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Context (Edge Mediated Effects)

Fagan, Cantrell, and Cosner, American Naturalist 153 (1999), 
165-182

Edges can change species interactions by altering species’ 
movement patterns.

Altering species’ movement near the boundary of a habitat patch 
can change the dynamics of the species at the scale of the 

patch as a whole. 



Specific Motivation

Kuussaari

 

et al, Oikos

 

82 (1998), 384-392. 

Article reports on an empirical study of the Glanville fritillary butterfly in 
Finland. This species of butterfly cues upon conspecifics

 

and it is 
observed that individuals are less likely to leave a bush if other 

butterflies are present. Kuussaari

 

et al (1998) demonstrate that this 
behavior appears to induce an Allee

 

effect within the patch.



Glanville Fritillary Butterfly



Model to test having bistable
 

population dynamics at the 
patch level even though no such effect present in the local 

population dynamics within the patch



Notation



Allee
 

Effect

Definition: per capita growth rate increases at low 
densities

Strong Allee
 

effect: per capita growth rate is negative at 
low densities; can not invade an empty habitat

Weak Allee
 

effect: per capita growth rate is positive at 
low densities; can invade an empty habitat, but size of 

such a habitat would be bigger than with logistic 
dynamics with the same maximal per capita growth rate



Causes

Less efficient feeding (Way and Banks, Ann. Appl. Biol. 59 (1967), 
189-205)

Reduced effectiveness of anti-predator defenses (Kruuk, Behav. 
Suppl. 11 (1964), 1-29; Kenward, J. Animal Ecol. 47 (1978), 449-

 460)  

Difficulty in finding mates (Stephens and Sutherland, TREE 14 
(1999), 401-405; Boukal

 

and Berec, J. Theor. Biol. 218 (2002), 375-

 394)



Nonspatial
 

Model for an Allee
 

Effect



Remarks

In the previous slide, r > 0 and 0 < a < K.

Allee

 

effects depend upon scale. Kuussaari

 

et al (1998) are 
observing Allee

 

effects at the scale of a patch.

When passive diffusion is included as a dispersal mechanism, it 
can convert a weak Allee

 

effect at the local level into a strong 
Allee

 

effect on the population level for some patch sizes near the 
critical patch size for invasibility

 

(Cantrell and Cosner, Wiley and 
Sons, 2003). See also Jiang

 

and Shi, CRC Press, 2009, 33-61. 



Key Term in the Model : α(u)

•
 

α(u) ∊
 

[0,1] when u ∊
 

[0,1]
•

 
If α(u)=α* for all u in [0,1], α* is increasing as the fraction 
of individuals that remain in the patch upon reaching the 
boundary increases

•
 

If α*=0, all individuals that reach the boundary leave 
(Dirichlet)

•
 

If α* =1, no individuals leave the patch (Neumann)
•

 
α(u) assumed smooth and nondecreasing



The model when α(u)=α* for all u



Predictions when α(u)=α* for all u

One considers the linear eigenvalue

 

problem 



When the average rate of growth over the patch of the 
species in question at low densities (i.e., σ) is positive, 

positive solutions of the  diffusive logistic problem tend over 
time to a unique globally attracting equilibrium u(α*) which 
is positive in the patch. When this average rate of growth 
over the patch is nonpositive, all nonnegative solutions to 
the diffusive logistic problem tend to 0 over time. So the 

model has only two possible predictions : persistence via 
convergence to a globally attracting equilibrium or 

extinction.





The model when α(u) is density dependent and α(1) = 
1, so that u = 0 and u = 1 are both equilibria

Equilibria

 

are given by solutions to



Linearized
 

stability analysis

Linearization at 0 (Eqn. #1) with α* = α(0)  



Linearization at 1: (Eqn
 

#2)



u = 0 and u = 1 linearly stable





Bifurcation approach when α(0) > 0, α(1) =1 and
 dα/du(1) > 0

Equlibria

 

are the zeros of the map

where F :(-∞,∞) C2,γ(clΩ) → Cγ(clΩ) C1,γ(∂Ω) and λ = r/d ≥ 0.



The linearization about 0 is:



When λ
 

= λ1

 

(α(0)),the linearization is Fredholm
 

of index
 zero with a one dimensional eigenspace

 
spanned by the 

eigenfunction
 

in Eqn. #1. Moreover, the compatablity
 condition in the Crandall-Rabinowitz

 
local bifurcation 

theorem is met. So all nonzero equilibria
 

near (λ1

 

(α(0)),0)
 have the form (λ,u) = (λ(s),sψ

 
+ sρ(s)) with

 
λ(s) and ρ(s) 

smooth in a nbd
 

of s = 0 with λ(0) = λ1

 

(α(0)) and ρ(0) =0.
 Here λ1

 

(α(0)) ranges between λ1

 

(1) = 0 and λ1

 

(0) > 0.



To consider F(λ,u) = 0 in a nbd
 

of u = 1 we make a change 
of variables as before with w = hu, where h > 0 on the  

closure of Ω is chosen so that 

grad h * η + K h = 0 on bd
 

Ω 

with K > max{ 1, dα/du(1)}. Then w = h corresponds to u 
=1. Let w = ρ + h. Then reformulate the problem in terms of 

the variable ρ. We get a map G(λ, ρ) so that 
G(λ, ρ) = 0 iff

 
F(λ,(ρ + h)/h) = 0

 whose linearization about 0 is Fredholm
 

of index zero and 

equivalent to Eqn
 

#2



Linearization at 1: (Eqn
 

#2)



Let λ0

 

denote the principal eigenvalue
 

of Eqn
 

2. There will 
be bifurcation from 1 at all the eigenvalues

 
of Eqn

 
#2. 

However, equilibria
 

with values between 0 and 1 can only 
emanate from λ0.



Lower estimate on λ0



Upper estimate on λ0



So λ0

 

converges to 0 as dα/du(1) converges to 0 and 
converges to ∞

 
as dα/du(1) converges to ∞.

 
The equilibrium u = 0 is stable when λ

 
< λ1

 

(α(0)) and 
unstable when λ

 
> λ1

 

(α(0)). 

The equilibrium u =1 is stable when λ
 

> λ0

 

and unstable 
when λ

 
< λ0

 

.



λ0  < λ1
 

(α(0))



u = 0 and u = 1 linearly stable (Allee
 

effect)



Direction of bifurcation from u = 0



Allee
 

effect via subcritical
 

bifurcation



Allee
 

effect via subcritical
 

bifurcation



λ0  = λ1
 

(α(0)) (a)



λ0  = λ1
 

(α(0)) (b)



Global Bifurcation Results

Important Question That Now Arises: Can we link equilibrium 
solutions that emanate from u ª

 

0 to equilibrium solutions that 
emanate from u ª

 

1 ?

Whether bifurcating from u ª

 

0 or from

 

u ª

 

1, we use w =uh to recast 
the problem.

Functional analytic constructions needed to apply a global 
bifurcation theory (Rabinowitz, Alexander-Antman, etc) are involved.

The construction involves density dependence in the boundary 
conditions and needs the a priori estimates from Ladyzhenskaya

 

and 
Ural’tseva.
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