 92): discrete space and time, two patch
- Kirkland et al (SIAM J. Appl. Math. 2006): discrete time and space, n-patch

 Conditional dispersal: Organisms can sense and respond to local environmental cues

- Conditional dispersal: Organisms can sense and respond to local environmental cues
- Discrete models: McPeek and Holt (Am. Nat. 92)

- Conditional dispersal: Organisms can sense and respond to local environmental cues
- Discrete models: McPeek and Holt (Am. Nat. 92)
- Continuous model: Cantrell et al (Math. Biosci. 2006); Chen et al (JMB 2008).

- Conditional dispersal: Organisms can sense and respond to local environmental cues
- Discrete models: McPeek and Holt (Am. Nat. 92)
- Continuous model: Cantrell et al (Math. Biosci. 2006); Chen et al (JMB 2008).

$$u_t = \mu \nabla \cdot [\nabla u - \alpha \mathbf{u} \nabla \mathbf{m}] + u(m - u - v)$$
 in $\Omega \times (0, \infty)$,

- Conditional dispersal: Organisms can sense and respond to local environmental cues
- Discrete models: McPeek and Holt (Am. Nat. 92)
- Continuous model: Cantrell et al (Math. Biosci. 2006); Chen et al (JMB 2008).

$$u_t = \mu \nabla \cdot [\nabla u - \alpha \mathbf{u} \nabla \mathbf{m}] + u(m - u - v)$$
 in $\Omega \times (0, \infty)$,

$$v_t = \nu \nabla \cdot [\nabla v - \beta \mathbf{v} \nabla \mathbf{m}] + v(m - u - v)$$
 in $\Omega \times (0, \infty)$,

- Conditional dispersal: Organisms can sense and respond to local environmental cues
- Discrete models: McPeek and Holt (Am. Nat. 92)
- Continuous model: Cantrell et al (Math. Biosci. 2006); Chen et al (JMB 2008).

$$u_{t} = \mu \nabla \cdot [\nabla u - \alpha \mathbf{u} \nabla \mathbf{m}] + u(m - u - v) \quad \text{in } \Omega \times (0, \infty),$$

$$v_{t} = \nu \nabla \cdot [\nabla v - \beta \mathbf{v} \nabla \mathbf{m}] + v(m - u - v) \quad \text{in } \Omega \times (0, \infty),$$

$$[\nabla u - \alpha u \nabla m] \cdot n = [\nabla v - \beta v \nabla m] \cdot n = 0 \quad \text{on } \partial \Omega \times (0, \infty)$$
(2)

• Two species Lotka-Volterra competition systems are monotone

- Two species Lotka-Volterra competition systems are monotone
- Matano (1984), Hirsch (1988), Thieme and Smith (1990, 1991),
 Dancer and Hess (1991), Hsu, Smith, and Waltman (1995), Smith (1995), Jiang, Liang and Zhao (2005)...

- Two species Lotka-Volterra competition systems are monotone
- Matano (1984), Hirsch (1988), Thieme and Smith (1990, 1991),
 Dancer and Hess (1991), Hsu, Smith, and Waltman (1995), Smith (1995), Jiang, Liang and Zhao (2005)...
- Semi-trivial steady states: if m > 0, $(\tilde{u}, 0)$ and $(0, \tilde{v})$ both exist

- Two species Lotka-Volterra competition systems are monotone
- Matano (1984), Hirsch (1988), Thieme and Smith (1990, 1991),
 Dancer and Hess (1991), Hsu, Smith, and Waltman (1995), Smith (1995), Jiang, Liang and Zhao (2005)...
- Semi-trivial steady states: if m > 0, $(\tilde{u}, 0)$ and $(0, \tilde{v})$ both exist
- Coexistence state: If both semi-trivial steady states are unstable, the system has one stable coexistence state

Cantrell et al: $\mu = \nu$, $\beta = 0$ and $\alpha > 0$ small.

Cantrell et al: $\mu = \nu$, $\beta = 0$ and $\alpha > 0$ small.

• If Ω is convex, $(\tilde{u}, 0)$ is globally asymptotically stable.

Cantrell et al: $\mu = \nu$, $\beta = 0$ and $\alpha > 0$ small.

- If Ω is convex, $(\tilde{u}, 0)$ is globally asymptotically stable.
- There exist non-convex domains and m(x) such that $(0, \tilde{v})$ is globally asymptotically stable.

Cantrell et al: $\mu = \nu$, $\beta = 0$ and $\alpha > 0$ small.

- If Ω is convex, $(\tilde{u}, 0)$ is globally asymptotically stable.
- There exist non-convex domains and m(x) such that $(0, \tilde{v})$ is globally asymptotically stable.
- Geometry of habitat matters

• What about large α ?

- What about large α ?
- (Cantrell et al. 2007; Chen et al 2008) Suppose that $m \in C^2(\bar{\Omega})$, positive and non-constant.

- What about large α ?
- (Cantrell et al. 2007; Chen et al 2008) Suppose that $m \in C^2(\bar{\Omega})$, positive and non-constant. For any μ and ν , $\beta \leq 1/\max_{\Omega} m$, if α is large, both $(\tilde{u},0)$ and $(0,\tilde{v})$ are unstable, and system (2) has a stable positive steady state.

- What about large α ?
- (Cantrell et al. 2007; Chen et al 2008) Suppose that $m \in C^2(\bar{\Omega})$, positive and non-constant. For any μ and ν , $\beta \leq 1/\max_{\Omega} m$, if α is large, both $(\tilde{u},0)$ and $(0,\tilde{v})$ are unstable, and system (2) has a stable positive steady state.
- Chen and L. (Indiana Univ. Math. J, 08): for $\beta = 0$ and large α , if m has a unique local maximum, the species u concentrates around this maximum.

Chen et al. JMB 2008: Suppose that $\partial m/\partial n < 0$ on $\partial \Omega$, m has only one critical point x_0 in $\overline{\Omega}$, with $x_0 \in \Omega$ and $D^2m(x_0) < 0$.

Chen et al. JMB 2008: Suppose that $\partial m/\partial n < 0$ on $\partial \Omega$, m has only one critical point x_0 in $\overline{\Omega}$, with $x_0 \in \Omega$ and $D^2m(x_0) < 0$.

• If $\beta \geq 1/\min_{\overline{\Omega}} m$, $(0, \tilde{v})$ is globally asymptotically stable for large α .

Chen et al. JMB 2008: Suppose that $\partial m/\partial n < 0$ on $\partial \Omega$, m has only one critical point x_0 in $\overline{\Omega}$, with $x_0 \in \Omega$ and $D^2m(x_0) < 0$.

- If $\beta \geq 1/\min_{\overline{\Omega}} m$, $(0, \tilde{v})$ is globally asymptotically stable for large α .
- Strong biased movement of *single* species can induce the coexistence of both competing species

Chen et al. JMB 2008: Suppose that $\partial m/\partial n < 0$ on $\partial \Omega$, m has only one critical point x_0 in $\overline{\Omega}$, with $x_0 \in \Omega$ and $D^2m(x_0) < 0$.

- If $\beta \geq 1/\min_{\overline{\Omega}} m$, $(0, \tilde{v})$ is globally asymptotically stable for large α .
- Strong biased movement of single species can induce the coexistence of both competing species
- Strong biased movement of both species can induce the extinction of the species with the stronger biased movement

For $\mu = \nu > 0$ and convex habitats, we conjecture that there exists some $\alpha^* > 0$ such that

For $\mu = \nu > 0$ and convex habitats, we conjecture that there exists some $\alpha^* > 0$ such that

• If either $\beta < \alpha \leq \alpha^*$ or $\alpha^* \leq \alpha < \beta$, $(\tilde{u}, 0)$ is globally asymptotically stable.

For $\mu = \nu > 0$ and convex habitats, we conjecture that there exists some $\alpha^* > 0$ such that

- If either $\beta < \alpha \leq \alpha^*$ or $\alpha^* \leq \alpha < \beta$, $(\tilde{u}, 0)$ is globally asymptotically stable.
- If either $\alpha < \alpha^* < \beta$ or $\beta < \alpha^* < \alpha$, both $(\tilde{u}, 0)$ and $(0, \tilde{v})$ are unstable and there is one stable positive steady state.

For $\mu = \nu > 0$ and convex habitats, we conjecture that there exists some $\alpha^* > 0$ such that

- If either $\beta < \alpha \leq \alpha^*$ or $\alpha^* \leq \alpha < \beta$, $(\tilde{u}, 0)$ is globally asymptotically stable.
- If either $\alpha < \alpha^* < \beta$ or $\beta < \alpha^* < \alpha$, both $(\tilde{u}, 0)$ and $(0, \tilde{v})$ are unstable and there is one stable positive steady state.
- How to estimate α^* ?

(Hambrock and L. 2009) Suppose $\mu = \nu$, $\Omega = (0, 1)$, and $m_x > 0$ on [0, 1].

(Hambrock and L. 2009) Suppose $\mu = \nu$, $\Omega = (0, 1)$, and $m_x > 0$ on [0, 1].

• If $\beta < 1/\max_{\overline{\Omega}} m$, there exists $\delta_1 > 0$ such that for $\alpha \in (\beta, \beta + \delta_1)$, $(\tilde{u}, 0)$ is globally asymptotically stable.

(Hambrock and L. 2009) Suppose $\mu = \nu$, $\Omega = (0, 1)$, and $m_{\chi} > 0$ on [0, 1].

- If $\beta < 1/\max_{\overline{\Omega}} m$, there exists $\delta_1 > 0$ such that for $\alpha \in (\beta, \beta + \delta_1)$, $(\tilde{u}, 0)$ is globally asymptotically stable.
- If $\beta > 1/\min_{\overline{\Omega}} m$, there exists $\delta_2 > 0$ such that for $\alpha \in (\beta \delta_2, \beta)$, $(\tilde{u}, 0)$ is globally asymptotically stable.

(Hambrock and L. 2009) Suppose $\mu = \nu$, $\Omega = (0, 1)$, and $m_{\chi} > 0$ on [0, 1].

- If $\beta < 1/\max_{\overline{\Omega}} m$, there exists $\delta_1 > 0$ such that for $\alpha \in (\beta, \beta + \delta_1)$, $(\tilde{u}, 0)$ is globally asymptotically stable.
- If $\beta > 1/\min_{\overline{\Omega}} m$, there exists $\delta_2 > 0$ such that for $\alpha \in (\beta \delta_2, \beta)$, $(\tilde{u}, 0)$ is globally asymptotically stable.
- $\alpha^* \in (1/\max_{\overline{\Omega}} m, 1/\min_{\overline{\Omega}} m)$

Consider

$$u_t = \mu \nabla \cdot [\nabla u - \alpha \mathbf{u} \nabla \mathbf{P}(\mathbf{x})] + u(m - u)$$
 in $\Omega \times (0, \infty)$,

Consider

$$u_t = \mu \nabla \cdot [\nabla u - \alpha \mathbf{u} \nabla \mathbf{P}(\mathbf{x})] + u(m - u) \quad \text{in } \Omega \times (0, \infty),$$
$$[\nabla u - \alpha u \nabla P(\mathbf{x})] \cdot n = 0 \quad \text{on } \partial \Omega \times (0, \infty)$$
(3)

Consider

$$u_t = \mu \nabla \cdot [\nabla u - \alpha \mathbf{u} \nabla \mathbf{P}(\mathbf{x})] + u(m - u) \quad \text{in } \Omega \times (0, \infty),$$

$$[\nabla u - \alpha u \nabla P(\mathbf{x})] \cdot n = 0 \quad \text{on } \partial \Omega \times (0, \infty)$$
(3)

• If P(x) = lnm, then $\tilde{u} \equiv m$ is the unique positive equilibrium

Consider

$$u_t = \mu \nabla \cdot [\nabla u - \alpha \mathbf{u} \nabla \mathbf{P}(\mathbf{x})] + u(m - u) \quad \text{in } \Omega \times (0, \infty),$$
$$[\nabla u - \alpha u \nabla P(\mathbf{x})] \cdot n = 0 \quad \text{on } \partial \Omega \times (0, \infty)$$
(3)

- If P(x) = lnm, then $\tilde{u} \equiv m$ is the unique positive equilibrium
- The species with the dispersal strategy P = lnm can perfectly match the environmental resource, which leads to its fitness equilibrated across the habitats; i.e., $m \tilde{u} \equiv 0$.

(Cantrell et al, 2009)

$$u_t = \mu \nabla \cdot [\nabla u - \alpha \mathbf{u} \nabla \mathbf{P}(\mathbf{x})] + u(m - u - v)$$
 in $\Omega \times (0, \infty)$,

(Cantrell et al, 2009)

$$u_t = \mu \nabla \cdot [\nabla u - \alpha \mathbf{u} \nabla \mathbf{P}(\mathbf{x})] + u(m - u - v)$$
 in $\Omega \times (0, \infty)$,

$$v_t = \nu \nabla \cdot [\nabla v - \beta \mathbf{v} \nabla \mathbf{Q}(\mathbf{x})] + v(m - u - v)$$
 in $\Omega \times (0, \infty)$,

(Cantrell et al, 2009)

$$u_t = \mu \nabla \cdot [\nabla u - \alpha \mathbf{u} \nabla \mathbf{P}(\mathbf{x})] + u(m - u - v) \quad \text{in } \Omega \times (0, \infty),$$

$$v_t = \nu \nabla \cdot [\nabla v - \beta \mathbf{v} \nabla \mathbf{Q}(\mathbf{x})] + v(m - u - v) \quad \text{in } \Omega \times (0, \infty),$$

$$[\nabla u - \alpha u \nabla P(x)] \cdot n = [\nabla v - \beta v \nabla Q(x)] \cdot n = 0 \quad \text{on } \partial \Omega \times (0, \infty).$$
(4)

(Cantrell et al, 2009)

$$u_t = \mu \nabla \cdot [\nabla u - \alpha \mathbf{u} \nabla \mathbf{P}(\mathbf{x})] + u(m - u - v) \quad \text{in } \Omega \times (0, \infty),$$

$$v_t = \nu \nabla \cdot [\nabla v - \beta \mathbf{v} \nabla \mathbf{Q}(\mathbf{x})] + v(m - u - v) \quad \text{in } \Omega \times (0, \infty),$$

$$[\nabla u - \alpha u \nabla P(x)] \cdot n = [\nabla v - \beta v \nabla Q(x)] \cdot n = 0 \quad \text{on } \partial \Omega \times (0, \infty)$$
(4)

Is the dispersal strategy P = Inm evolutionarily stable?

(Cantrell et al. 2009) Suppose that $\mu = \nu$, $m \in C^2(\bar{\Omega})$ and m > 0 in $\bar{\Omega}$.

(Cantrell et al. 2009) Suppose that $\mu = \nu$, $m \in C^2(\bar{\Omega})$ and m > 0 in $\bar{\Omega}$.

• Suppose that P(x) = lnm, $Q(x) = lnm(x) + \epsilon R(x)$, where $R \in C^2(\bar{\Omega})$. If R is non-constant, then $(0, \tilde{v})$ is unstable and $(\tilde{u}, 0)$ is globally asymptotically stable for $0 < |\epsilon| \ll 1$.

(Cantrell et al. 2009) Suppose that $\mu = \nu$, $m \in C^2(\bar{\Omega})$ and m > 0 in $\bar{\Omega}$.

- Suppose that P(x) = lnm, $Q(x) = lnm(x) + \epsilon R(x)$, where $R \in C^2(\bar{\Omega})$. If R is non-constant, then $(0, \tilde{v})$ is unstable and $(\tilde{u}, 0)$ is globally asymptotically stable for $0 < |\epsilon| \ll 1$.
- Suppose that P(x) Inm is non-constant. There exists some $R \in C^2(\bar{\Omega})$ such that for $Q(x) = P(x) + \epsilon R(x)$, $(\tilde{u}, 0)$ is unstable for $0 < |\epsilon| \ll 1$.

(Cantrell et al. 2009) Suppose that $\mu = \nu$, $m \in C^2(\bar{\Omega})$ and m > 0 in $\bar{\Omega}$.

- Suppose that P(x) = lnm, $Q(x) = lnm(x) + \epsilon R(x)$, where $R \in C^2(\bar{\Omega})$. If R is non-constant, then $(0, \tilde{v})$ is unstable and $(\tilde{u}, 0)$ is globally asymptotically stable for $0 < |\epsilon| \ll 1$.
- Suppose that P(x) Inm is non-constant. There exists some $R \in C^2(\bar{\Omega})$ such that for $Q(x) = P(x) + \epsilon R(x)$, $(\tilde{u}, 0)$ is unstable for $0 < |\epsilon| \ll 1$.
- P = Inm is a local evolutionarily stable strategy (ESS), and no other strategy can be a local ESS.

(Cantrell et al. 2009) Suppose that $\mu = \nu$, $P(x) = Inm + \alpha R$, $Q(x) = Inm + \beta R$, m > 0, $\Omega = (0, 1)$ and $R_x > 0$ in [0, 1].

• If $\alpha < \beta < 0$ or $0 < \beta < \alpha$, $(\tilde{u}, 0)$ is unstable and $(0, \tilde{v})$ is stable.

(Cantrell et al. 2009) Suppose that $\mu = \nu$, $P(x) = Inm + \alpha R$, $Q(x) = Inm + \beta R$, m > 0, $\Omega = (0, 1)$ and $R_x > 0$ in [0, 1].

- If $\alpha < \beta < 0$ or $0 < \beta < \alpha$, $(\tilde{u}, 0)$ is unstable and $(0, \tilde{v})$ is stable.
- Given any $\eta > 0$, there exists $\kappa > 0$ such that if either (i) $\alpha, \beta \in [-\eta, 0]$ and $0 < \beta \alpha < \kappa$ or (ii) $\alpha, \beta \in [0, \eta]$ and $-\kappa < \beta \alpha < 0$, $(0, \tilde{\nu})$ is globally asymptotically stable.

(Cantrell et al. 2009) Suppose that $\mu = \nu$, $P(x) = Inm + \alpha R$, $Q(x) = Inm + \beta R$, m > 0, $\Omega = (0, 1)$ and $R_x > 0$ in [0, 1].

- If $\alpha < \beta < 0$ or $0 < \beta < \alpha$, $(\tilde{u}, 0)$ is unstable and $(0, \tilde{v})$ is stable.
- Given any $\eta > 0$, there exists $\kappa > 0$ such that if either (i) $\alpha, \beta \in [-\eta, 0]$ and $0 < \beta \alpha < \kappa$ or (ii) $\alpha, \beta \in [0, \eta]$ and $-\kappa < \beta \alpha < 0$, $(0, \tilde{\nu})$ is globally asymptotically stable.
- If either $\alpha < 0 < \beta$ or $\beta < 0 < \alpha$, both $(\tilde{u}, 0)$ and $(0, \tilde{v})$ are unstable, and system (4) has one stable positive steady state.

(Cantrell et al. 2009) Suppose that $\mu = \nu$, $P(x) = Inm + \alpha R$, $Q(x) = Inm + \beta R$, m > 0, $\Omega = (0, 1)$ and $R_x > 0$ in [0, 1].

- If $\alpha < \beta < 0$ or $0 < \beta < \alpha$, $(\tilde{u}, 0)$ is unstable and $(0, \tilde{v})$ is stable.
- Given any $\eta > 0$, there exists $\kappa > 0$ such that if either (i) $\alpha, \beta \in [-\eta, 0]$ and $0 < \beta \alpha < \kappa$ or (ii) $\alpha, \beta \in [0, \eta]$ and $-\kappa < \beta \alpha < 0$, $(0, \tilde{\nu})$ is globally asymptotically stable.
- If either $\alpha < 0 < \beta$ or $\beta < 0 < \alpha$, both $(\tilde{u}, 0)$ and $(0, \tilde{v})$ are unstable, and system (4) has one stable positive steady state.
- P(x) = Inm is a CSS.

• Stability of $(0, \tilde{v})$: The sign of the principal eigenvalue $\lambda(\alpha)$ of

$$\mu \nabla \cdot [\nabla \varphi - \alpha \varphi \nabla m] + \varphi (m - \tilde{v}) = -\lambda \varphi \quad \text{in } \Omega,$$

$$\frac{\partial \varphi}{\partial n} - \alpha \varphi \frac{\partial m}{\partial n} = 0$$
 on $\partial \Omega$

• Stability of $(0, \tilde{v})$: The sign of the principal eigenvalue $\lambda(\alpha)$ of

$$\mu \nabla \cdot [\nabla \varphi - \alpha \varphi \nabla \mathbf{m}] + \varphi (\mathbf{m} - \tilde{\mathbf{v}}) = -\lambda \varphi \quad \text{in } \Omega,$$

$$\frac{\partial \varphi}{\partial n} - \alpha \varphi \frac{\partial m}{\partial n} = 0$$
 on $\partial \Omega$

• Set $\psi = e^{-\alpha m} \varphi$.

• Stability of $(0, \tilde{v})$: The sign of the principal eigenvalue $\lambda(\alpha)$ of

$$\mu \nabla \cdot [\nabla \varphi - \alpha \varphi \nabla m] + \varphi (m - \tilde{v}) = -\lambda \varphi \quad \text{in } \Omega,$$

$$\frac{\partial \varphi}{\partial n} - \alpha \varphi \frac{\partial m}{\partial n} = 0 \quad \text{on } \partial \Omega$$

• Set $\psi = e^{-\alpha m} \varphi$. Then ψ satisfies

$$-\mu[\Delta\psi + \alpha\nabla\mathbf{m}\cdot\nabla\psi] + \psi(\tilde{\mathbf{v}} - \mathbf{m}) = \lambda(\alpha)\psi \quad \text{in } \Omega,$$

$$\frac{\partial \psi}{\partial n} = 0$$
 on $\partial \Omega$.

• Stability of $(0, \tilde{v})$: The sign of the principal eigenvalue $\lambda(\alpha)$ of

$$\mu \nabla \cdot [\nabla \varphi - \alpha \varphi \nabla m] + \varphi (m - \tilde{v}) = -\lambda \varphi \quad \text{in } \Omega,$$

$$\frac{\partial \varphi}{\partial n} - \alpha \varphi \frac{\partial m}{\partial n} = 0$$
 on $\partial \Omega$

• Set $\psi = e^{-\alpha m} \varphi$. Then ψ satisfies

$$-\mu[\Delta\psi + \alpha\nabla\mathbf{m}\cdot\nabla\psi] + \psi(\tilde{\mathbf{v}} - \mathbf{m}) = \lambda(\alpha)\psi \quad \text{in } \Omega,$$

$$\frac{\partial \psi}{\partial n} = 0$$
 on $\partial \Omega$.

• What is the behavior of $\lambda(\alpha)$ for large α ?

Asymptotic behavior

Consider

$$-\mu[\Delta\varphi + \alpha\nabla\boldsymbol{m}\cdot\nabla\varphi] + \boldsymbol{c}(\boldsymbol{x})\varphi = \lambda\varphi \quad \text{in } \Omega, \quad \frac{\partial\varphi}{\partial\boldsymbol{n}}|_{\partial\Omega} = 0.$$

Asymptotic behavior

Consider

$$-\mu[\Delta\varphi + \alpha\nabla m \cdot \nabla\varphi] + c(x)\varphi = \lambda\varphi \quad \text{in } \Omega, \quad \frac{\partial\varphi}{\partial n}|_{\partial\Omega} = 0.$$

• Chen and L. (Indiana Math Univ. J, 08): suppose that $m \in C^2(\bar{\Omega})$ and all critical points of m are non-degenerate.

Asymptotic behavior

Consider

$$-\mu[\Delta\varphi + \alpha\nabla m \cdot \nabla\varphi] + c(x)\varphi = \lambda\varphi \quad \text{in } \Omega, \quad \frac{\partial\varphi}{\partial n}|_{\partial\Omega} = 0.$$

• Chen and L. (Indiana Math Univ. J, 08): suppose that $m \in C^2(\bar{\Omega})$ and all critical points of m are non-degenerate. Then

$$\lim_{\alpha \to \infty} \lambda(\alpha) = \min_{\mathbf{x} \in \mathcal{M}} c(\mathbf{x}),$$

Asymptotic behavior

Consider

$$-\mu[\Delta\varphi + \alpha\nabla m \cdot \nabla\varphi] + c(x)\varphi = \lambda\varphi \quad \text{in } \Omega, \quad \frac{\partial\varphi}{\partial n}|_{\partial\Omega} = 0.$$

• Chen and L. (Indiana Math Univ. J, 08): suppose that $m \in C^2(\bar{\Omega})$ and all critical points of m are non-degenerate. Then

$$\lim_{\alpha \to \infty} \lambda(\alpha) = \min_{\mathbf{x} \in \mathcal{M}} \mathbf{c}(\mathbf{x}),$$

where \mathcal{M} is the set of points of local maximum of m.

Back to dispersal

Back to dispersal

Recall

$$\begin{split} -\mu[\Delta\psi + \alpha\nabla\boldsymbol{m}\cdot\nabla\psi] + \psi(\tilde{\boldsymbol{v}}-\boldsymbol{m}) &= \lambda(\alpha)\psi \quad \text{in } \ \Omega, \\ \frac{\partial\psi}{\partial\boldsymbol{n}} &= 0 \quad \text{on } \ \partial\Omega. \end{split}$$

Back to dispersal

Recall

$$\begin{split} -\mu[\Delta\psi + \alpha\nabla\boldsymbol{m}\cdot\nabla\psi] + \psi(\tilde{\boldsymbol{v}}-\boldsymbol{m}) &= \lambda(\alpha)\psi \quad \text{in } \ \Omega, \\ \frac{\partial\psi}{\partial\boldsymbol{n}} &= 0 \quad \text{on } \ \partial\Omega. \end{split}$$

It follows from previous result of Chen and L. that

$$\lim_{\alpha\to\infty}\lambda(\alpha)=\min_{\mathcal{M}}(\tilde{\mathbf{v}}-\mathbf{m}),$$

where \mathcal{M} =the set of points of local maximum of m(x).

Recall

$$\begin{split} \nu\nabla\cdot\left[\nabla\tilde{v}-\beta\tilde{v}\nabla m\right]+\tilde{v}(m-\tilde{v})&=0\qquad\text{in }\Omega,\\ \frac{\partial\tilde{v}}{\partial n}-\beta\tilde{v}\frac{\partial m}{\partial n}&=0\qquad\text{on }\partial\Omega. \end{split}$$

Recall

$$\begin{split} \nu\nabla\cdot\left[\nabla\tilde{v}-\beta\tilde{v}\nabla m\right]+\tilde{v}(m-\tilde{v})&=0\qquad\text{in }\Omega,\\ \frac{\partial\tilde{v}}{\partial n}-\beta\tilde{v}\frac{\partial m}{\partial n}&=0\qquad\text{on }\partial\Omega. \end{split}$$

• If $\beta \leq 1/\max_{\overline{\Omega}} m$,

Recall

$$\begin{split} & \nu \nabla \cdot [\nabla \tilde{v} - \beta \tilde{v} \nabla m] + \tilde{v} (m - \tilde{v}) = 0 \qquad \text{in } \Omega, \\ & \frac{\partial \tilde{v}}{\partial n} - \beta \tilde{v} \frac{\partial m}{\partial n} = 0 \qquad \text{on } \partial \Omega. \end{split}$$

• If $\beta \leq 1/\max_{\overline{\Omega}} m$,

$$\tilde{\mathbf{v}} < \max_{\bar{\Omega}} \mathbf{m} \cdot \mathbf{e}^{\beta[\mathbf{m}(\mathbf{x}) - \max_{\bar{\Omega}} \mathbf{m}]}, \quad \forall \mathbf{x} \in \bar{\Omega}.$$

Recall

$$\nu\nabla\cdot[\nabla\tilde{v}-\beta\tilde{v}\nabla m]+\tilde{v}(m-\tilde{v})=0\qquad\text{in }\Omega,$$

$$\frac{\partial\tilde{v}}{\partial n}-\beta\tilde{v}\frac{\partial m}{\partial n}=0\qquad\text{on }\partial\Omega.$$

• If $\beta \leq 1/\max_{\overline{\Omega}} m$,

$$\tilde{v} < \max_{\bar{\Omega}} m \cdot e^{\beta [m(x) - \max_{\bar{\Omega}} m]}, \quad \forall x \in \bar{\Omega}.$$

• If $\beta \geq 1/\min_{\overline{\Omega}} m$,

Recall

$$\nu\nabla\cdot[\nabla\tilde{v}-\beta\tilde{v}\nabla m]+\tilde{v}(m-\tilde{v})=0\qquad\text{in }\Omega,$$

$$\frac{\partial\tilde{v}}{\partial n}-\beta\tilde{v}\frac{\partial m}{\partial n}=0\qquad\text{on }\partial\Omega.$$

• If $\beta \leq 1/\max_{\overline{\Omega}} m$,

$$ilde{v} < \max_{ar{\Omega}} m \cdot e^{eta[m(x) - \max_{ar{\Omega}} m]}, \quad \forall x \in ar{\Omega}.$$

• If $\beta \geq 1/\min_{\overline{\Omega}} m$,

$$ilde{v} > \max_{ar{\Omega}} m \cdot e^{eta[m(x) - \max_{ar{\Omega}} m]}, \qquad orall x \in ar{\Omega}.$$

Overmatching resource

Overmatching resource

• A. Bezugly: Let $x_0 \in \Omega$ be a non-degenerate local maximum of m(x). Then there exist some $\delta > 0$ and $\Lambda > 0$ such that for every $|x - x_0| < \delta$ and $\beta > \Lambda$,

$$\tilde{v}(x) > m(x_0)e^{\beta[m(x)-m(x_0)]}.$$

Overmatching resource

• A. Bezugly: Let $x_0 \in \Omega$ be a non-degenerate local maximum of m(x). Then there exist some $\delta > 0$ and $\Lambda > 0$ such that for every $|x - x_0| < \delta$ and $\beta > \Lambda$,

$$\tilde{v}(x) > m(x_0)e^{\beta[m(x)-m(x_0)]}.$$

• Ni (private communication): At each local maximum x_0 of m(x),

$$\liminf_{\beta\to\infty}\tilde{v}\geq m(x_0);$$

Furthermore, as $\beta \to \infty$, $\tilde{\nu} \to 0$ uniformly in any compact set which does not contain any local maximum of m.

Resource with multiple peaks? Evolution branching?

- Resource with multiple peaks? Evolution branching?
- Multiple traits: e.g., dispersal rate (μ) and advection rate (α); Connections with IFD.

- Resource with multiple peaks? Evolution branching?
- Multiple traits: e.g., dispersal rate (μ) and advection rate (α); Connections with IFD.
- Density-dependent dispersal? Tracking fitness gradient?

- Resource with multiple peaks? Evolution branching?
- Multiple traits: e.g., dispersal rate (μ) and advection rate (α); Connections with IFD.
- Density-dependent dispersal? Tracking fitness gradient?
- Temporal variability? Include resource dynamics?

Acknowledgement

Collaborators:

- Stephen Cantrell (University of Miami)
- Xinfu Chen (University of Pittsburgh)
- Chris Cosner (University of Miami)
- Richard Hambrock (Ohio State University)

Acknowledgement

Collaborators:

- Stephen Cantrell (University of Miami)
- Xinfu Chen (University of Pittsburgh)
- Chris Cosner (University of Miami)
- Richard Hambrock (Ohio State University)

Support:

- NSF
- Mathematical Biosciences Institute

 Evolution, Synchronization, and Environmental Interactions: Insights from Plants and Insects

- Evolution, Synchronization, and Environmental Interactions: Insights from Plants and Insects
- Workshop 1: Mathematical Modeling of Plant Development

- Evolution, Synchronization, and Environmental Interactions: Insights from Plants and Insects
- Workshop 1: Mathematical Modeling of Plant Development
- Workshop 2: Circadian Clocks in Plants and Fungi

- Evolution, Synchronization, and Environmental Interactions: Insights from Plants and Insects
- Workshop 1: Mathematical Modeling of Plant Development
- Workshop 2: Circadian Clocks in Plants and Fungi
- Workshop 3: Insect Self-organization and Swarming

- Evolution, Synchronization, and Environmental Interactions: Insights from Plants and Insects
- Workshop 1: Mathematical Modeling of Plant Development
- Workshop 2: Circadian Clocks in Plants and Fungi
- Workshop 3: Insect Self-organization and Swarming
- Workshop 4: Ecology and Control of Invasive Species, Including Insects

- Evolution, Synchronization, and Environmental Interactions: Insights from Plants and Insects
- Workshop 1: Mathematical Modeling of Plant Development
- Workshop 2: Circadian Clocks in Plants and Fungi
- Workshop 3: Insect Self-organization and Swarming
- Workshop 4: Ecology and Control of Invasive Species, Including Insects
- Workshop 5: Coevolution and the Ecological Structure of Plant-insect Communities

Thank you

