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Context (Edge Mediated Effects)

Fagan, Cantrell, and Cosner, American Naturalist 153 (1999),
165-182

Edges can change species interactions by altering species’
movement patterns.

Altering species’ movement near the boundary of a habitat patch
can change the dynamics of the species at the scale of the
patch as a whole.



Specific Motivation

Kuussaari et al, Oikos 82 (1998), 384-392.

Article reports on an empirical study of the Glanville fritillary butterfly in
Finland. This species of butterfly cues upon conspecifics and it is
observed that individuals are less likely to leave a bush if other
butterflies are present. Kuussaari et al (1998) demonstrate that this
behavior appears to induce an Allee effect within the patch.



Glanville Fritillary Butterfly




Model to test having bistable population dynamics at the
patch level even though no such effect present in the local
population dynamics within the patch

U = dVu + ru(l —u) 1n £2 x (0, 00),

ou
ﬂ’(H}a— + (l — ﬂ’(H})H =0 ondf2 x (0, 00)
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Notation

represents a bounded habitat patch.

represents the boundary of £2.

represents a population density on £2.

represents the local population growth rate in £2.

represents the diffusion rate of the population.

describes the rate at which individuals leave the patch £2 if they encounter the
boundary a£2. Specifically, if I — a = 0 then no individuals leave the patch
but if I —a =1 then all individuals that reach the boundary leave the patch.
In general, we will allow « to depend on « but in some cases we will set «
equal to a constant. (In the models @ appears as a coefficient in the boundary
conditions. )

Is the principal eigenvalue of the negative Laplace operator on £2 under the
boundary conditions that would arise iIf @ = «* for some constant a*. (This
eigenvalue synthesizes the geometry of £2 with the boundary conditions deter-
mined by «*. It measures the rate at which a population with no births or deaths
and with diffusion rate d = 1 would diffuse out of £2 under the boundary con-
ditions defined by e. It is formally defined in Lemma 1 of Section 2.)



Allee Effect

Definition: per capita growth rate increases at low
densities

Strong Allee effect: per capita growth rate is negative at
low densities; can not invade an empty habitat

Weak Allee effect: per capita growth rate is positive at
low densities; can invade an empty habitat, but size of
such a habitat would be bigger than with logistic
dynamics with the same maximal per capita growth rate



Causes

Less efficient feeding (Way and Banks, Ann. Appl. Biol. 59 (1967),
189-205)

Reduced effectiveness of anti-predator defenses (Kruuk, Behav.
Suppl. 11 (1964), 1-29; Kenward, J. Animal Ecol. 47 (1978), 449-
460)

Difficulty in finding mates (Stephens and Sutherland, TREE 14
(1999), 401-405; Boukal and Berec, J. Theor. Biol. 218 (2002), 375-
394)



Nonspatial Model for an Allee Effect

du

pn = f(u)

fu) =ru(u—a)(l —u/K)



Remarks

In the previous slide, r>0and 0 <a <K.

Allee effects depend upon scale. Kuussaari et al (1998) are
observing Allee effects at the scale of a patch.

When passive diffusion is included as a dispersal mechanism, it
can convert a weak Allee effect at the local level into a strong
Allee effect on the population level for some patch sizes near the
critical patch size for invasibility (Cantrell and Cosner, Wiley and
Sons, 2003). See also Jiang and Shi, CRC Press, 2009, 33-61.



Key Term in the Model : a(u)

a(u) € [0,1] when u < [0,1]

If a(u)=a* for all u in [0,1], a* is increasing as the fraction
of individuals that remain in the patch upon reaching the
boundary increases

If a*=0, all individuals that reach the boundary leave
(Dirichlet)

If a* =1, no individuals leave the patch (Neumann)
a(u) assumed smooth and nondecreasing



The model when a(u)=a* for all u

u, =dViu+ru(l —u) in 2 x (0, 00).

9
a*ai td—au=0 ond x (0,00)
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Predictions when a(u)=a* for all u

One considers the linear eigenvalue problem

AV +rp=0¢ in 2.
a*Vo-n+(1-a")p=0 onds2



When the average rate of growth over the patch of the
species in question at low densities (i.e., 0) is positive,
positive solutions of the diffusive logistic problem tend over
time to a unique globally attracting equilibrium u(a™*) which
IS positive in the patch. When this average rate of growth
over the patch is nonpositive, all nonnegative solutions to
the diffusive logistic problem tend to O over time. So the
model has only two possible predictions : persistence via
convergence to a globally attracting equilibrium or
extinction.
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The model when a(u) is density dependent and a(1) =
1, so that u = 0 and u = 1 are both equilibria

Equilibria are given by solutions to

dViu +ru(l —u)=0 in £2,

du
af(u,}a— + (l — {}’(M})H —(0 onads2
1



Linearized stability analysis

Linearization at O (Egn. #1) with a* = a(0)

dV?¢p +rp =od in §2,
a*Vo -n+ (1 —a™)p=0 onads2



Linearization at 1: (Eqn #2)

dV*y —rvr =0y in £2,

J
+_‘ff — o' ()Y =0 onodf2
on



u=0andu=1Ilinearly stable

a*’(l)supvzw + r:lf"r(1)35,L113:|Vw|2 < r < A (&f((]‘))
a 0 d

dw/dn=1on 452



p=1vY/h where h > 0

Vir =hVp+ pVh,

2 2 2 (9)
Vo =hV-p+2Vp-Vh+ pV-h.
From (6) and (9) we readily obtain
dV -h*Vp+ (dhVih —ri*)p=ech’p in$2,
dp H 1 9h ‘1) . . (10)
— - - =0 on .
on ' Lhon r

To define h, choose w to be a function so that dw,/dn = 1 on d£2 then let h = e (hw (If
the geometry of {2 is simple then it may be possible to explicitly construct w. It is always
possible to construct w by solving the equation Viw —w=0 subject to the boundary
condition dw/dr = 1 on 9£2.) We then have dh/dn = &'(1)h on 342 so the boundary
condition in (10) becomes

dp
— =0. 11
an (11)

Thus, the change of variables converts (6) into a classical eigenvalue problem. Multiplying
(10) by p. integrating by parts via the divergence theorem and using (11) yields

afthz dx = —f dh2|vp|2dx+f (dh V2h —rh?)p* dx
2 2 2

Vi r 2 2
=d — — — | [h*pdx.
0 h d

Since V2h = («'(1)V?w 4 &'(1)*|Vw|*)h it follows from (12) that & < 0 provided

' (V2w +e' (1)} Vw]?* < (r/d) on 2. (13)



Bifurcation approach when a(0) > 0, a(1) =1 and
da/du(1) >0

Equlibria are the zeros of the map

F(A,u)= (Vzu + Au(l —u), a(u)Vu-n+ (l — {I(H))H)

where F :(-%0,%0)x C2¥(clQ) — CY(clQ)xC'(dQ) and A = r/d = 0.



The linearization about O is:

F,(A, 0w = (Vzw + 2w, a(0)Vw -7+ (1 —a(0))w)



When A = A,(a(0)),the linearization is Fredholm of index
zero with a one dimensional eigenspace spanned by the
eigenfunction in Eqn. #1. Moreover, the compatablity
condition in the Crandall-Rabinowitz local bifurcation
theorem is met. So all nonzero equilibria near (A;(a(0)),0)

have the form (A,u) = (A(s),sp + sp(s)) with A(s) and p(s)
smooth in a nbd of s = 0 with A(0) = A,(a(0)) and p(0) =0.
Here A,(a(0)) ranges between A,(1) = 0 and A,(0) > 0.



To consider F(A,u) = 0 in a nbd of u = 1 we make a change
of variables as before with w = hu, where h > 0 on the
closure of Q is chosen so that

gradh*n+Kh=0o0onbdQ

with K > max{ 1, da/du(1)}. Then w = h corresponds to u
=1. Let w = p + h. Then reformulate the problem in terms of
the variable p. We get a map G(A, p) so that
GA p)=0iff F(A,(p + h)/h)=0
whose linearization about 0 is Fredholm of index zero and

equivalent to Eqn #2



Linearization at 1: (Eqn #2)

dV*y —rvr =0y in £2,

J
+_‘ff — o' ()Y =0 onodf2
on



Let A, denote the principal eigenvalue of Eqn 2. There will
be bifurcation from 1 at all the eigenvalues of Eqn #2.
However, equilibria with values between 0 and 1 can only
emanate from A,



Lower estimate on A,

: , o2,
o= (l)— Ha'(1)=0

| £2]



Upper estimate on A,

20 < A4 (82) + sup 2| VK|*/ Kk

) l

o = .
[ +a'(1)

_V3k = Mk in 2.
Vk-i4+a' (k=0 onas.



So A, converges to 0 as da/du(1) converges to 0 and
converges to « as da/du(1) converges to .

The equilibrium u = 0 is stable when A < A,(a(0)) and
unstable when A > A,(a(0)).

The equilibrium u =1 is stable when A > A, and unstable
when A <A, .



Ao < A(a(0))




u =0 and u =1 linearly stable (Allee effect)

a*’(l)supvzw + r:lf"r(1)35,L113:|Vw|2 < r < A (&f((]‘))
a 0 d

dw/dn=1on 452



Direction of bifurcation fromu =0
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Allee effect via subcritical bifurcation

fQ 3dx
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Allee effect via subcritical bifurcation
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Global Bifurcation Results

Important Question That Now Arises: Can we link equilibrium
solutions that emanate from u = 0 to equilibrium solutions that
emanate fromu=17?

Whether bifurcating from u = 0 or from u = 1, we use w =uh to recast
the problem.

Functional analytic constructions needed to apply a global
bifurcation theory (Rabinowitz, Alexander-Antman, etc) are involved.

The construction involves density dependence in the boundary
conditions and needs the a priori estimates from Ladyzhenskaya and
Ural’tseva.



BIFURCATION DIAGRAM # 1
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BIFURCATION DIAGRAM # 2
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BIFURCATION DIAGRAM # 3
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