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Single Species Habitat Selection
Separation of Time Scales

a) Fast Migration Dynamics

b) Fast Population Dynamics

Single Habitat Predator Prey Models
1. Lotka-Volterra with logistic prey

a) Fast Prey Dynamics

b) Intermediate Time Scales

2. Holling II with logistic prey
a) Intermediate Time Scales

Two Habitat Predator Prey Models

1. LV with logistic prey and adaptive predators
a) Intermediate Time Scales

2. LV with logistic prey and adaptive prey and
predators a) Intermediate Time Scales

Single Species Habitat Selection
Intermediate Time Scales



Single Species Habitat Selection
H: Number of habitats
M: Total population size

p: Distribution of population in habitats.
pe A" ={(py,....,py) : Tp; = 1,p; > 0}

Individuals migrate from patch 5 to patch i at
the rate I;;(p, M). That is, if there is only
migration and no change in population size,

H
p=I(p,M)p—p or p =) ILilp,M)p;— p
=1

where 1L I,.(p, M) =1 for all 1 < i< H.



Assumptions:

1. The fitness of all individuals in habitat i
is F:(p;, M) which is a decreasing function of
both p; and M. Fitnessis positive if a habitat is
empty and each habitat has a carrying capacity
K;. That is

F;(0,M) >0 and F;(K;/M,M) =0 if M > Kj.

2. No individuals migrate to a patch with a
lower fitness. That is,
I;j(p, M) =0 if Fi(p;; M) < Fij(pj, M)

3. Some individuals migrate to the patch with
the highest fitness. That is, for some 5 # 1
with pj > 0,

Iij(p:fl«f) >0 if F(p;, M) = max Fj(pj?fl«f).



Separation of Time Scales:

For fast behavioral dynamics, first fix M and
consider the evolution of the population distri-
bution. Then consider the population dynam-
ics assuming that it evolves at a per capita
rate given by the mean fitness for the current
distribution.



Fast Behavioral Dynamics

Theorem 1. If the three assumptions above
are satisfied, then p evolves to the Ideal Free
Distribution (IFD) under the fast behavioral
dynamics with fixed M. Label this IFD as

The population dynamics is M = MF(p(M), M)
where F = zi;lpjjrj(p(_.w); M) = F(p(M),M)
for all p; > 0 and is the mean fitness of the
population.

Theorem 2. Total population size evolves to
K = K1+4+...4+ Ky with corresponding IFD given
by p; = K;/K fori=1,..., H.

That is, under fast behavioral dynamics, the
population evolves to its carrying capacity K;
in each of its H habitats.



Proof 1. Let V(p, M) = max; F;(pj, M). Since

p; increases if F;(p;, M) = max; F;(p;, M), Fi(p;, M)
decreases and so V(p, M) decreases. Similarly,
v(p, M) = min;{F;(pj, M) : p; > 0} increases
and so eventually, Fi(p;,M) = Fj(p;; M) = F
for all pip; > 0. Furthermore, at this limit, if
F;(0,M) > F, then p; > 0. This is the unique
IFD at fixed M.

Proof 2. If M > K, then Mp;(M) > K; for
some p; > 0. Thus F(p(M),M) < 0 and so
M is decreasing. Similarly, if M < K, then
Mp;(M) < K; forsome p;. Thus F(p(M), M) >
0 and so M is increasing. That is, M evolves
to K.



Fast Population Dynamics

First fix p and consider the evolution of the
population size. Then consider the behavioral
dynamics assuming that it evolves through mi-
gration satisfying our three assumptions.

Theorem 3. For fixed p, the total population
size evolves to a unique population size M (p)
satisfying F(p, M(p)) = 0.

As a function of p, M(p) is called the ((H—1)-
dimensional) stationary density surface (SDS).
The behavioral dynamics is now

p=I((p,M(p))p— p

Theorem 4. Total population distribution evolves
to p; = K;/ K with corresponding total popula-
tion size K.



Proof 3. For fixed p, the population dynamics
is M = MF(p, M) where F(p, M) is a decreas-
ing function of M. If M = 0, M > 0 since
F;(p,0) > Oforalli. Alsoif M > ¥y, < oy Ki/pi,
then each occupied habitat is above its carry-
ing capacity and so M < 0. Thus, there exists
a uniqgue M(p) > 0 such that M = 0 and M
evolves to it.

Proof 4. Let V(p, M(p)) = max; Fj(p;j, M(p)) =
Fi,. Then V(p,M(p)) > 0 since FF = 0. If
V(p,M(p)) > 0O, then p;; > 0 by our assump-
tions on the migration dynamics and so F;, is
decreasing. Thus, V(p, M(p)) evolves to zero.
At every limit point p* of the trajectory, pF > 0
and F;, = F = 0 for all i. The proof is com-
plete since the only such limit point p* is the
IFD with each habitat at its carrying capacity.



Summary for Single-Species Habitat Selection:

Under either fast behavioral dynamics or fast
population dynamics, the system evolves to
carrying capacity in each of the H patches.

Question: What about intermediate time scales?
Return to this later.



Single Habitat Predator Prey Models

1. Lotka-Volterra with logistic prey growth.

x. prey density

y: predator density

£ = aa:(l——)—)m:y
L
y = y(erz—m)

Prey carrying capacity L;
intrinsic growth rate a.

Predator search rate A; mortality rate m.

Consumed prey converted to new predators
with efficiency e.



cre e . alelLA—m
The equilibrium is (z*, y*) = (% ﬁz—}) pro-

vided the prey carrying capacity is larger than
its equilibrium value (i.e. L > z*). By standard
techniques, (z*, y*) is globally asymptotically
stable.

Note: If L < z*, the predator goes extinct and
the prey evolve to their carrying capacity. That
is, (L,0) is globally asymptotically stable.

Example: Takea=A=e=m=1and L = 2.
Then L > z* = 1 and so (z*,9y*) = (1?%) is
globally asymptotically stable.

A sample trajectory is shown on the next slide
labeled r = 1.



r=1

r=10




Fast Prey Dynamics

First fix y and consider the evolution of the
prey population. Then consider the predator
dynamics assuming that the prey are at their
limiting behavior for each .

For fixed y, z — i

Thus, the predator dynamics is

( eAlL . a

—my if y=2%
r(F}.L—m)i 1-— L if y <%
S ” 4 aleAL—m) JeLA< Y=<Xx
Y =
—my if y>2%

If L <z* theny — 0 and x — L.



aleLA—m .
If L > z*, theny — %ﬁ: y* since y* < .

Also = — x*.
We have shown the following result:

Theorem 5. With fast prey dynamics, the
system evolves to the same equilibrium as the
original predator-prey system. Infact, this equi-
librium is globally asymptotically stable for any
choice of time scales (i.e. any choice of r > 0)
in the system

& = r [cm:: (1 _ %) —)-.a:y]

y = y(ekz —m).

Thus, for long term behavior of the system, it
is not important to know the time scale of the
prey dynamics compared to the predator dy-
namics. T his long term outcome is determined
by completely separating the time scales and
analyzing the predator dynamics on the prey
null cline (which I will also call the stationary
prey density surface).



r=1

r=10




Single Habitat Predator Prey Models
2. Holling II with logistic prey growth.

With h the predator handling time to process
a single prey, we have the the following model
(Rosenzweig and MacArthur, 1963)

T AT

T = aa:(l—i)——y
L 1+ M\hzx

EAT

Yy = Yyl ———m
4 J(l+lhm )

The equilibrium is

ok m ae( LAX(e — mh) — m)
(@%y7) = ((E—mh))f IX2(e — hin)?2 )
provided e > mh and prey carrying capacity is
larger than its equilibrium value (L > z%).

We will assume these two inequalities hold from
now on.




Stationary Prey Density Surface: = 0 when

=36 )

This is a downwards parabola with vertex at
T = %ﬁ‘rl If £ > z*, then (z* y*) is unsta-
ble and a stable limit cycle attracts all initial
conditions. If £ < z* then (z*,vy*) is globally

asymptotically stable.

Theorem 6. Assume that e > mh and

T < x*¥ <« L. With fast prey dynamics, the
system evolves locally to the same equilibrium
as the original predator-prey system (i.e. to
(z*,y*)). In fact, this equilibrium is globally
asymptotically stable for any choice of time
scales (i.e. any choice of 0 < r < o) in the
system



Proof of local stability for 0 < r < .

H xIr — I
Linearization about (z*, y*) is = J

] y—y*
where

ra* | -9 A2 hy* gt A
J(z*,y*) = LT (TFraaty? I+haTy”
’ E)t ¥ O
(14 hrz*)?2

Since detJ > 0, (z* y*) is locally asymptoti-

- A2 hy* .
cally stable if + > mﬂ%); (i.e. trJ < 0) and
unstable if this inequality is reversed.

a —  Nhy* .
Now ¢ = mﬁ%)z if and only if
a (1 4+ hxz*)? = LX2hy* if and only if
L= HXE(% if and only if & = z*.

e—1r
The remainder of the proof is straightforward.
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Example: Takea=A=e=m =1, h = 0.5
and L=3. Then L>z*=1 and so (z*,y*) =
(2= %) is globally asymptotically stable.

Two sample trajectories are shown on the pre-
vious slide labeled r = 1. Also shown are two
trajectories with »r = 10 as well as the phase
diagram with the parabolic stationary prey
density surface. The prey dynamics quickly
approaches the stationary prey density surface
and then follows along this curve to the equi-
librium. For still larger r, this occurs for initial
points above and to the left of (z*, y*) as well.

We again find that, to understand the long
term behavior of this system, it is not

important to know the time scale of the prey
dynamics compared to the predator dynamics.



On the other hand, if * < ¥ as in the diagram
below, (z*, y*) is unstable and a stable limit
cycle emerges with part of its trajectory along
the stationary prey density surface as r gets
large.

14}
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Two Habitat Predator Prey Models

1. LV with logistic prey and adaptive predators

x;. prey density in habitat i (1 = 1,2)

u;. predator preference for habitat ¢
Here w4+ up, = 1.

. T
r1 = ajri|(l——| —uiAiriy
Iy
. )
Ty = a3T? (1——) — UDADT DY
Lo
y = (erA1x1—mi1)ury+ (exdpzo — mo) upy
uy = u1(l —wuy)[(exr1z1 — m1) — (exhozo — mo)]

H E I Iy * Mo
Provided z7 = AT and z5 = I are less
than their respective prey carrying capacities
Ly and Ly , the equilibrium (27,23, y*, u7)
exists.



e . . £ ___ 1mng  __ 1M
The equilibrium iIs 7 = A T2 = GHiy

% e aq [E]_Ll}ul—ﬂll) QE(EELE}"E_?HE)
elLl,l% EQLEJL%

and uj given by

EL]_EQ)L%LE(E]_L 1,}.1—??11)
aleg}%_ﬂg(e 1L1A1—mq)4aoe 13&%151(:‘32_-52}.2 —mo)’

L —

'u-l —
e 1] * mo

Theorem 7 ﬂssume; Ty > eTAL .j:mcl Tn > T
Then (z1,z3%,y* u}) is asymptotically stable.

In fact, it is locally asymptotically stable for

any choice of time scales for the three density
dynamics and behavioral dynamics.

Note: In fact, this equilibrium is globally asymp-
totically stable when the time scale of the fast
behavioral dynamics is separated from the
population dynamics.

(Krivan and Schmitz, 2003).



Proof of local stability for 0 < r; < occ.

Linearization about (z7,2%5,y",u7) yields the
4 x 4 Jacobian matrix J(z7,z%, y*,u])

% 0 A ap ¥

—?"'1:{:1—11 0 —riAjuiz] —riAyte]

% O ¥ .

0 —rngﬁ —TRAQUSTS  TRAQY TS
r3e1Auiy’  raepAsusy” 0 0
r4ae1Alujus —rqexAujus 0 0

The Routh-Hurwitz stability criteria are
satisfied for all choices of 0 < r; < 0.

Mathematically, J is called a D-stable matrix.
In such cases, time scales are not important.




2. LV with logistic prey and adaptive prey
and predators

UVj.

U1

U1

prey preference for habitat i (vi 4+ v> = 1)

{ﬂ-l (1 — %) — }Lluly] v1T

VI
+ {ag (1 — E—E) — Agugy] U T

(e1A1viz — mi)uiy + (epAovoxr — mo) uny

(a1 (1~ 25) ~Arvay)

(o2 (1 ) - Aouav)

u1(1l —u1) [(e1A1v1e — m1) — (e2A2v2z — m2)]

v1(1 —v1)



g o

Provided L1 > P and Lo > er A’

equilibrium is (z*,y*,v],u]) where

* m1 mo
a —
61/\1 EQ/\Q
% mi
v = :
epA1x*

the




The 4 x 4 Jacobian matrix J(z*,y*,v],ul)

2
aTwl Muqv —a?wl — AV
_( a;ﬂz)“’ —( R E L a2 2y
5 : asup :
-|-TE + Aousvo +T2 +Xov2

1 A1 Uv £1 AU
1A1UIT] y 0 1A1U] 2y 0
+eaAsusvs —es Aot
_faim —\ a1z \'I A\
111 1
(o (2o [ o (2]
+7 +Aouo +75 ) + X2
e1 AU €1\ T \
LA U U 0 1o U U 0
—Eg)&gt‘g —Eg)kg.‘r)

The Routh-Hurwitz stability criteria are satis-
fied for this matrix but not for all choices of
0< r; < o0.

That is, this is not always a D-matrix and so
time-scales are important.




Example. Takeai=1l,a, =2, L1 = L, = 2;
AM=LlLd=2e1=m1 =4, eo =1, mr = 2.

Then v =u] = %,m* =2 and y*=1.

1 1 3 3
is 8 ~8%Y —3Y
r 0 3z O

The Routh-Hurwitz stability criteria are satis-
fied for this matrix but if r{ and rg4 are large,

3 1
— = i M
the corresponding 2 x 2 matrix gt 2t
i 0
has negative determinant —émy = —;41— and so

the system is not stable with this time scale.



For this model, we can completely separate
the behavioral dynamics from the population
dynamics.

Results

1. For fast behavioral dynamics, (z*, y*, v1, u})
is asymptotically stable (Cressman, Krivan and
Garay, 2004).

2. For fast population dynamics (also

called adaptive dynamics), (z*,y*,v],u}) is
asymptotically stable.

We can also completely separate the prey
dynamics (i.e. the combined population and
behavioral dynamics of the prey) from that of
the predator.

Results
3. For fast prey dynamics in this example, the
linearized system is neutrally stable at (z*, y*, v],u})



Single Species Habitat Selection
Intermediate Time Scales

When there is no migration, the population
dynamics is m; = m; F;(p;, M) in habitat i.

When there is only migration, the behavioral
dynamics is m; = Zlefij(p: M)m; —m;.

Intermediate Time Scales (Case 1):
m; = mFi(p;, M) +r [Zf:lfij(n M)m; — mi}-
which can be rewritten as

M = MF(p(M), M)
e [l M yol H 7. .(0 Mo — n
Pi = pi [H(;ﬂ@ M) - F}+r [ijlfu(n M)p; — pa}

where F = Zf:lijj(p(M):M) is the mean
fitness of the population.



Theorem 8 (Cressman and Krivan, 2006).
Suppose that the three assumptions on F; and
I;; are satisfied. T hen, for all »r > 0, the
population evolves to its carrying capacity K;
in each of its H habitats : where 1 <i < H.

Note that, in Case 1, p; is evolving when there
is no migration (i.e. when r = 0).

Intermediate Time Scales (Case 2):

M = MF(p(M), M)
pi = rpi [Fi(pi, M) - F|.

If » > 1, then we are in Case 1 since
pi = pi |[Fi(pi, M) — F| 4+ (r = 1)p; [Fi(pi, M) - F
and the conclusion of Theorem 8 remains valid.

Conjecture. For all 0 < r <1, the population
evolves to its carrying capacity K; in each of
its H habitats « where 1 <1 < H.

Note: This conjecture is true for H = 2 and
H = 3 using the D-stable matrix approach.
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