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The problem:

Start in quantum system in some state, evolve under some
Hamiltonian, measure something at a later time.
Three problems:
1)Measuring different time correlations in the ground state:

〈Sz
i (t)Sz

j (0)〉

O(t) ≡ exp(iHt)O exp(−iHt)

Common experimental problem.
2)Start a system in the ground state, change it locally (close a
switch), measure something later. Similar to (1).
3)Start a system in the ground state of Hamiltonian H0, evolve
under different H. Very hard.



Brute force

Exact evolution of the state vector using sparse matrix techniques.

ψ(t) = exp(−iHt)ψ(0)

=
(

1− iHt −H2t2/2 + ...
)
ψ(0)

Complexity scales as D = 2N

Even using symmetries, limit around 30− 40 qubits.



Matrix Product Methods
TEBD (Vidal, 2004)
Represent state as MPS.
Decompose evolution: H =

∑N−1
i=1 hi ,i+1

exp(−iHδt) ≈ exp(−iHoddδt) exp(−iHevenδt)

T

X

Each time step increases bond dimension k. Truncate back to
some kmax .



Matrix Product Methods

Success of these methods requires that state can be represented
with small k.
Entropy:

k ∼ exp(S)

Case (1 and 2): Change system locally. Entropy typically grows
logarithmically in time. Long time possible.
Case (3): Change system globally. Entropy typically grows linearly
in time. Only short times possible.
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General problem is BQP complete

Evolving a state under a local Hamiltonian can mimic a set of local
gates. If we could compute this classically, even for 1D systems, we
could do anything a quantum computer could. So, probably not
possible!
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Light-cone in unitary circuit:

T

X

No influence outside the light-cone.
Note: unitary circuit is an approximation. We need to take time
step δt → 0 to make it accurate.

exp(−iHδt) ≈ exp(−iHoddδt) exp(−iHevenδt)

Velocity is:
v ∝ 1/δt

Can we do better?



Lieb-Robinson bound (finite velocity of propagation):
The following can be proven for a wide class of local Hamiltonians:
there is a constant vLR such that for

|t| ≤ l/vLR

the commutator bound holds:

‖[A(t),B]‖ ≤ exp(−O(l))

A(t) = exp(iHt)A exp(−iHt)

l = dist(suppA, suppB)

Lieb-Robinson bounds for bounded range Hamiltonians and
Hamiltonians with exponentially decaying interactions on general
graphs. (Lieb and Robinson, Hastings, Koma, Nachtergaele, Sims,
Ogata,...)



Lieb-Robinson bound application: finite velocity of
propagation

Alice applies unitary UA at time 0.
Bob measures OB at time t

〈Ψ|U†AOBUA|Ψ〉 = 〈Ψ|U†AUAOB |Ψ〉+ 〈Ψ|U†A[OB ,UA]|Ψ〉
= 〈Ψ|OB |Ψ〉+O(‖[OB ,UA]‖)

Bob

Alice



No signalling outside the light-cone in relativistic theory.
Exponentially small leakage outside the light-cone even
non-relativistically!

〈Ψ|U†AOBUA|Ψ〉 = 〈Ψ|U†AUAOB |Ψ〉+ 〈Ψ|U†A[OB ,UA]|Ψ〉
= 〈Ψ|OB |Ψ〉+O(‖[OB ,UA]‖)

Bob

Alice



Lieb-Robinson bound application: exponential decay of
correlations. Connecting dynamics and ground state

Theorem
Suppose there is a spectral gap ∆E. Then correlations decay
exponentially in space:∣∣∣〈AB〉 − 〈A〉〈B〉

∣∣∣ ≤ exp(−l/ξ) (1)

(Hastings, 2004)



∣∣∣〈AB〉 − 〈A〉〈B〉
∣∣∣ ≤ exp(−l/ξ) (2)

Proof:

I Without loss of generality, assume 〈A〉 = 〈B〉 = 0.

I Define B+ to be the positive energy part of B. i.e., in a basis
of eigenstates of H, ψi with energy Ei , B+

ij = Bijθ(Ei − Ej).
Then,

〈AB〉 = 〈AB+〉 = 〈[A,B+]〉
I Define B̃+ to be an approximation to B+ as follows:

B̃+ = lim
ε→0+

1

2π

∫
dt

1

it + ε
B(t) exp[−(t∆E )2/2q]

I Using the spectral gap

〈[A,B+]〉 = 〈[A, B̃+]〉+O(exp(−q/2))

I Using the Lieb-Robinson bounds, ‖[A, B̃+]‖ is small for q
sufficiently small.

I Optimize in q to get desired bound
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Light-cone for quantum simulation
Problem: given an initial product state ψ(0), and a Hamiltonian
H, determine

〈ψ(0)|Sz
0 (t)|ψ(0)〉 ≡ 〈ψ(0)| exp(iHt)Sz

0 exp(−iHt)|ψ(0)〉.

Using the light-cone, we only need to simulate spins within
distance vLR of 0

i=0 i=+vti=−vt

Time=t

Reduce complexity from 2N to 22vLR t



Light-cone for quantum simulation
Problem: given an initial arbitrary state ψ(0), and a Hamiltonian
H, determine

〈ψ(0)|Sz
0 (t)|ψ(0)〉 ≡ 〈ψ(0)| exp(iHt)Sz

0 exp(−iHt)|ψ(0)〉.

ML R

Write:
|ψ(0)〉 =

∑
αβ

|ψαL 〉 ⊗ |ψ
αβ
M 〉 ⊗ |ψ

β
R〉

for orthonormal bases ψαL , ψ
β
R .



ML R

〈ψ(0)|Sz
0 (t)|ψ(0)〉

=
∑

α,β,α,β

〈ψαL ⊗ ψ
αβ
M ⊗ ψ

β
R |S

z
0 (t)|ψαL ⊗ ψ

αβ
M ⊗ ψ

β
R〉

≈
∑

α,β,α,β

〈ψαL |ψαL 〉〈ψ
β
R |ψ

β
R〉〈ψ

αβ
M |S

z
0 (t)|ψαβM 〉

=
∑
α,β

〈ψαβM |S
z
0 (t)|ψαβM 〉

Statistically sample sum over α, β. Still reduce complexity from 2N

to 22vLR t .



Light-cone for quantum simulation: can do even better!

A

B
C

D

-N/2 N/20

T

T/2

I Evolve in region B and D (effort 2N) for time T/2
I Statistically sample outside the light-cone to create pure state

on sites −N/4...N/4
I Evolve regions A and C

Allows simulation of time T for effort 2vLR t rather than 22vLR t . Can
be a large speedup!
Certifiable
Can be combined with matrix product state



Light-cone for quantum simulation

A

B
C

D

-N/2 N/20

T

T/2

〈ΨL ⊗ΨR |U†BU†DU†CU†ASz
0 UAUCUDUB |ΨL ⊗ΨR〉

= 〈UBΨL ⊗ UDΨR |U†CU†ASz
0 UAUC |UBΨL ⊗ UDΨR〉

=
∑
α,β

〈UBΨL ⊗ UDΨR |ΠL
αΠR

βU†CU†ASz
0 UAUC ΠL

αΠR
β |UBΨL ⊗ UDΨR〉
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Example problem

XXZ Hamiltonian

H =
∑

i

Sx
i Sx

i+1 + Sy
i Sy

i+1 + ∆Sz
i Sz

i+1

∆ is parameter. Start at ∆ =∞. Alternating ↑↓↑↓ ...
Suddenly change to finite ∆. Compute Sz

0 (t)



After global change of Hamiltonian, the system is in a 
very excited state of the new Hamiltonian.  There are 

quasi-particle excitations everywhere, which carry 
entropy across the cut.

X

T

Worst case: entropy grows linearly in time.

Excitations carry information across cut. Entropy grows linearly
with time. This is wost case (Bravyi, Hastings, Verstraete, 2006
and Eisert and Osborne, 2006).



Physical interest in a global quench

Does the system thermalize? Does reduced density matrix
approach a thermal density matrix?
What if the system is integrable or there are other conserved
quantities?
How does the system thermalize? Studies of XXZ spin chain show
interesting new dynamics before thermalization.
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XXZ Chain after Quench
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Light-cone, l=10, start-time=15.0625
Light-cone, l=10, start time=16.0625
iTEBD

Measured magnetization using iTEBD and iTEBD followed by
light-cone.
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Adiabatic Evolution of Gapped Systems

H∫ , s = 0→ 1

Seems hard. By definition, long time.
However (quasi-adiabatic evolution), one can show that

∂sΨ0(s) = DsΨ0(s)

for a new local operator Ds

Evolve as before.
Can evolve logarithmically long paths with constant gap.



Adiabatic Evolution of Gapped Systems

Can evolve system, and truncate to matrix product state
Can approximate ψ0(s) by ψmps

0 (s) and follow approximation along
path.

ψ

ψ
0

0

mps

s=0 s=1

Can evolve polynomially long paths with constant gap.
Question: what can be done with constant gap in 2D? Constant
gap gives error correction for adiabatic QC.
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Conclusion:

I General time evolution is hard.

I Our current general algorithms take CPU time exponential in
time simulated. Probably cannot be improved.

I Many physical cases can be done faster.

I Interesting physical problems in thermalization
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