Evolution of Spatial Correlations among Interacting Species

Richard Gomulkiewicz
Washington State University

Collaborators

Scott Nuismer University of Idaho

Ben Ridenhour CDC

Coevolution

Joint adaptive evolution of species in response to reciprocal interspecific selection (Janzen 1980)

smithsonian.com

Coevolution & Correlation

- Coevolution can cause strong correlations between traits of different species
- Coevolution often assumed <u>the</u> cause of strong inter-specific correlations
- Janzen 1980: Correlation need not imply coevolution

Objectives & Questions

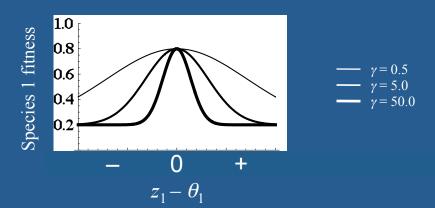
- Quantitatively justify Janzen's verbal arguments
- Use results to address:
 - 1. When will correlation imply coevolution?
 - 2. Does absence of correlation imply absence of coevolution?
 - 3. Are correlations useful for evaluating the Geographic Mosaic Theory?

Modeling Approach

- Two species
 - Co-distributed in finite populations across large, discrete set of variable sites
- Local abiotic & biotic selection
 - depend on quantitative traits, $z_1 \& z_2$
 - spatially co-variable abiotic selection
- Random genetic drift
- Gene flow among sites

Abiotic selection

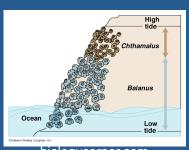
$$W_{\text{abiotic},i}(z_i) \propto \exp\left[-\gamma_i(z_i - \theta_i)^2\right]$$



$$\begin{pmatrix} \theta_1 \\ \theta_2 \end{pmatrix} \sim \text{Normal} \begin{bmatrix} \theta_1 \\ \theta_2 \end{pmatrix}; \begin{pmatrix} \sigma_{\theta_1}^2 & \sigma_{\theta_1 \theta_2} \\ \sigma_{\theta_1 \theta_2} & \sigma_{\theta_2}^2 \end{pmatrix}$$

Optima spatially variable, temporally fixed

Biotic Selection



biologycorner.com

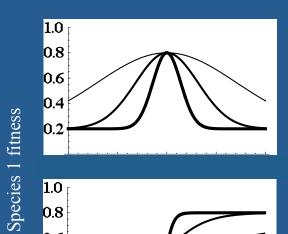
britannica.com

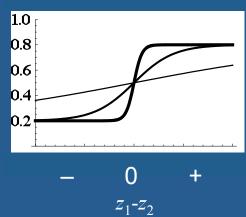
 $\begin{array}{cc} & \alpha = 0.5 \\ & \alpha = 5.0 \\ & \alpha = 50.0 \end{array}$

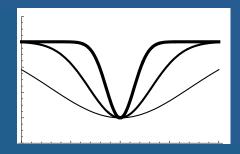
Beneficial interaction

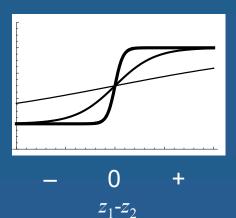
Harmful interaction

Phenotypic differences



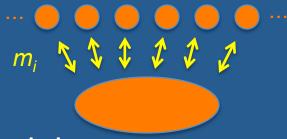






Drift & Gene Flow

- Random Genetic Drift
 - Fixed local sizes $n_1 \& n_2$
 - Local change in \overline{z}_i due to drift:
 - $E(\Delta \overline{z}_i) = 0$
 - $V(\Delta \overline{z}_i) = G_i/n_i$
 - $-G_i$ additive-genetic variance for z_i



- Gene flow
 - Wright's island model
 - rates $m_1 \& m_2$

Approximate Analysis

Assumptions:

- fitness weakly sensitive to phenotype differences [α , γ = O(ε), ε << 1]
- fitness functions well-approximated by $\mathbf{1}^{\mathrm{st}}$ -order Taylor series in $\boldsymbol{\varepsilon}$
- additive-genetic variances (G_i) fixed
- traits normally distributed
- weak gene flow $[m_i = O(\varepsilon)]$
- abiotic optima vary weakly $[\sigma^2_9 = O(\varepsilon)]$

Aggregate variables followed:

- Grand trait means, variances
- Covariances among...
 - local trait mean & abiotic optima
 - local trait means of both species

Phenotype Matching Model: Local Dynamics

$$\Delta \bar{z}_{i,t+1} \approx m \left(\mu_{i,t} - \bar{z}_{i,t} \right) + G_i \frac{\partial \ln \overline{W}_i}{d\bar{z}_{i,t}} + \zeta_i$$

gene flow selection drif

$$\mu_{i,t} = \mathrm{E}\big(\bar{z}_{i,t}\big)$$

$$W_i(z_i | z_j) = \exp[-\gamma_i (z_i - \theta_i)^2] \left\{ K_i + \xi_i \exp[-\alpha (z_i - z_j)^2] \right\}$$
abiotic biotic

$$\overline{W_i} = \int \int W_i(z_i|z_j)\phi_i(z_i)\phi_j(z_j)dz_idz_j$$

$$E(\zeta_i) = 0$$
, $var(\zeta_i) = G_i/n_i$

Phenotype Matching Model: Aggregate Dynamics

$$\Delta \mu_{i,t} = \mathrm{E}(\Delta \bar{z}_{i,t}) \approx 2G_i \left[\gamma_i (\bar{\theta}_i - \mu_i) + s_i (\mu_{j,t} - \mu_{i,t}) \right] \qquad s_i = \alpha_i \xi_i / (K_i + \xi_i)$$

$$\begin{split} \Delta\sigma_{\bar{z}_i}^2 &= \operatorname{var}(\bar{z}_i + \Delta\bar{z}_i) - \sigma_{\bar{z}_i}^2 \\ &\approx 4G_i(1 - m_i) \Big\{ \gamma_i \Big[\sigma_{\bar{z}_i \theta_i} - (1 - m_i) \sigma_{\bar{z}_i}^2 \Big] + s_i \Big[(1 - m_j) \sigma_{\bar{z}_1 \bar{z}_2} - (1 - m_i) \sigma_{\bar{z}_i}^2 \Big] \Big\} \\ &- \Big(2m_i - m_i^2 \Big) \sigma_{\bar{z}_i}^2 + G_i / n_i \end{split}$$

$$\begin{split} \Delta \sigma_{\bar{z}_i \theta_i} &= \text{cov} (\Delta \bar{z}_i, \theta_i) \\ &\approx 2G_i \Big\{ \gamma_i \Big[\sigma_{\theta_i}^2 - (1 - m_i) \sigma_{\bar{z}_i \theta_i} \Big] + s_i \Big[(1 - m_j) \sigma_{\bar{z}_j \theta_i} - (1 - m_i) \sigma_{\bar{z}_i \theta_i} \Big] \Big\} - m_i \sigma_{\bar{z}_i \theta_i} \end{split}$$

$$\begin{split} \Delta \sigma_{\bar{z}_i \theta_j} &= \text{cov} \Big(\Delta \bar{z}_i, \theta_j \Big) \\ &\approx 2G_i \Big\{ \gamma_j \Big[\sigma_{\theta_1 \theta_2} - (1 - m_i) \sigma_{\bar{z}_i \theta_j} \Big] + s_i \Big[\Big(1 - m_j \Big) \sigma_{\bar{z}_j \theta_j} - \Big(1 - m_i \Big) \sigma_{\bar{z}_i \theta_j} \Big] \Big\} - m_i \sigma_{\bar{z}_i \theta_j} \end{split}$$

$$\begin{split} \Delta\sigma_{\bar{z}_1\bar{z}_2} &= \text{cov}(\bar{z}_1 + \Delta\bar{z}_1, \bar{z}_2 + \Delta\bar{z}_2) - \sigma_{\bar{z}_1\bar{z}_2} \\ &\approx 2G_1(1 - m_2) \Big\{ \gamma_1 \Big[\sigma_{\bar{z}_2\theta_1} - (1 - m_1)\sigma_{\bar{z}_1\bar{z}_2} \Big] + s_1 \Big[(1 - m_2)\sigma_{\bar{z}_2}^2 - (1 - m_1)\sigma_{\bar{z}_1\bar{z}_2} \Big] \Big\} \\ &+ 2G_2(1 - m_1) \Big\{ \gamma_2 \Big[\sigma_{\bar{z}_1\theta_2} - (1 - m_2)\sigma_{\bar{z}_1\bar{z}_2} \Big] + s_2 \Big[(1 - m_1)\sigma_{\bar{z}_1}^2 - (1 - m_2)\sigma_{\bar{z}_1\bar{z}_2} \Big] \Big\} \\ &- (m_1 + m_2 - m_1 m_2)\sigma_{\bar{z}_1\bar{z}_2} \end{split}$$

Analytic Results

- Phenotype differences
 - Moments always equilibrate
 - Equilibrium interspecific covariance:

$$\hat{\sigma}_{\bar{z}_1\bar{z}_2} = 0 + O(\varepsilon^2)$$

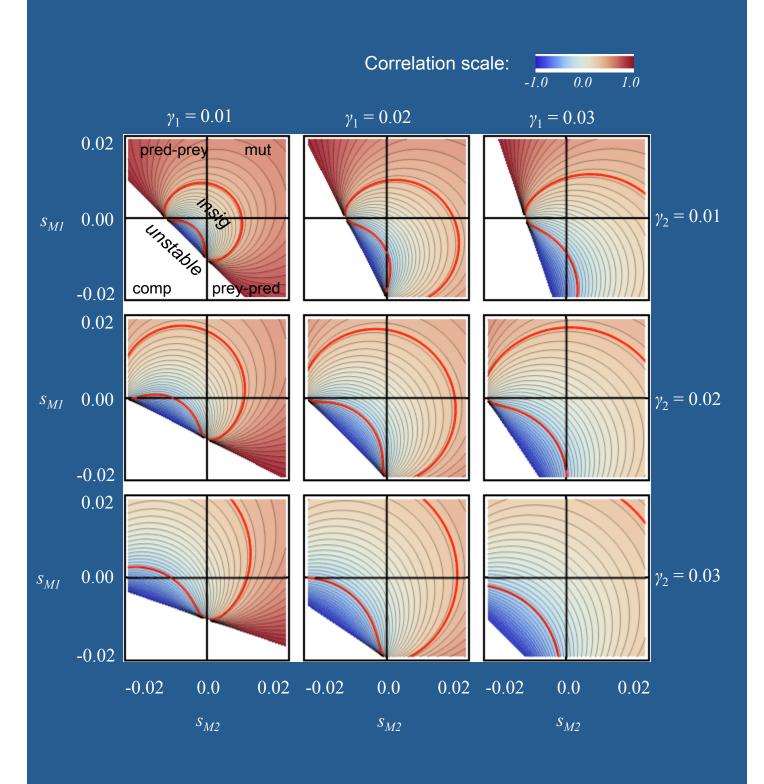
- Phenotype Matching
 - Moments equilibrate or evolve without bound
 - Equilibrium interspecific covariance:

$$\hat{\sigma}_{\bar{z}_1\bar{z}_2} = \frac{2(G_1 s_{M1} \hat{\sigma}_{\bar{z}_2}^2 + G_2 s_{M2} \hat{\sigma}_{\bar{z}_1}^2)}{m_1 + m_2 + 2(G_1(s_{M1} + \gamma_1) + G_2(s_{M2} + \gamma_2))} + O(\varepsilon^2)$$

Individual-Based Simulations

- Track movement, reproduction, biotic
 & abiotic selection of individual
 phenotypes
- Infinitesimal model of inheritance
 - Accommodates arbitrary phenotype distributions & speeds computation
- IBM approach allows:
 - Strong evolutionary forces and substantial environmental variability
 - Dynamic additive-genetic variances

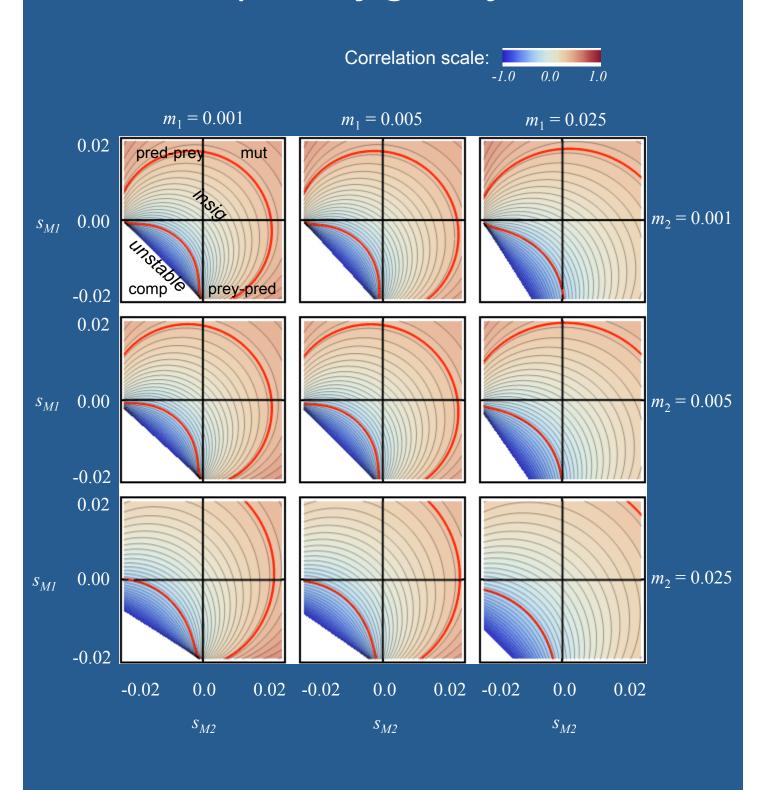
Correlation vs Biotic Selection: impact of abiotic selection



Correlation vs Biotic Selection: impact of drift

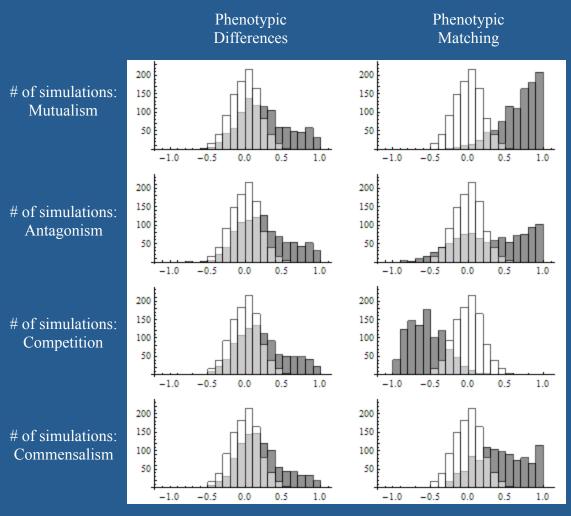


Correlation vs Biotic Selection: impact of gene flow



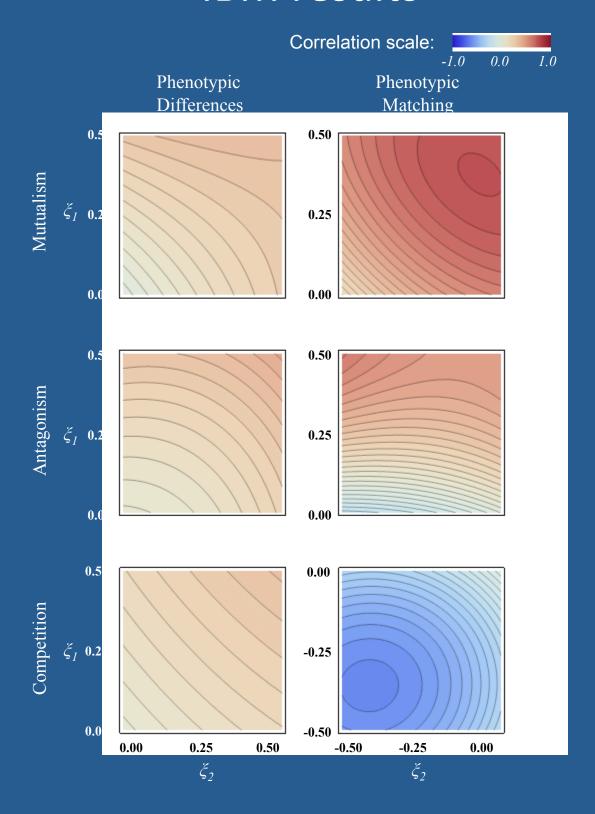
Abiotic vs Biotic Selection

- biotic interactions
- no biotic interactions

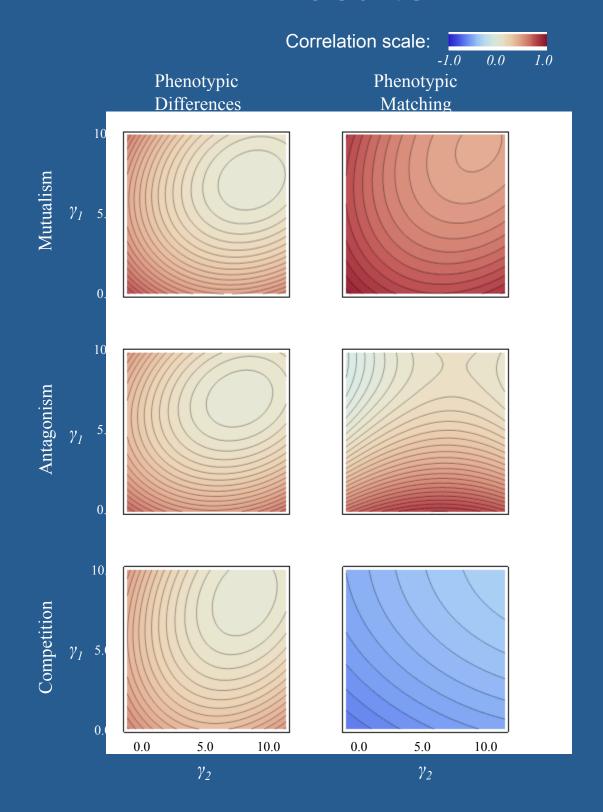


Correlation between species trait means, p

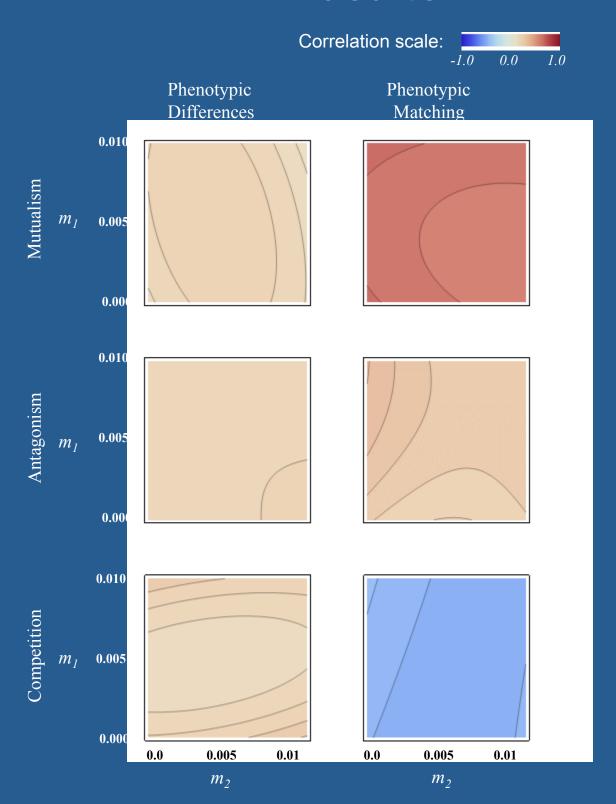
Correlation vs Biotic Selection: *IBM results*



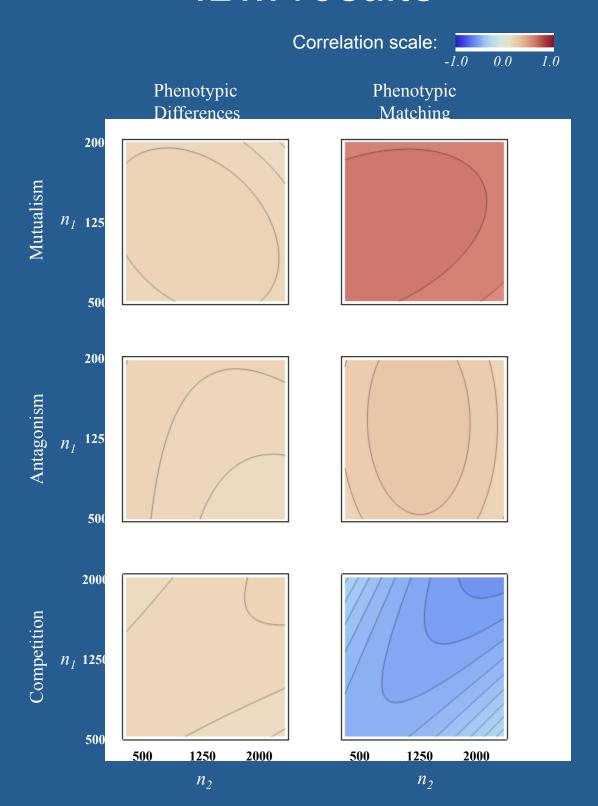
Correlation vs Abiotic Selection: IBM results



Correlation vs Gene Flow: IBM results



Correlation vs Drift: IBM results



Main Findings

- Detectable correlations require:
 - Biotic selection strong relative to abiotic selection
 - Also absolutely strong for phenotypic diffferences
- Correlation need not imply coevolution (Janzen verified)
- Coevolution need not imply correlation
- Correlations inclusive about Geographic Mosaic Theory

Open Questions

- Findings suggested fixed migration has little impact on interspecific correlations
 - Especially compared with drift
- How might adaptive movement in one or both species alter this conclusion?
 - Joint evolution of gene flow rates and phenotypes
 - Joint evolution of "context dependent" movement
- Impacts of coupled population dynamics?
 - Would influence drift, realized gene flow, patterns of interaction and selection, persistence, etc. ["metacommunity coevolution" perspective]

Acknowledgements

Scott Nuismer (U Idaho)

Ben Ridenhour (CDC)

National Science
 Foundation

