Equivariant map algebras

Alistair Savage

University of Ottawa

SOGG Workshop, Toronto October 3, 2009

Joint work with Erhard Neher and Prasad Senesi

Slides: www.mathstat.uottawa.ca/~asavag2

Full details: arXiv:0906.5189

Outline

Goal: Classify the irreducible finite-dimensional representations of a certain class of Lie algebras.

Overview:

- Equivariant map algebras
- ② Examples
- Second Second
- Olassification theorem
- O Applications
 - recover some known classifications (often in a simplified manner)
 - produce some new classifications

Terminology:

small = irreducible finite-dimensional

(Untwisted) Map algebras

Notation

- k algebraically closed field of characteristic zero
- X scheme (or algebraic variety) over k
- $\Gamma = \Gamma_X = \mathcal{O}_X(X)$ coordinate ring of X
- \mathfrak{g} finite-dimensional Lie algebra over k

Definition (Untwisted map algebra)

 $M(X, \mathfrak{g}) =$ Lie algebra of regular maps from X to \mathfrak{g}

Pointwise multiplication:

$$[\alpha,\beta]_{M(X,\mathfrak{g})}(x) = [\alpha(x),\beta(x)]_{\mathfrak{g}} \text{ for } \alpha,\beta \in M(X,\mathfrak{g})$$

Note: $M(X, \mathfrak{g}) \cong \mathfrak{g} \otimes \Gamma_X$

Examples

Discrete spaces

If X is a discrete variety, then

$$M(X,\mathfrak{g})\cong\prod_{x\in X}\mathfrak{g},\quad lpha\mapsto (lpha(x))_{x\in X},\quad lpha\in M(X,\mathfrak{g}).$$

In particular, if $X = \{x\}$ is a point, then

$$M(X,\mathfrak{g})\cong\mathfrak{g},\quad lpha\mapsto(lpha(x)),\quad lpha\in M(X,\mathfrak{g}).$$

The isomorphisms are given by evaluation.

Current algebras

$$X = k^n \implies \Gamma_X = k[t_1, \ldots, t_n]$$

Thus, $M(X, \mathfrak{g}) \cong \mathfrak{g} \otimes k[t_1, \ldots, t_n]$ is a current algebra.

Untwisted multiloop algebras

$$X = (k^{\times})^n \implies \Gamma_X = k[t_1^{\pm 1}, \dots, t_n^{\pm 1}]$$

Thus,

$$M(X,\mathfrak{g})\cong\mathfrak{g}\otimes k[t_1^{\pm 1},\ldots,t_n^{\pm 1}]$$

is the untwisted multiloop algebra.

If n = 1, this is called the untwisted loop algebra and plays an important role in the theory of (untwisted) affine Lie algebras.

Examples

Three point algebras

$$X = k \setminus \{0, 1\} = \mathbb{P}^1 \setminus \{0, 1, \infty\}$$
$$\implies \Gamma_X \cong k[t, t^{-1}, (t-1)^{-1}]$$

Thus,

$$M(X,\mathfrak{sl}_2)\cong\mathfrak{sl}_2\otimes k[t,t^{-1},(t-1)^{-1}]$$

is the three point \mathfrak{sl}_2 loop algebra.

Remarks

- Removing any 2 points from k results in an isomorphic map algebra.
- $M(X, \mathfrak{sl}_2)$ is isomorphic to the tetrahedron Lie algebra and to a direct sum of 3 copies of the Onsager algebra (Hartwig-Terwilliger 2007).

Equivariant map algebras

• G - finite group

• Suppose G acts on X and \mathfrak{g} by automorphisms

Definition (equivariant map algebra)

The equivariant map algebra is the Lie algebra of *G*-equivariant maps from X to \mathfrak{g} :

$$M(X,\mathfrak{g})^{G} = \{ \alpha \in M(X,\mathfrak{g}) : \alpha(g \cdot x) = g \cdot \alpha(x) \ \forall \ x \in X, \ g \in G \}$$

Note: If X is any scheme, then $M(X, \mathfrak{g})^G \cong M(X_{\text{aff}}, \mathfrak{g})^G$ where $X_{\text{aff}} = \text{Spec } \Gamma_X$ is the affine scheme with the same coordinate ring as X. So we often assume X is affine.

Equivariant map algebras – algebraic description

• Induced action on Γ_X given by

$$(g \cdot f)(x) = f(g^{-1} \cdot x), \quad f \in \Gamma_X, \quad x \in X, \quad g \in G$$

• *G* acts diagonally on $\mathfrak{g} \otimes \Gamma_X$:

$$g \cdot (u \otimes f) = (g \cdot u) \otimes (g \cdot f)$$

Then

$$M(X,\mathfrak{g})^{\mathsf{G}}\cong (\mathfrak{g}\otimes \mathsf{F}_X)^{\mathsf{G}}$$

Example: Trivial G-action on \mathfrak{g}

If G acts trivially on \mathfrak{g} , then

$$M(X,\mathfrak{g})^{G}\cong M(X/\!/G,\mathfrak{g})\cong\mathfrak{g}\otimes\Gamma_{X}^{G}$$

where $X//G = \operatorname{Spec} \Gamma_X^G$ is the quotient of X by G.

Thus $M(X, \mathfrak{g})^G$ is isomorphic to an untwisted map algebra.

Example: multiloop algebras

$$G = \mathbb{Z}_{m_1} \times \cdots \times \mathbb{Z}_{m_n}, \quad X = (k^{\times})^n$$

For i = 1,..., n, let ξ_i be a primitive m_i-th root of unity.
Define action of G on X by

$$(a_1,\ldots,a_n)\cdot(z_1,\ldots,z_n)=(\xi_1^{a_1}z_1,\ldots,\xi_n^{a_n}z_n)$$

 Define action of G on g by specifying commuting automorphisms σ_i, i = 1,..., n, such that σ_i^{m_i} = 1.

Then $M(X, \mathfrak{g})^G$ is the (twisted) multiloop algebra.

If n = 1, this is the (twisted) loop algebra.

Affine Lie algebras

The affine Lie algebras can be constructed as central extensions of loop algebras plus a differential:

$$\widehat{\mathfrak{g}} = M(X, \mathfrak{g})^{G} \oplus kc \oplus kd \qquad (n = 1)$$

Example: generalized Onsager algebra

$$G = \mathbb{Z}_2 = \{1, \sigma\}, \quad X = k^{\times}, \quad \mathfrak{g} = \text{simple Lie algebra}$$

• G acts on X by
$$\sigma \cdot x = x^{-1}$$

• G acts on g by any involution

When G acts on \mathfrak{g} by the Chevalley involution, we write

$$\mathfrak{O}(\mathfrak{g})=M(X,\mathfrak{g})^G$$

Remarks

If k = C, O(sl₂) is isomorphic to the Onsager algebra (Roan 1991)
Key ingredient in Onsager's original solution of the 2D Ising model

• For $k = \mathbb{C}$, $\mathcal{O}(\mathfrak{sl}_n)$ was studied by Uglov and Ivanov (1996)

Evaluation

If $\mathbf{x} = (x_1, \dots, x_n) \subseteq X$, we have the evaluation map $ev_{\mathbf{x}} : M(X, \mathfrak{g})^G \to \mathfrak{g}^{\oplus n}, \quad \alpha \mapsto (\alpha(x_1), \dots, \alpha(x_n))$

Important: This map is not surjective in general! For $x \in X$, define

$$G_{x} = \{g \in G : g \cdot x = x\}$$
$$g^{x} = \{u \in g : G_{x} \cdot u = u\}$$

Lemma

For
$$\mathbf{x} = (x_1, \dots, x_n) \in X^n$$
, $x_i \notin G \cdot x_j$ for $i \neq j$,

$$\mathsf{im}\,\mathsf{ev}_{\mathsf{x}}=\mathfrak{g}^{\mathsf{x}_1}\oplus\cdots\oplus\mathfrak{g}^{\mathsf{x}_n}$$

Alistair Savage (Ottawa)

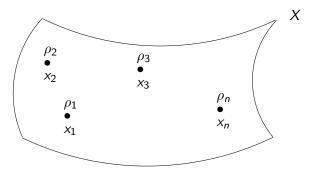
Given

• $\mathbf{x} = \{x_1, \dots, x_n\} \subseteq X$, and

• representations $\rho_i : \mathfrak{g}^{\mathsf{x}_i} \to \mathsf{End}_k \ V_i, \ i = 1, \dots, n$

we define the (twisted) evaluation representation as the composition

$$M(X,\mathfrak{g})^G \xrightarrow{\operatorname{ev}_{\mathsf{x}}} \oplus_i \mathfrak{g}^{\mathsf{x}_i} \xrightarrow{\otimes_i \rho_i} \operatorname{End}_k(\otimes_i V_i).$$



Important remarks

This notion of evaluation representation differs from the classical definition.

- Some authors use the term evaluation representation only for the case when evaluation is at a single point and call the general case a tensor product of evaluation representations.
- To a point x ∈ X, we associate a representation of g^x instead of g. If G acts freely, this coincides with the usual definition.
- Recall that (when g^x ⊊ g) not all reps of g^x extend to reps of g so the new definition is more general.
- We do not require the representations ρ_i to be faithful.

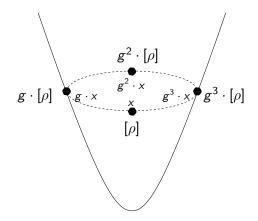
We will see that the more general definition allows for a more uniform classification of representations.

 $\mathcal{R}_x = \{\text{isomorphism classes of small reps of } \mathfrak{g}^x\}$ $\mathcal{R}_X = \bigsqcup_{x \in X} \mathcal{R}_x$ Since $G_{g \cdot x} = gG_xg^{-1}$, we have $g \cdot \mathfrak{g}^x = \mathfrak{g}^{g \cdot x}$

We have an action of G on \mathcal{R}_X : if $[\rho] \in \mathcal{R}_x$, then $g \cdot [\rho] = [\rho \circ g^{-1}] \in \mathcal{R}_{g \cdot x},$

Definition (\mathcal{F}) \mathcal{F} is set of all $\Psi : X \to \mathcal{R}_X$ such that (a) Ψ is *G*-equivariant, (a) $\Psi(x) \in \mathcal{R}_x$ for all $x \in X$, and (b) $\sup \Psi = \{x \in X : \Psi(x) \neq 0\}$ is finite.

We think of $\Psi \in \mathcal{F}$ as assigning a finite number of (isom classes of) reps of \mathfrak{g}^x to points $x \in X$ in a *G*-equivariant way.



For each $\Psi \in \mathcal{F}$, define

$$\mathsf{ev}_{\Psi} = \mathsf{ev}_{\mathsf{x}}(\Psi(x_i))_{i=1}^n = \mathsf{ev}_{x_1} \, \Psi(x_1) \otimes \cdots \otimes \mathsf{ev}_{x_n} \, \Psi(x_n)$$

where $\mathbf{x} = (x_1, \dots, x_n)$ is an *n*-tuple of points of X containing one point from each G-orbit in supp Ψ (the isom class is independent of this choice).

For $\Psi \in \mathcal{F}$, ev_{Ψ} is the isomorphism class of a small representation of $M(X, \mathfrak{g})^G$.

Proposition

The map

$$\mathcal{F} \longrightarrow \{ \textit{isom classes of small reps of } M(X, \mathfrak{g})^G \}, \quad \Psi \mapsto \mathrm{ev}_\Psi$$

is injective.

One-dimensional representations

Recall: Any 1-dimensional rep of a Lie algebra *L* corresponds to a linear map $\lambda : L \to k$ such that $\lambda([L, L]) = 0$.

We identify such 1-dimensional reps with elements

 $\lambda \in (L/[L,L])^*$

Two 1-dimensional reps are isomorphic if and only if they are equal as elements of $(L/[L, L])^*$.

Classification Theorem

Theorem (Neher-S.-Senesi 2009)

Suppose G is a finite group acting on an affine scheme (or variety) X and a finite-dimensional Lie algebra \mathfrak{g} . Let $\mathfrak{M} = M(X, \mathfrak{g})^G$.

Then the map

$$(\lambda,\Psi)\mapsto\lambda\otimes {\sf ev}_{\Psi},\quad\lambda\in ({\mathfrak M}/[{\mathfrak M},{\mathfrak M}])^*,\quad\Psi\in {\mathcal F}$$

gives a surjection

 $(\mathfrak{M}/[\mathfrak{M},\mathfrak{M}])^* \times \mathcal{F} \twoheadrightarrow \{ \text{isom classes of small representations of } \mathfrak{M} \}$

In particular, all small representations are of the form

 $(1-dim rep) \otimes (evaluation rep).$

Alistair Savage (Ottawa)

Classification – Remarks

 $(\lambda,\Psi)\mapsto\lambda\otimes {\sf ev}_\Psi,\quad\lambda\in ({\mathfrak M}/[{\mathfrak M},{\mathfrak M}])^*,\quad\Psi\in {\mathcal F}$

This map is not injective in general since we can have nontrivial evaluation reps which are 1-dimensional. This happens when g^x is not perfect (e.g. reductive but not semisimple).

Example: $\mathfrak{g} = \mathfrak{sl}_2$, $G = \mathbb{Z}_2$, $X = k = \mathbb{C}$

- G acts on \mathfrak{g} by the Chevalley involution.
- G acts on X by multiplication by -1.
- Then $\mathfrak{g}^0 = \mathfrak{g}^G$ is one-dimensional and so has nontrivial 1-dim reps.
- **2** However, we can specify precisely when $\lambda \otimes ev_{\Psi} \cong \lambda' \otimes ev_{\Psi'}$.
- Solution of the map to either factor is injective.

Classification

$$(\lambda,\Psi)\mapsto\lambda\otimes {\sf ev}_{\Psi},\quad\lambda\in ({\mathfrak M}/[{\mathfrak M},{\mathfrak M}])^*,\quad\Psi\in {\mathcal F}$$

Corollary

9 If \mathfrak{M} is perfect (i.e. $\mathfrak{M} = [\mathfrak{M}, \mathfrak{M}]$), then we have a bijection

 $\mathcal{F} \leftrightarrow \{ \text{isom classes of small reps} \}, \quad \Psi \mapsto ev_{\Psi} \,.$

In particular, all small reps are evaluation reps.

2 If $[\mathfrak{g}^G, \mathfrak{g}] = \mathfrak{g}$, then \mathfrak{M} is perfect and the above bijection holds.

If G acts on g by diagram automorphisms, then [g^G, g] = g and the above bijection holds.

Note: Being perfect is not a necessary condition for the all small reps to be evaluation reps (as we will see).

Alistair Savage (Ottawa)

Equivariant map algebras

Application: untwisted map algebras

If G is trivial, then

$$M(X,\mathfrak{g})^G = M(X,\mathfrak{g}), \quad \mathfrak{g}^G = \mathfrak{g}$$

Thus, if \mathfrak{g} is perfect,

$$[\mathfrak{g}^{G},\mathfrak{g}]=[\mathfrak{g},\mathfrak{g}]=\mathfrak{g}$$

and so all small reps are evaluation reps.

Application: multiloop algebras

Corollary

If ${\mathfrak M}$ is a (twisted) multiloop algebra, then ${\mathfrak M}$ is perfect and so we have a bijection

```
\mathcal{F} \leftrightarrow \{ \textit{isom classes of small reps} \}, \quad \Psi \mapsto ev_{\Psi} \,.
```

In particular, all small reps are evaluation reps.

Remarks

- This recovers results of Chari-Pressley (for loop algebras) and Batra, Lau (multiloop algebras), but with a different description.
- The description given above (in terms of *F*) gives a simple and uniform description of the somewhat technical conditions appearing in previous classifications.
- 3 Action of G on X is free and so $\mathfrak{g}^{x} = \mathfrak{g}$ for all $x \in X$. So the more general notion of evaluation rep does not play a role.

Application: generalized Onsager algebra

$$G = \mathbb{Z}_2 = \{1, \sigma\}, \quad X = k^{\times}, \quad \mathfrak{g} = \text{simple Lie algebra}$$

•
$$G$$
 acts on X by $\sigma \cdot x = x^{-1}$

• G acts on g by any involution

Corollary

With G, X, \mathfrak{g} as above, we have a bijection

 $\mathcal{F} \leftrightarrow \{ \text{isom classes of small reps} \}, \quad \Psi \mapsto ev_{\Psi} .$

In particular, all small reps are evaluation reps.

Remarks - generalized Onsager algebra

• There are two types of points of X:

$$\blacktriangleright x \in \{\pm 1\} \implies G_x = G = \mathbb{Z}_2, \ \mathfrak{g}^x = \mathfrak{g}^G$$

$$\blacktriangleright x \notin \{\pm 1\} \implies G_x = \{1\}, \ \mathfrak{g}^x = \mathfrak{g}$$

 $\bullet \ \mathfrak{g}^{G}$ can be semisimple or have a one-dimensional center

When \mathfrak{g}^{G} has a one-dimensional center:

- the generalized Onsager algebra is not perfect
- \bullet we can place (nontrivial) one-dim reps of $\mathfrak{g}^{\textit{G}}$ at the points ± 1
- under our more general definition of evaluation rep, all small reps are evaluation reps
- under classical notion of evaluation rep, there are small reps which are not evaluation reps

Moral: The more general definition of evaluation rep allows for a more uniform classification.

Special case: Onsager algebra

• When $k = \mathbb{C}$ and G acts on $\mathfrak{g} = \mathfrak{sl}_2$ by the Chevalley involution, then

$$\mathfrak{O}(\mathfrak{sl}_2) \stackrel{\mathsf{def}}{=} M(X, \mathfrak{sl}_2)^G$$

is the Onsager algebra

- $\mathfrak{g}^{\{\pm 1\}}$ is one-dimensional abelian and $\mathfrak{O}(\mathfrak{sl}_2)$ is not perfect.
- Small reps of $O(\mathfrak{sl}_2)$ were classified previously (Date-Roan 2000)
 - classical definition of evaluation rep was used
 - not all small reps were evaluation reps
 - this necessitated the introduction of the type of a representation

Note: For the other cases, the classification seems to be new.

Application: a nonabelian example

$$G=S_3, \quad X=\mathbb{P}^1\setminus\{0,1,\infty\}, \quad \mathfrak{g}=\mathfrak{so}_8 \quad (ext{type } D_4)$$

- symmetry group of Dynkin diagram of \mathfrak{g} is S_3
- so G acts on \mathfrak{g} by diagram automorphisms
- for any permutation of the set $\{0,1,\infty\},$ $\exists !$ homography of \mathbb{P}^1 inducing that permutation
- so G acts naturally on X

Thus we can form the equivariant map algebra $M(X, \mathfrak{g})^G$ and show that it is perfect.

Our classification tells us all small reps are eval reps and gives a bijection between these and the set \mathcal{F} .

Alistair Savage (Ottawa)

Equivariant map algebras

Application: a nonabelian example

It is straightforward to find the points with nontrivial stabilizer:

$$\begin{tabular}{|c|c|c|c|c|} \hline x & G_x & Type \ of \ \mathfrak{g}^x \\ \hline -1 & \{\mathsf{Id},(0\,\infty)\}\cong\mathbb{Z}_2 & B_3 \\ 2 & \{\mathsf{Id},(1\,\infty)\}\cong\mathbb{Z}_2 & B_3 \\ \frac{1}{2} & \{\mathsf{Id},(0\,1)\}\cong\mathbb{Z}_2 & B_3 \\ e^{\pm\pi i/3} & \{\mathsf{Id},(0\,1\,\infty),(0\,\infty\,1)\}\cong\mathbb{Z}_3 & G_2 \\ \hline \end{tabular}$$

The sets

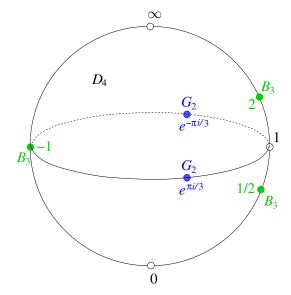
$$\left\{-1,2,\frac{1}{2}\right\} \quad \text{and} \quad \left\{e^{\pi i/3},e^{-\pi i/3}\right\}$$

are G-orbits.

So elements of $\mathcal F$ can assign

- irreps of type B_3 to the 3-element orbit
- irreps of type G_2 to the 2-element orbit
- irreps of type D_4 to the other points (6-element orbits)

Application: a nonabelian example



Question

Question

When are all small representations evaluation representations?

We have seen

- perfect (i.e. $\mathfrak{M} = [\mathfrak{M}, \mathfrak{M}]) \implies$ all small reps are eval reps
- the converse is not true (e.g. the Onsager algebra)

Reduction

Since all reps are of the form

 $(1\text{-dim rep}) \otimes (\text{eval rep})$

it suffices to know when there are one-dimensional reps that are not evaluation reps.

Definition

$$\tilde{X} = \{x \in X \mid \mathfrak{g}^x \neq [\mathfrak{g}^x, \mathfrak{g}^x]\}$$

Recall

 $\mathfrak{g}^x = [\mathfrak{g}^x, \mathfrak{g}^x] \iff$ all one-dimensional reps of \mathfrak{g}^x are trivial

Thus, \tilde{X} is precisely the set of points where we can place nontrivial one-dimensional evaluation representations.

Proposition (Neher-S-Senesi 2009)

If X is a Noetherian scheme (i.e. Γ is finitely generated) and $|\tilde{X}| = \infty$, then $M(X, \mathfrak{g})^G$ has one-dimensional representations that are not evaluation representations.

Alistair Savage (Ottawa)

Equivariant map algebras

Example

$$G = \mathbb{Z}_2 = \{1, \sigma\}, \quad X = k^2, \quad \mathfrak{g} = \mathfrak{sl}_2(k)$$

•
$$\sigma \cdot (x_1, x_2) = (x_1, -x_2), (x_1, x_2) \in k^2$$

 $\bullet \ \sigma$ acts as Chevalley involution on $\mathfrak g$

Then

•
$$x = (x_1, x_2) \in k^2$$
, $x_2 \neq 0 \implies G_x = \{1\} \implies \mathfrak{g}^x = \mathfrak{g}$
• $x = (x_1, 0) \in k^2 \implies G_x = G \implies \mathfrak{g}^x = \mathbb{C}$ (abelian)

Thus

$$ilde{X} = \{(x_1,0) \mid x_1 \in k\} \quad \text{and so} \quad | ilde{X}| = \infty.$$

Therefore $M(X, \mathfrak{g})^G$ has one-dimensional reps that are not eval reps.

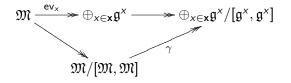
Question

 $|\tilde{X}| < \infty$ is a necessary condition for all small reps to be eval reps.

Is it sufficient?

Answer: NO

Let \mathbf{x} be a finite subset of X and consider the commutative diagram:



Theorem

If $|\tilde{X}| < \infty$, then

$$(\lambda, \Psi) \mapsto \lambda \otimes \operatorname{ev}_{\Psi}, \quad \lambda \in (\ker \gamma)^*, \quad \Psi \in \mathcal{F},$$

is a bijection

$$(\ker \gamma)^* \times \mathcal{F} \longleftrightarrow \{\text{isom classes of small reps}\}$$

Corollary

If $|\tilde{X}| < \infty$, all small reps are eval reps if and only if ker $\gamma = 0$. This is true if and only if

$$[\mathfrak{M},\mathfrak{M}] = \mathfrak{M}^d := \{ \alpha \in \mathfrak{M} \mid \alpha(x) = [\mathfrak{g}^x, \mathfrak{g}^x] \; \forall \; x \in X \}.$$

Note: $[\mathfrak{M}, \mathfrak{M}] \subseteq \mathfrak{M}^d$ is always true.

Example: $| ilde{X}| < \infty$ with small reps that are not eval reps

•
$$\mathfrak{g} = \mathfrak{sl}_2(k)$$

• $X = Z(x^2 - y^3) = \{(x, y) \mid x^2 = y^3\} \subseteq k^2$
• So $\Gamma = k[x, y]/(x^2 - y^3)$
• $G = \mathbb{Z}_2 = \{1, \sigma\}$
• $\sigma \cdot (x, y) = (-x, y)$

- This action fixes $x^2 y^3$ and so induces an action of G on X.
- Only fixed point is the origin.

• Thus
$$ilde{X} = \{0\}$$
 and so $| ilde{X}| < \infty$

Then one can easily show that

$$\mathfrak{M}^d/[\mathfrak{M},\mathfrak{M}]\cong yk[y]/(y^3)\neq 0$$

Thus $[\mathfrak{M}, \mathfrak{M}] \subsetneq \mathfrak{M}^d$ and so \mathfrak{M} has small reps that are not eval reps. Note: X has a singularity at 0.

Further directions (work in progress)

- The category of finite-dimensional representations of an equivariant map algebra is not semisimple in general.
- Can one describe the finite-dimensional representations (not necessarily irreducible)?
 - (twisted) Weyl modules (untwisted case considered by Chari-Fourier-Khandai 2009)
 - block decompositions
 - untwisted loop (Chari-Moura)
 - twisted loop (Senesi)
 - untwisted map algebras (Kodera)
- Replace equivariant map algebras by *G*-equivariant sheaves of Lie algebras

Happy Birthday Allen!!