## What is the functional form of ideal free movement, and why does it matter?

Peter A. Abrams

Department of Ecology & Evolutionary Biology

University of Toronto



 Translation: How do emigration from a patch and immigration into another patch depend on biotic and abiotic conditions?

 Question: why not assume infinitely fast movement to the currently best patch?

#### This talk will:

- Review published work that shows why functional form matters
- 2. Present some **unfinished** results on evolution of the functional form

#### Framework of models

Two patches (sometimes 3)

Perfect information about present conditions in both patches

Assessing information and/or preparing to move takes time

Actual move is instantaneous

Physiological condition of individual equilibrates to new patch instantaneously

Simple Food web = 2-3 species food chain

#### **Basic Questions**

- 1. Will adaptive movement permit a closer approach to an IFD for consumer species in food chains distributed across a small number of patches (than will random movement)?
- 2. Will adaptive movement produce greater stability of food chains distributed across a small number of patches (than will random movement)?
- 3. Will evolution lead to movement rules that influence the answers to questions 1 and 2?

Answers to 1 & 2 are usually assumed to be 'yes'

More important questions: how does this affect scale transition for various community processes?

## Q1: Does adaptive movement equalize fitness?

What do we know about this question in 2-patch context with nonequivalent patches?

- 1. Perfectly adaptive movement (never move to worse patch; at least sometimes move to better patch) assures equal fitness across patches in a temporally stable system with one species and normal density dependence (Cressman and Krivan)
- Random movement with such a species assures sources and (pseudo)sinks (NOT IFD) given heterogeneous patches

Cressman et al. (2004, 2006), Abrams (2007) suggest this simple picture is not so clear in 2+species systems

# Q2: Does adaptive movement produce more stable dynamics?

- Large body of work argues that this is true for adaptive movement by top predator
  - Krivan (1997), Post et al. (2000), McCann et al. (2005), McCann and Rooney (2009)
  - Predators go where there is more abundant prey, reducing areas of high prey density
- BUT, other models have argued that adaptive top predator movement can amplify cycles (various Abrams papers...)

# Abrams 2007 AmNat: Local Allee Effects often preclude IFDs and generate asynchronous fluctuations

- Local Allee Effects implied by any advantages to aggregation
  - mate choice
  - social information
  - collective 'ecosystem engineering'
  - collective defense
- Local Allee Effects for prey implied by 'type-2' predator responses
  - satiation implies that risk from a given predator individual decreases when it has had more to eat

#### A caveat

"Thus, although we find conclusive evidence for Allee effects due to a variety of mechanisms in natural populations of 59 animal species, we also find that existing data addressing the strength and commonness of Allee effects across species and populations is limited..."

-Kramer, Dennis, Liebhold, Drake, 2009

# Predator-prey-resource model with two habitats and adaptive movement between habitats by one or both consumers

Patch 1
Patch 2

P
R
R

Metacommunity: 3 sp food chain; 2 patches

- •Black arrows: fitness-related movements
- Red arrows: random movement

#### Dynamics of prey species in patch 1 of a 2patch system (Abrams 2007)

$$\frac{dN_1}{dt} = N_1 \left( \frac{BC_1 R_1}{1 + C_1 H R_1} - D_1 - \frac{S_1 P_1}{1 + S_1 T N_1} \right) \pm movement$$

Consumption of resource: CR/(1 + CHR); converted to new prey with efficiency B
'Handling time' - H for prey and T for predator
Per individual death rate within patch i is D<sub>i</sub>;
Consumption by predators at total rate SPN/(1 + STN)

Per capita emigration from patch 1 for predator and prey have form:  $C_1 \text{Exp}[C_2(w_2 - w_1)]$ , where  $C_1$  is baseline movement;  $C_2$  is sensitivity of movement to fitness

Prey parameters are  $C_1 = m$ ;  $C_2 = \lambda$ ; predator parameters are  $m_2$  and  $\gamma$ 

$$\frac{dR_{\rm l}}{dt} = \, g_{\rm l}(R_{\rm l}) \, - \, N_{\rm l} \frac{C_{\rm l}R_{\rm l}}{1 \, + \, C_{\rm l}HR_{\rm l}} - \, m_{\rm R}R_{\rm l} + \, m_{\rm R}R_{\rm 2}, \label{eq:dRl}$$

$$\frac{dR_2}{dt} = g_2(R_2) - N_2 \frac{C_2 R_2}{1 + C_2 H R_2} + m_R R_1 - m_R R_2.$$

$$\begin{split} \frac{dN_1}{dt} &= N_1 \!\! \left( \!\! \frac{BC_1R_1}{1 + C_1HR_1} - D_1 - \!\! \frac{S_1P_1}{1 + S_1TN_1} \!\! \right) \\ &- m_N N_1 \exp\left[\lambda (W_2 - W_1)\right] + m_N N_2 \exp\left[\lambda (W_1 - W_2)\right], \\ \frac{dN_2}{dt} &= N_2 \!\! \left( \!\! \frac{BC_2R_2}{1 + C_2HR_2} - D_2 - \!\! \frac{S_2P_2}{1 + S_2TN_2} \!\! \right) \\ &+ m_N N_1 \exp\left[\lambda (W_2 - W_1)\right] - m_N N_2 \exp\left[\lambda (W_1 - W_2)\right]. \end{split}$$

$$\begin{split} \frac{dP_{\rm l}}{dt} &= P_{\rm l} \!\! \left( \!\! \frac{ES_1N_1}{1 + S_1TN_1} \! - d_1 \!\! \right) \!\! - m_{\rm P} P_{\rm l} \exp\left[ \gamma(W_2 - W_1) \right] \\ &+ m_{\rm P} P_2 \exp\left[ \gamma(W_1 - W_2) \right], \\ \frac{dP_2}{dt} &= P_2 \!\! \left( \!\! \frac{ES_2N_2}{1 + S_2TN_2} \!\! - d_2 \!\! \right) \!\! + m_{\rm P} P_1 \exp\left[ \gamma(W_2 - W_1) \right] \\ &- m_{\rm P} P_2 \exp\left[ \gamma(W_1 - W_2) \right]. \end{split}$$

SYSTEM WITH 2 EQUIVALENT PATCHES & COMPLETE KNOWLEDGE OF OTHER PATCH; CONSTANT R, N, P: Movement only by prey. When fitness sensitivity,  $\lambda$ , becomes large enough for some aggregation, degree of aggregation increases rapidly with further increases in  $\lambda$ 



x = fraction in patch 1

- 1. x = 1/2 means that within-patch fitnesses are equal
- 2.  $x \cong 1$  or  $x \cong 0$  fitnesses unequal

## Dynamics of full system: See Abrams 2007 AmNat for more

- High enough sensitivity of prey movement to fitness produces cycles by two mechanisms:
  - Prey aggregate in one patch predators move in –
    prey aggregate in the other patch predators move
    there, etc. ("predator chase" cycles)
  - 2. Prey aggregate in one patch- predators don't move (much), BUT either resources get depleted or the local predator population grows prey eventually move resource recovers in original patch prey move back, etc. ("resource depletion" cycles)

#### I. Cycles are likely when:

- (1) total predator density is large enough
- (2) predator handling time and prey population density are intermediate
- (3) the prey's movement is sufficiently sensitive to fitness differences; ('no errors' model almost guarantees cycles)
- (4) the parameters of the system do not make one habitat much more favorable than the second for either predator or prey
- (5) the predator isn't too much better/faster at habitat selection than is the prey
- (6) prey do not make 'group decisions'

#### Example of full 3-level, 2 patch system with prey and predator moving: unstable R-N subsystem: $r_1 = 1.25$ ; $r_2 = 0.75$





An example of very complex dynamics that occur with adaptive movement of predator and prey

(appendix: Abrams 2007 AmNat)

### Is this an artifact of 2-patches? 3-patch system; emigration based only on current patch quality; $r_1 = 1.5$ ; $r_2 = 1$ ; $r_3 = 0.5$



Patch 1 solid line; Patch 2 short dashed line; Patch 3 long dashed line.

System has fixed predator densities; Immigration is random

Is stable with random emigration at rate m = 0.2;  $N_1 = 1.47$ ,  $N_2 = 0.99$ ,  $N_3 = 0.67$ 

### Eco-evo consequences of cycles driven by patch choice with conspecific attraction

- 1. (Often) stabilization of system-wide dynamics in spite of local instability; (Sometimes) destabilization or increased amplitude of cycles
- 2. System does not approach IFD
- 3. Effects of system-wide fertilization are very different with adaptive habitat choice by prey
  - 1. Can reduce predator abundance
  - 2. Can stabilize food chain
- 4. Response of predator to system-wide harvesting is very different with adaptive habitat choice by prey (some results later in this talk)
- 5. Exploitation of resources by consumer varies in time, changing selection on exploitation and life history characters at all levels (plausible speculation)
  - i.e., nonspatial theory is often not good enough

## BUT, is the movement function actually adaptive (or as adaptive as it could be)?

- "Smarter" strategies seem more reasonable
  - Move more readily if local fitness is declining and less readily if local fitness is increasing—But, these are only beneficial when  $w_1 \approx w_2$ , and the resulting advantage is small in these cases
  - Never move to a poorer patch—this is considered in later slides
- Strategies based on species other than predator or prey perform poorly (resource tracking always loses in competition to fitness tracking)
- Costly movement is the norm would this change the results?

# Preliminary (undigested) results on three related issues

- What sort of movement rule is favored by evolution?
- How do the movement parameters of one movement rule evolve, and how is this altered by a survival cost to movement?
- How does adaptive habitat choice change the response to harvesting of the top predator in a food chain? (two particular scaling up questions)

#### Two movement functions

Number of species i leaving habitat 1 per unit time is:

- 1.  $m_i N_{i1} Exp[\lambda(w_{i2} w_{i1})]$ , or
- 2.  $m_i N_{i1} H(w_{i2} w_{i1}) \{ Exp[\lambda(w_{i2} w_{i1})] 1 \}$ , where H is the Heaviside theta function (unit step function)
- In first case,  $\lambda = 0$  implies movement is insensitive to fitness; m is rate of movement with no fitness difference and also scales how movement rate increases with prospective fitness gain
- In the second case  $\lambda = 0$  implies no movement; m scales the movement rate to prospective fitness gain; movement approaches zero as  $w_1$  approaches  $w_2$

#### Comparison of perfect and imperfect



Habitat 1 fitness (habitat 2 fitness = 0.5)

# What happens when these compete?: numerical results for a few C-R systems from dual invasion analysis & simulations

- Results when asynchrony is due to consumerresource cycles with between-patch differences in resource growth (r and k)
- 1. With equal m and equal  $\lambda$ , the two strategies coexist; imperfect mover is more abundant.
- 2. Higher  $\lambda$  is favored in the imperfect lineage; causes relative abundance of the lineage to increase
- 3. Lower  $\lambda$  favored in the perfect lineage: Relative abundance of perfect mover INCREASES (!) as its  $\lambda$  (or m or both) decrease—it dominates the more productive patch but is almost absent from the second patch

# Results when asynchrony is due to anti-phase environmental forcing in two otherwise equivalent patches

- 1. Perfect lineage is excluded with equivalent parameters that include a moderate or large  $\lambda$
- 2. Many-fold advantage in  $\lambda$  or m for the perfect lineage required to get coexistence; large enough advantage will produce exclusion of the imperfect type
- 3. Coexistence of non-mover and mover appears to be very difficult or impossible
- 4. Coexistence of types with similar parameters is easier when environmental phase difference is relatively small

### Same type of analysis for competition between two (or 3) 'perfect' lineages

- larger  $\lambda$  and larger m are favored over slightly smaller values
- If a type with a larger  $\lambda$  has a smaller m, coexistence usually does not occur, and fitness is more sensitive to  $\lambda$  than to m
- A type with m or  $\lambda$  very close to zero can coexist stably with a high m-,  $\lambda$ -type by persisting in the high r/K patch (often at similar densities to the mover). In such a dimorphic state
  - the density of nonmover declines very rapidly as m or  $\lambda$  increases above 0
  - Relative density of fast mover declines (!) as its  $\lambda$  increases, even though larger  $\lambda$  is favored (replaces smaller  $\lambda$ )

# Results of simulations with imperfect (exponential) function: competition between movement strategies, no cost of movement

- Case 1: types differ in baseline movement, m or sensitivity,  $\lambda \to \text{Higher fitness sensitivity } \lambda$  always favoured
  - Several outcomes of selection on m:
  - 1. low  $\lambda$ , each patch stable in isolation: m = 0 favoured
  - 2. low  $\lambda$ , more productive patch unstable in isolation:
    - Low movement produces instability; this selects for larger m
    - BUT, large enough m stabilizes system, leading to selection for smaller m; usually get a polymorphism with some m above and some below stability threshold
  - 3. large  $\lambda$ ; resource depletion cycles in each patch when isolated
    - Selection for ever larger m (becomes weaker as m grows)
  - 4. Other outcomes probably occur

## Case 2: Same as case 1, but with survival cost of movement

- Selection still favours largest possible λ;
- Selection usually favours intermediate m when movement costs are moderate
- Selection can produce many possible outcomes when costs are high
  - 1. Dimorphism of m = 0 and a positive m, when within-patch dynamics are cyclic
  - 2. Dimorphism as in #1 or zero movement, depending on initial conditions.
    - Movers can be excluded if non-movers are initially abundant, because there are no cycles and equal fitnesses in both patches; movers pay cost with no benefit
    - Nonmovers excluded if movers generate large local cycles
    - Non-mover often restricted to better patch {one-way priority effect can occur where abundant non-mover can exclude mover, but not vice versa}

Example of mover – nonmover polymorphism (60% mortality with each dispersal event); 'imperfect' movers





'Movers' in patch 1 (blue-dotted line; high r patch) and 2 (red dashed line; low r patch)

 $\lambda = 10$ ; m = 0.175

'Nonmovers'; almost all in patch 1

 $\lambda = 10$ ; m = 0.000001

### More analysis needed!

# Response of mean total predator density to increased per capita mortality in various 3-level systems with adaptive movement

System has identical patches; 'perfect' movement function

Case 1: No movement of higher trophic levels; low random movement of resource

Case 2: Adaptive predator movement; no prey movement; low random resource movement



Per Capita Mortality, d

## More graphs of predator population vs. per capita mortality in the 2-patch system

Case 3: Adaptive prey movement; no predator movement; low random resource movement

Case 4: Adaptive movement of predator and prey; low random resource movement



#### Does adaptive predator movement stabilize the system?

Predator CV vs. mortality Prey CV vs. mortality

only prey adaptive





both consumers adaptive





### Predator dynamics of the 4 cases for one parameter set (patch 2 dashed)

random R only



plus adaptive prey



plus adaptive predator



plus adaptive predator & prey



# Summary: In spite of complicated and incomplete results...

- Dynamics and system level attributes can be changed greatly by adaptive movement between patches
- Complex dynamics and polymorphism of movement traits likely to be common
- Coexistence of spatially restricted slowmovers and widely distributed rapidmovers is likely to be common

#### Returning to Original Questions

- 1. Will adaptive movement permit a closer approach to an IFD for consumer species in food chains distributed across a small number of patches (than will random movement)? often not in systems with fluctuations
- 2. Will adaptive movement produce greater stability of food chains distributed across a small number of patches (than will random movement)? often not in systems with fluctuations
- 3. Will evolution lead to movement rules that influence the answers to questions 1 and 2?

Answer to 3: yes, but exactly how is unclear

#### **Some Remaining Theoretical Questions:**

- 1. What strategies prevail, given larger array of patches and movement-types when movement is costly?
- 2. How does adaptive predator movement affect evolution of adaptive movement strategies in prey?
- 3. What is the impact of uncertain knowledge of conditions?
- 4. What are effects of linkages or tradeoffs in parameters?

#### **Some Remaining Empirical Questions:**

- 1. What are the dynamics of habitat choice behaviours?
- 2. Does adaptive movement with local Allee Effects explain any (many) observed non-ideal distributions?
- 3. How does adaptive movement change the dynamics of metacommunities?

Any consideration of (mutual) adaptive movements of interacting species would be an advance

2005, University of Chicago Press



#### METACOMMUNITIES

Spatial Dynamics and Ecological Communities

Marcel Holyoak, Mathew A. Leibold, and Robert D. Holt