The effects of adaptive predator movement on coexistence of prey species in a spatially varying environment

Peter Chesson and Jessica Kuang

Plan of the talk

- An approach to spatial dynamics: scale transition theory
- Predation-competition interactions in space
- Coexistence mechanisms arising from spatial dynamics
- The effects of optimal predator movement on species coexistence

Scale transition theory

- Discrete or continuous time
- Discrete or continuous space

 λ_{ixt} : fitness in discrete-time

 $\lambda_{ixt}N_{ixt}$: output of spatial location, x

x: point in continuous space (any

dimension), a lattice point or patch

 r_{ixt} : fitness in continuous time

Example: annual plants

$$\lambda_{jxt} = s_{j}(1 - g_{jxt}) + g_{jxt}Y_{jxt}e^{-C_{xt}-A_{xt}}$$

 A_{xt} : "apparent competition"

example:
$$A_{xt} = a_j P_{xt}$$

$$C_{xt}$$
: "competition"

examples:
$$C_{xt} = \sum_{l} \alpha_{l} g_{lxt} N_{lxt}$$

$$C_{xt} = \ln\left(1 + \sum_{l} \alpha_{l} g_{lxt} N_{lxt}\right)$$

Dynamics at different scales

"Output" of a spatial location

$$\lambda_{jxt} N_{jxt} \neq N_{jx,t+1}$$

However

$$\sum_{x} \lambda_{jxt} N_{jxt} = \sum_{x} N_{jx,t+1}$$

Landscape-level dynamics

$$\overline{N}_{t+1} = \widetilde{\lambda}_t \overline{N}_t$$

Landscape-level fitness: "individual-average fitness"

$$\tilde{\lambda}_{t} = \frac{\overline{N}_{t+1}}{\overline{N}_{t}} = \frac{\sum_{x} N_{x,t+1}}{\sum_{x} N_{xt}} = \frac{\sum_{x} \lambda_{xt} N_{xt}}{\sum_{x} N_{xt}}$$
$$= \frac{\overline{\lambda}_{xt} N_{xt}}{\overline{N}_{xt}} = \overline{\lambda}_{xt} N_{xt} / \overline{N}_{t}^{x} = \overline{\lambda}_{xt} \nu_{xt}^{x}$$

 ν_{xt} : "relative density at location x"

Individual average, spatial average, fitness-density covariance

$$\widetilde{\lambda}_{t} = \overline{\lambda_{xt}} \overline{\nu_{xt}}^{x} = \overline{\lambda}_{t} \cdot \overline{\nu}_{t} + \text{cov}_{x}(\lambda_{xt}, \nu_{xt})$$

$$= \overline{\lambda}_{t} + \text{cov}_{x}(\lambda_{xt}, \nu_{xt})$$

$$\overline{\lambda}_{t} = \text{"spatial average fitness"}$$

$$\text{cov}(\lambda_{t}, \nu_{t}) = \text{"fitness-density covariance"}$$

Why does spatial structure matter to regional dynamics?

Spatial structure:

 V_{xt} varies with x

Fitness factors, \mathbf{W}_{x} (e.g. C_{xt} , A_{xt} and E_{xt})

vary with x

$$\lambda_{xt} = f(\mathbf{W}_{x})$$

Why does spatial structure matter to regional dynamics?

Regional dynamics determined by

$$\tilde{\lambda}_{t} = \overline{\lambda}_{t} + \operatorname{cov}(\lambda_{t}, \nu_{t})$$

 $cov_x(\lambda_{xt}, \nu_{xt}) \neq 0$ (different fractions of the population have different fitnesses)

$$\overline{\lambda}_{t} = \overline{f(\mathbf{W}_{x})}^{x} \neq f(\overline{\mathbf{W}})$$

because f is nonlinear

Predation competition-interactions in space

$$\lambda_{jxt} = f(\mathbf{W}_x) = G_j(E_{jxt}, D_{jxt})$$
 for prey species j

 E_{jxt} : environmental response

 $D_{jxt} = C_{jxt} + A_{jxt}$: multispecies density-dependent response

e.g.,
$$G_j(E_{jxt}, D_{jxt}) = s_j(1 - g_{jxt}) + g_{jxt}Y_je^{-D_{xt}}$$

Transforming the responses to simplify the equation

$$\lambda_{jxt} - 1 \approx \mathsf{E}_{jxt} - \mathsf{D}_{jxt} + \gamma_{j} \mathsf{E}_{jxt} \mathsf{D}_{jxt}$$
$$\mathsf{E}_{jxt} = G_{j}(E_{jxt}, D_{j}^{*}) - 1$$
$$\mathsf{D}_{jxt} = 1 - G_{j}(E_{j}^{*}, D_{jxt})$$

$$\tilde{\lambda}_{jt} - 1 \approx \overline{\mathsf{E}_{jt}} - \overline{\mathsf{D}_{jt}} + \gamma_j \operatorname{cov}(\overline{\mathsf{E}_{jt}}, \overline{\mathsf{D}_{jt}}) + \operatorname{cov}(\overline{\mathsf{E}_{jt}} - \overline{\mathsf{D}_{jt}}, \nu_{jt})$$

Coexistence by invasion analysis

$$\tilde{\lambda}_i \approx \tilde{\lambda}_i' - \Delta N + \Delta I + \Delta \kappa$$

 $\tilde{\lambda}_{i}'$: nonspatial mechanisms

 ΔN : relative nonlinearity

 ΔI : the storage effect

 $\Delta \kappa$: fitness-density covariance

Making it simple: seed bank model

$$\begin{split} \tilde{\lambda}_i &\approx \tilde{\lambda}_i' - \Delta N + \Delta I + \Delta \kappa \\ &(\tilde{\lambda}_i' - 1) / \beta_i = \bar{\xi}_i' / \beta_i - \bar{\xi}_r' / \beta_r \end{split} \text{ Average fitness comparison } \\ \Delta N &= 0 \quad \text{Relative nonlinearity} \end{split}$$

$$\Delta I \, / \, \beta_i = \operatorname{cov}(\overline{E}_r^{r \neq i} D^{\{-i\}}) - \operatorname{cov}(E_i, D^{\{-i\}}) \, \operatorname{The \, storage}_{\text{effect}}$$

$$\begin{split} \Delta \kappa / \beta_i &= \operatorname{cov} \left(\mathbf{E} / \beta_i, \nu_i \right) - \overline{\operatorname{cov} \left(\mathbf{E} / \beta_r, \nu_r \right)}^{r \neq i} \\ &+ \operatorname{cov} \left(D^{\{-i\}}, \overline{\nu_r}^{r \neq i} - \nu_i \right) \end{split}$$
 Fitness-density covariance

$$\beta_j = \left(\frac{\partial \lambda_{jxt}}{\partial D_{xt}}\right)^*$$
: rate of response to d.d.

$$G_{j}(E_{jxt}, D_{xt}) = a_{j}(E_{jxt}) + b_{j}(E_{jxt})c(D_{xt})$$

Making it simpler: spatio-temporal variation, two prey species

$$\frac{\tilde{\lambda}_{i} - 1}{\beta_{i}} \approx \bar{E}_{i} / \beta_{i} - \bar{E}_{r} / \beta_{r}$$
Storage effect
$$+ \left(\frac{\bar{C}_{r}'}{\bar{C}_{r}' - 1} + \theta_{r}\right) \left(\sigma_{E_{r}E_{r}} - \sigma_{E_{i}E_{r}} + \sigma_{v_{r}v_{r}} - \sigma_{v_{i}v_{r}}\right)$$

 \overline{C}'_r : magnitude of competition

 θ_r : response of predators to local abundance

$$\sigma_{E_j E_k} = \text{cov}(E_j, E_k)$$

$$\sigma_{\nu_i\nu_k} = \text{cov}(\nu_j, \nu_k)$$

How to get θ_r

Need an equation for predator dynamics

$$\lambda_{Pxt} = Y_r g_{rxt} e^{-C_{xt}} N_{rxt} \left(1 - e^{-aP_{xt}} \right) / P_{xt}$$

Assuming an idea free distribution, this equals 1 in every spatial location.

Hence
$$P_{xt} = f_r(\ln N_{rxt} + E_{rxt})$$

$$\theta_r = f_r'(\ln \overline{N}_r + E_r^*)$$

Making it simpler: spatio-temporal variation, two prey species

$$\frac{\tilde{\lambda}_{i} - 1}{\beta_{i}} \approx \bar{E}_{i} / \beta_{i} - \bar{E}_{r} / \beta_{r}$$
Storage effect
$$+ \left(\frac{\bar{C}_{r}'}{\bar{C}_{r}' - 1} + \theta_{r}\right) \left(\sigma_{E_{r}E_{r}} - \sigma_{E_{i}E_{r}} + \sigma_{v_{r}v_{r}} - \sigma_{v_{i}v_{r}}\right)$$

 \overline{C}'_r : magnitude of competition

 θ_r : response of predators to local abundance

$$\sigma_{E_j E_k} = \text{cov}(E_j, E_k)$$

$$\sigma_{\nu_i\nu_k} = \text{cov}(\nu_j, \nu_k)$$

Effects of Predation

- Predation weakens competition by lowering prey (plant) densities
 - This weakens competition-based coexistence mechanisms and undermines coexistence
- With adaptive predator movement
 - predation-based mechanisms appear
 - Storage-effect due to apparent competition
 - Fitness-density covariance due to apparent competition
 - These may compensate for the reduction in competition-based mechanisms

The simple case: spatio-temporal variation, two prey species

$$\frac{\tilde{\lambda}_i - 1}{\beta_i} \approx \bar{\mathsf{E}}_i / \beta_i - \bar{\mathsf{E}}_r / \beta_r$$

$$+\left(\frac{\overline{C}'_r}{\overline{C}'_r-1}+\theta_r\right)\left(\sigma_{E_rE_r}-\sigma_{E_iE_r}+\sigma_{v_rv_r}-\sigma_{v_iv_r}\right)$$

 \overline{C}'_r : magnitude of competition

 θ_r : reponse of predators to local abundance

$$\sigma_{E_i E_k} = \text{cov}(E_j, E_k)$$

$$\sigma_{\nu_j\nu_k} = \text{cov}(\nu_j, \nu_k)$$

Arbitrary spatial variation: spatiotemporal + pure spatial variation

$$\begin{split} \frac{\tilde{\lambda}_{i}-1}{\beta_{i}} \approx & \vec{\mathsf{E}}_{i}^{\top}/\beta_{i} - \vec{\mathsf{E}}_{r}^{\top}/\beta_{r} \\ + \left(\frac{\bar{C}_{r}^{\prime}}{\bar{C}_{r}^{\prime}-1} + \theta_{r}\right) \left(\sigma_{E_{r}E_{r}} - \sigma_{E_{i}E_{r}} + \sigma_{E_{r}V_{r}} - \sigma_{E_{r}V_{i}}\right) \\ + \left(\frac{\bar{C}_{r}^{\prime}}{\bar{C}_{r}^{\prime}-1} + \theta_{r}\right) \left(\sigma_{V_{r}V_{r}} - \sigma_{V_{r}V_{i}} + \sigma_{E_{r}V_{r}} - \sigma_{E_{r}V_{i}}\right) \\ + \frac{1-s_{i}}{\beta_{i}} \sigma_{E_{i}V_{i}} - \frac{1-s_{r}}{\beta_{r}} \sigma_{E_{r}V_{r}} \end{split}$$
Fitness-density covariance

	Vari- able param- eter	Type of Environ- mental variation	Type of dispersal	Covariance between Environment and competition		Covariance between fitness and density		
				resident	invader	resident	invader) (t)
•	V	spatio- temporal (st)	wide- spread (w)	+	0	0	0	$\lambda_{jx}(t)$
		st	local retention (l)	+	0	-	+	$s_j(1-g_j)$
		Pure spatial (ps)	W	+	0	0	0	+
		ps	1	+	0	+	+	$V_j Y_j g_j e^{-C_x - A_x}$
	G	st	W	+	0	-	+	
			1	+	0	-	?	
		ps	W	+	0	-	-	
			1	+	0	?	?	
	YU	st	W	0	0	0	0	
			1	0	0	-	+	
		ps	W	0	0	0	0	
			1	+	0	+	+	