Dark Markets Part 2. Search and Information Percolation

Darrell Duffie Stanford University

Fields Institute Lecture April, 2010

Collaboration: Nicolae Gârleanu, Gaston Giroux, Gustavo Manso, Semyon Malamud, Lasse Pedersen, and Yeneng Sun

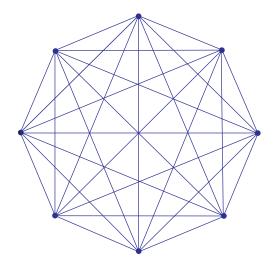


Figure: An over-the-counter market.

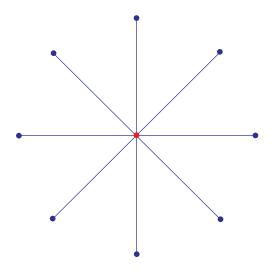


Figure: A standard-paradigm centralized market.

Search in Large Markets

- ► Agents: a non-atomic measure space.
- Events: a probability space (Ω, \mathcal{F}, P) .
- ▶ Agents meet other agents at random and negotiate asset trades.
- ▶ Agents have heterogeneous information and motives to own the asset.
- ► Trading motives can change at random.
- ▶ Without dealers: the probability of re-encountering the same agent is zero, so there are no strategic effects in bargaining. Each agent has an outside option that does not depend on the other agent's strategy.
- ➤ The law of large numbers keeps the dimension of the state variable under control.

Exact Law of Large Numbers for Random Matching From work with Yeneng Sun (2005, 2007).

- ▶ Suppose the population is 40% red, 60% blue.
- ▶ A red agent meets a blue agent with probability 0.6.
- Assuming the exact law of large numbers, the quantity of matches of red to blue is $0.4 \times 0.6 = 0.24$ a.s.
- ▶ The quantity of matches of blue to red is $0.6 \times 0.4 = 0.24$.
- ➤ Total matches of red with blue: 0.48. Red with red: 0.16. Blue with blue 0.36.
- ▶ This applies under independence assumptions and richness assumptions on the σ -algebra on agents \times states.
- LLN-based dynamics of infinite-agent search models (in discrete time) follows similarly. (Boltzmann's "Stosszahlansatz").

Search-Based Asset Pricing

From work with Nicolae Gârleanu and Lasse Heje Pedersen.

- ▶ An agent has a high or low $(h \text{ or } \ell)$ value for the asset, and owns it or not (o or n).
- ▶ A high-type agent becomes low with intensity k_u . The opposite transition intensity is k_d . Agents are matched at intensity λ .
- ▶ For each type σ in $\mathcal{T} = \{ho, hn, \ell o, \ell n\}$, $\mu_{\sigma}(t)$ is the fraction at time t of agents of type σ .
- ▶ With per-capita asset supply s,

$$s = \mu_{ho}(t) + \mu_{lo}(t),$$

Example: evolution of quantity of agents of type ℓo :

$$\frac{d}{dt}\mu_{lo}(t) = -k_u\mu_{lo}(t) + k_d\mu_{ho}(t) - \lambda\mu_{hn}(t)\mu_{lo}(t).$$

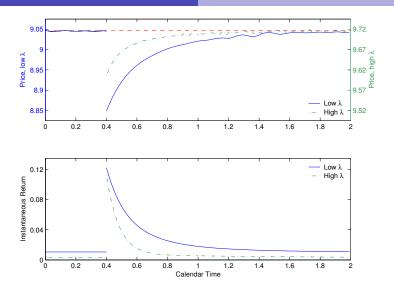


Figure: Liquidity shock at time 0.4. Low search intensity $\lambda=125$; high search intensity $\lambda=625$. Source: Duffie, Gârleanu, and Pedersen (2005).

- ► An agent's current "type" can include current preference for the asset, private information, and amount of the asset held.
- ▶ The measure μ_t at time t describing the fraction of the population at time t whose type is in a given set evolves by some variant of a Boltzmann equation

$$\frac{d\mu_t}{dt} = A\mu_t + \lambda\mu_t \circ \mu_t,$$

where A whose interaction term $\mu_t \circ \mu_t$ depends on the nature of trade and information acquisition.

- ▶ Under conditions, as search intensities get large, efficiency is obtained (Gale (1986), McLennan and Sonnenschein (1991)).
- ▶ With search frictions, information remains heterogeneous (Wolinsky (1990)) and benefits intermediaries (Green (2007); Green, Hollifield, and Schürhoff (2007); Duffie, Malamud, and Manso (2010)).

Information Transmission in Markets

Informational Role of Prices: Hayek (1945), Grossman (1976), Grossman and Stiglitz (1981).

- Centralized Exchanges:
 - Wilson (1977), Townsend (1978), Milgrom (1981), Vives (1993), Pesendorfer and Swinkels (1997), and Reny and Perry (2006).
- Over-the-Counter Markets:
 - Wolinsky (1990), Blouin and Serrano (2002), Golosov, Lorenzoni, and Tsyvinski (2009).
 - Duffie and Manso (2007), Duffie, Giroux, and Manso (2008), Duffie, Malamud, and Manso (2009).

Model Primitives

Duffie and Manso (2007) and Duffie, Giroux, and Manso (2010):

- ▶ Two possible states of nature $Y \in \{0, 1\}$.
- ▶ Each agent is initially endowed with signals $S = \{s_1, \dots, s_n\}$ s.t. $P(s_i = 1 | Y = 1) \ge P(s_i = 1 | Y = 0)$
- ightharpoonup For every pair agents, their initial signals are Y-conditionally independent
- ▶ Random matching, intensity λ .

Initial Information Endowment

After observing signals $S=\{s_1,\ldots,s_n\}$, the logarithm of the likelihood ratio between states Y=0 and Y=1 is by Bayes' rule:

$$\log \frac{P(Y=0 \mid s_1, \dots, s_n)}{P(Y=1 \mid s_1, \dots, s_n)} = \log \frac{P(Y=0)}{P(Y=1)} + \sum_{i=1}^n \log \frac{P(s_i \mid Y=0)}{P(s_i \mid Y=1)}.$$

We say that the "type" θ associated with this set of signals is

$$\theta = \sum_{i=1}^{n} \log \frac{P(s_i | Y = 0)}{P(s_i | Y = 1)}.$$

What Happens in a Meeting?

- ▶ Upon meeting, agents participate in a double auction.
- ▶ If bids are strictly increasing in the type associated with the signals agents have collected, then bids reveal type.

Information is Additive in Type Space

Proposition: Let $S = \{s_1, \ldots, s_n\}$ and $R = \{r_1, \ldots, r_m\}$ be independent sets of signals, with associated types θ and ϕ . If two agents with types θ and ϕ reveal their types to each other, then both agents achieve the posterior type $\theta + \phi$.

This follows from Bayes' rule, by which

$$\log \frac{P(Y = 0 \mid S, R, \theta + \phi)}{P(Y = 1 \mid S, R, \theta + \phi)} = \log \frac{P(Y = 0)}{P(Y = 1)} + \theta + \phi,$$
$$= \log \frac{P(Y = 0 \mid \theta + \phi)}{P(Y = 1 \mid \theta + \phi)}$$

Information is Additive in Type Space

Proposition: Let $S = \{s_1, \dots, s_n\}$ and $R = \{r_1, \dots, r_m\}$ be independent sets of signals, with associated types θ and ϕ . If two agents with types θ and ϕ reveal their types to each other, then both agents achieve the posterior type $\theta + \phi$.

This follows from Bayes' rule, by which

$$\log \frac{P(Y = 0 \mid S, R, \theta + \phi)}{P(Y = 1 \mid S, R, \theta + \phi)} = \log \frac{P(Y = 0)}{P(Y = 1)} + \theta + \phi,$$
$$= \log \frac{P(Y = 0 \mid \theta + \phi)}{P(Y = 1 \mid \theta + \phi)}$$

By induction, this property holds for all subsequent meetings.

Solution for Cross-Sectional Distribution of Information

The Boltzmann equation for the cross-sectional distribution μ_t of types is

$$\frac{d}{dt}\mu_t = -\lambda\,\mu_t + \lambda\,\mu_t * \mu_t.$$

with a given initial distribution of types μ_0 .

Solution for Cross-Sectional Distribution of Information

The Boltzmann equation for the cross-sectional distribution μ_t of types is

$$\frac{d}{dt}\mu_t = -\lambda\,\mu_t + \lambda\,\mu_t * \mu_t.$$

with a given initial distribution of types μ_0 .

Proposition: The unique solution of (14) is the Wild sum

$$\mu_t = \sum_{n>1} e^{-\lambda t} (1 - e^{-\lambda t})^{n-1} \mu_0^{*n}.$$

Proof of Wild Summation

Taking the Fourier transform $\hat{\mu}_t$ of μ_t of the Boltzmann equation

$$\frac{d}{dt}\mu_t = -\lambda\,\mu_t + \lambda\,\mu_t * \mu_t \,,$$

we obtain the following ODE

$$\frac{d}{dt}\hat{\mu}_t = -\lambda\,\hat{\mu}_t + \lambda\,\hat{\mu}_t^2\,,$$

whose solution is

$$\hat{\mu}_t = \frac{\hat{\mu}_0}{e^{\lambda t} (1 - \hat{\mu}_0) + \hat{\mu}_0}.$$

This solution can be expanded as

$$\hat{\mu}_t = \sum_{n > 1} e^{-\lambda t} (1 - e^{-\lambda t})^{n-1} \hat{\mu}_0^n,$$

which is the Fourier transform of the Wild sum (14).

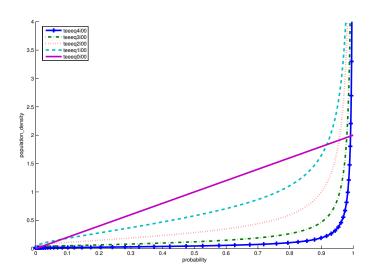


Figure: Evolution of the cross-section of posteriors. Source: Duffie, Giroux, Manso (2008).

Multi-Agent Meetings

The Boltzmann equation for the cross-sectional distribution μ_t of types is

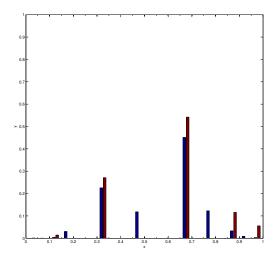
$$\frac{d}{dt}\mu_t = -\lambda\,\mu_t + \lambda\,\mu_t^{*m}.$$

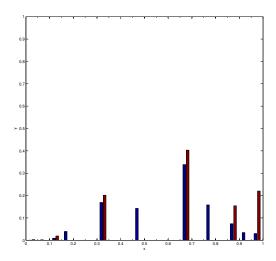
Taking the Fourier transform, we obtain the ODE,

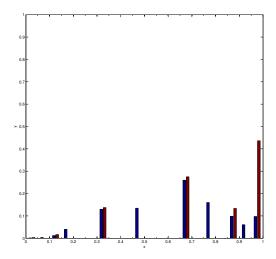
$$\frac{d}{dt}\hat{\mu}_t = -\lambda\,\hat{\mu}_t + \lambda\,\hat{\mu}_t^m\,,$$

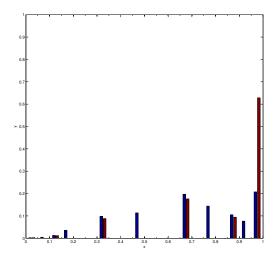
whose solution satisfies

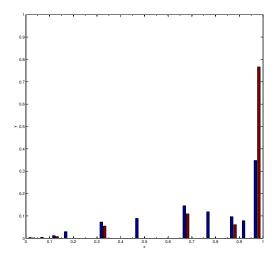
$$\hat{\mu}_t^{m-1} = \frac{\hat{\mu}_0^{m-1}}{e^{(m-1)\lambda t} (1 - \hat{\mu}_0^{m-1}) + \hat{\mu}_0^{m-1}} \,. \tag{1}$$

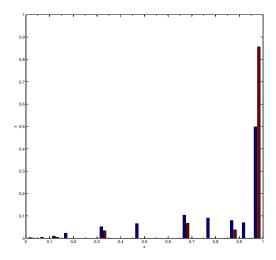


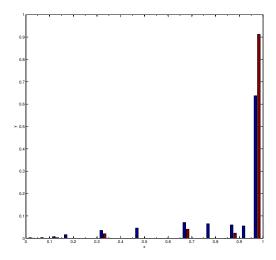












New Private Information

Suppose that, independently across agents as above, each agent receives, at Poisson mean arrival rate ρ , a new private set of signals whose type outcome y is distributed according to a probability measure ν . Then the evolution equation is extended to

$$\frac{d}{dt}\mu_t = -(\lambda + \rho)\,\mu_t + \lambda\,\mu_t * \mu_t + \rho\,\mu_t * \nu.$$

Taking Fourier transforms, we obtain the following ODE

$$\frac{d}{dt}\hat{\mu}_t = -(\lambda + \rho)\,\hat{\mu}_t + \lambda\,\hat{\mu}_t^2 + \rho\,\hat{\mu}_t\,\hat{\nu}.$$

whose solution satisfies

$$\hat{\mu}_t = \frac{\hat{\mu}_0}{e^{(\lambda + \rho(1 - \hat{\nu}))t}(1 - \hat{\mu}_0) + \hat{\mu}_0}$$

Other Extensions

- Public information releases
 - Duffie, Malamud, and Manso (2010).
- Endogenous search intensity
 - Duffie, Malamud, and Manso (2009).

Duffie, Malamud and Manso (2010): Public Releases of Information

- **1** At public information release random times $\{T_1, T_2, \ldots\}$ (Poisson arrival process with intensity η) n randomly selected agents have their posterior probabilities revealed to all agents.
- We allow for random number of agents in each meeting and in each public information release:
 - Meeting group size m: $q_l = P(m = l)$.
 - Public information release group size n: $p_k = P(n = k)$.

Evolution of type distribution

Theorem. Given the variable X of common concern, the probability distribution of each agent's type at time t is $\nu_t = \alpha_t * \beta_t$, where $\alpha_t = h(\mu_0, t)$ is the type distribution in a model with no public releases of information, satisfying the differential equation

$$\frac{d\alpha_t}{dt} = \lambda \left(\sum_{l=2}^{\infty} q_l \, \alpha_t^{*l} - \alpha_t \right), \qquad \alpha_0 = \mu_0, \tag{2}$$

and where β_t is the probability distribution over types that solves the differential equation

$$\frac{d\beta_t}{dt} = -\eta \beta_t + \eta \beta_t * \sum_{k=1}^{\infty} p_k \, \alpha_t^{*k}, \tag{3}$$

with initial condition given by the Dirac measure δ_0 at zero.

The rate of Convergence

Let

$$s \mapsto M(s) = \int e^{sx} \, d\mu_0(x)$$

and

$$R = \sup_{y \in \mathbb{R}} \left(-\log M(y) \right). \tag{4}$$

and

$$\Phi(z) = \sum_{n=1}^{\infty} p_n z^n,$$

Theorem Convergence is exponential at the rate $\lambda + \eta$, as long as $\lambda > 0$. Otherwise, the rate

$$\rho = \eta \left(1 - \Phi(e^{-R}) \right). \tag{5}$$

is strictly less than η .

Outline

Segmented Markets

2 Double Auction

3 Connectedness and Information

Model Primitives

Same as the previous model except that:

- ▶ N classes of investors.
- ▶ Agent of class i has matching intensity λ_i .
- ▶ Upon meeting, the probability that a class-j agent is selected as a counterparty is κ_{ij} .

Evolution of Type Distribution

The evolution equation is given by:

$$\frac{d}{dt}\psi_{it} = -\lambda_i \psi_{it} + \lambda_i \psi_{it} * \sum_{j=1}^{N} \kappa_{ij} \psi_{jt}, \quad i \in \{1, \dots, N\}.$$

Taking Fourier transforms we obtain:

$$\frac{d}{dt}\hat{\psi}_{it} = -\lambda_i \,\hat{\psi}_{it} + \lambda_i \,\hat{\psi}_{it} \sum_{j=1}^N \kappa_{ij} \,\hat{\psi}_{jt}, \quad i \in \{1, \dots, N\},$$

Evolution of Type Distribution

The evolution equation is given by:

$$\frac{d}{dt}\psi_{it} = -\lambda_i \psi_{it} + \lambda_i \psi_{it} * \sum_{j=1}^{N} \kappa_{ij} \psi_{jt}, \quad i \in \{1, \dots, N\}.$$

Taking Fourier transforms we obtain:

$$\frac{d}{dt}\hat{\psi}_{it} = -\lambda_i \hat{\psi}_{it} + \lambda_i \hat{\psi}_{it} \sum_{j=1}^{N} \kappa_{ij} \hat{\psi}_{jt}, \quad i \in \{1, \dots, N\},$$

Special Case: N=2 and $\lambda_1=\lambda_2$

Proposition: Suppose N=2 and $\lambda_1=\lambda_2=\lambda$. Then

$$\hat{\psi}_1 = \frac{e^{-\lambda t} (\hat{\psi}_{20} - \hat{\psi}_{10})}{\hat{\psi}_{20} e^{-\hat{\psi}_{20}(1 - e^{-\lambda t})} - \hat{\psi}_{10} e^{-\hat{\psi}_{10}(1 - e^{-\lambda t})}} \hat{\psi}_{10} e^{-\hat{\psi}_{10}(1 - e^{-\lambda t})}$$

$$\hat{\psi}_2 = \frac{e^{-\lambda t} (\hat{\psi}_{20} - \hat{\psi}_{10})}{\hat{\psi}_{20} e^{-\hat{\psi}_{20}(1 - e^{-\lambda t})} - \hat{\psi}_{10} e^{-\hat{\psi}_{10}(1 - e^{-\lambda t})}} \hat{\psi}_{20} e^{-\hat{\psi}_{20}(1 - e^{-\lambda t})}.$$

General Case: Wild Sum Representation

Theorem: There is a unique solution of the evolution equation, given by

$$\psi_{it} = \sum_{k \in \mathbb{Z}_+^N} a_{it}(k) \, \psi_{10}^{*k_1} * \cdots * \psi_{N0}^{*k_N},$$

where ψ_{i0}^{*n} denotes n-fold convolution,

$$a'_{it} = -\lambda_i a_{it} + \lambda_i a_{it} * \sum_{j=1}^{N} \kappa_{ij} a_{jt}, \quad a_{i0} = \delta_{e_i},$$

$$(a_{it} * a_{jt})(k_1, \dots, k_N) = \sum_{l=(l_1, \dots, l_N) \in \mathbb{Z}_+^N, l < k} a_{it}(l) a_{jt}(k-l),$$

and

$$a_{it}(e_i) = e^{-\lambda_i t} a_{i0}(e_i).$$

Outline

Segmented Markets

2 Double Auction

Connectedness and Information

Double Auction

▶ At some time *T*, the economy ends and the utility realized by an agent of class *i* for each additional unit of the asset is

$$U_i = v_i Y + v^H (1 - Y),$$

measured in units of consumption, for strictly positive constants v^H and $v_i < v^H$, where Y is a non-degenerate 0-or-1 random variable whose outcome will be revealed at time T.

- ▶ If $v_i = v_j$, no trade (Milgrom and Stokey (1982)), so that $\kappa_{ij} = 0$.
- ▶ Meeting between two agents $v_i > v_j$, then i is buyer and j is seller.
- ▶ Upon meeting, participate in a double auction. If the buyer's bid β is higher than the seller's ask σ , trade occurs at the price σ .

Equilibrium

The prices (σ, β) constitute an equilibrium for a seller of class i and a buyer of class j provided that, fixing β , the offer σ maximizes the seller's conditional expected gain,

$$E\left[\left(\sigma - E(U_i \mid \mathcal{F}_S \cup \{\beta\})\right)1_{\{\sigma < \beta\}} \mid \mathcal{F}_S\right],$$

and fixing σ , the bid β maximizes the buyer's conditional expected gain

$$E\left[\left(E(U_j \mid \mathcal{F}_B \cup \{\sigma\}) - \sigma\right) 1_{\{\sigma < \beta\}} \mid \mathcal{F}_B\right].$$

Counterexample: Reny and Perry (2006)

Equilibrium

The prices (σ, β) constitute an equilibrium for a seller of class i and a buyer of class j provided that, fixing β , the offer σ maximizes the seller's conditional expected gain,

$$E\left[\left(\sigma - E(U_i \mid \mathcal{F}_S \cup \{\beta\})\right)1_{\{\sigma < \beta\}} \mid \mathcal{F}_S\right],$$

and fixing $\sigma,$ the bid β maximizes the buyer's conditional expected gain

$$E\left[\left(E(U_j \mid \mathcal{F}_B \cup \{\sigma\}) - \sigma\right) 1_{\{\sigma < \beta\}} \mid \mathcal{F}_B\right].$$

Counterexample: Reny and Perry (2006)

Restriction on the Initial Information Endowment

Lemma: Suppose that each signal Z satisfies

$$P(Z = 1 | Y = 0) + P(Z = 1 | Y = 1) = 1.$$

Then, for each agent class i and time t, the type density ψ_{it} satisfies

$$\begin{array}{rcl} \psi_{it}^H(x) & = & e^x \psi_{it}^H(-x), \\ \psi_{it}^L(x) & = & \psi_{it}^H(-x) \quad x \in \mathbb{R} \,. \end{array}$$

and the hazard rate condition

$$h_{it}^H(x) \stackrel{def}{=} \frac{\psi_{it}^H(x)}{\int_x^{+\infty} \psi_{it}^H(y) \, dy} \geq \frac{\psi_{it}^L(x)}{\int_x^{+\infty} \psi_{it}^L(y) \, dy} \stackrel{def}{=} h_{it}^L(x) \, .$$

Bidding Strategies

Lemma: For any $V_0 \in \mathbb{R}$, there exists a unique solution $V_2(\,\cdot\,)$ on $[v_i,v^H)$ to the ODE

$$V_2'(z) \ = \ \frac{1}{v_i - v_j} \, \left(\frac{z - v_i}{v^H - z} \, \frac{1}{h_{it}^H(V_2(z))} \, + \, \frac{1}{h_{it}^L(V_2(z))} \, \right), \quad V_2(v_i) \ = \ V_0.$$

This solution, also denoted $V_2(V_0,z)$, is monotone increasing in both z and V_0 . Further, $\lim_{v\to v^H}V_2(v)=+\infty$. The limit $V_2(-\infty,z)=\lim_{V_0\to -\infty}V_2(V_0,z)$ exists. Moroever, $V_2(-\infty,z)$ is continuously differentiable with respect to z.

Bidding Strategies

Proposition: Suppose that (S,B) is a continuous equilibrium such that $S(\theta) \leq v^H$ for all $\theta \in \mathbb{R}$. Let $V_0 = B^{-1}(v_i) \geq -\infty$. Then,

$$B(\phi) = V_2^{-1}(\phi), \quad \phi > V_0,$$

Further, $S(-\infty)=\lim_{\theta\to-\infty}S(\theta)=v_i$ and $S(+\infty)=\lim_{\theta\to-\infty}S(\theta)=v^H$, and for any θ , we have $S(\theta)=V_1^{-1}(\theta)$ where

$$V_1(z) = \log \frac{z - v_i}{v^H - z} - V_2(z), \quad z \in (v_i, v^H).$$

Any buyer of type $\phi < V_0$ will not trade, and has a bidding policy B that is not uniquely determined at types below V_0 .

Tail Condition

Definition: We say that a probability density $g(\cdot)$ on the real line is of exponential type α at $+\infty$ if, for some constants c>0 and $\gamma>-1$,

$$\lim_{x \to +\infty} \frac{g(x)}{x^{\gamma} e^{\alpha x}} = c$$

In this case, we write $g(x) \sim \operatorname{Exp}_{+\infty}(c, \gamma, \alpha)$.

Exponential Tails in Percolation Models

Suppose N=1, and let $\lambda=\lambda_1$ and $\psi_t=\psi_{1t}$. The Laplace transform $\hat{\psi}_t$ of ψ_t is given by

$$\hat{\psi}_t(z) = \frac{e^{-\lambda t} \, \hat{\psi}_0(z)}{1 - (1 - e^{-\lambda t}) \hat{\psi}_0(z)}$$

and $\psi_t(x) \sim \operatorname{Exp}_{+\infty}(c_t, 0, -\alpha_t)$ in t, where α_t is the unique positive number z solving

$$\hat{\psi}_0(z) = \frac{1}{1 - e^{-\lambda t}},$$

and where

$$c_t = \frac{e^{-\lambda t}}{(1 - e^{-\lambda t})^2 \frac{d}{dz} \hat{\psi}_0(\alpha_t)}.$$

Furthermore, α_t is monotone decreasing in t, with $\lim_{t\to\infty} \alpha_t = 0$.

Strictly Monotone Equilibrium

Proposition: Suppose that, for all t in [0,T], there are $\alpha_i(t)$, $c_i(t)$, and $\gamma_i(t)$ such that

$$\psi_{it}^H(x) \sim \operatorname{Exp}_{+\infty}(c_i(t), \gamma_i(t), -\alpha_i(t)).$$

If $\alpha_i(T)<1$, then there is no equilibrium associated with $V_0=-\infty$. Moreover, if v_i-v_j is sufficiently large and if $\alpha_i(T)>\alpha^*$, where α^* is the unique positive solution to $\alpha^*=1+1/(\alpha^*2^{\alpha^*})$ (which is approximately 1.31), then there exists a unique strictly monotone equilibrium associated with $V_0=-\infty$. This equilibrium is in undominated strategies, and maximizes total welfare among all continuous equilibria.

Outline

Segmented Markets

2 Double Auction

3 Connectedness and Information

Class-i Agent Utility

The expected future profit at time t of a class-i agent is

$$\mathcal{U}_i(t,\Theta_t) = E\left[\sum_{\tau_k > t} \sum_j \kappa_{ij} \, \pi_{ij}(\tau_k,\Theta_{\tau_k}) \, \middle| \, \Theta_t\right],$$

where τ_k is this agent's k-th auction time and $\pi_{ij}(t,\theta)$ is the expected profit of a class-i agent of type θ entering an auction at time t with a class-j agent.

Agents may be able to disguise the characteristics determining their information at a particular auction. In this case, we denote the expected future profit at time t of a class-i agent as $\hat{\mathcal{U}}_i(t,\Theta_t)$.

The Value of Initial Information and Connectivity When Trades Can be Disguised

Theorem: Suppose that $v_1=v_2$. If $\lambda_2\geq \lambda_1$ and if the initial type densities ψ_{10} and ψ_{20} are distinguished by the fact that the density p_2 of the number of signals received by class-2 agents has first-order stochastic dominance over the density p_1 of the number of signals by class-1 agents, then

$$\frac{E[\hat{\mathcal{U}}_2(t,\Theta_{2t})]}{\lambda_2} \ge \frac{E[\hat{\mathcal{U}}_1(t,\Theta_{1t})]}{\lambda_1}, \quad t \in [0,T].$$

The above inequality holds strictly if, in addition, $\lambda_2 > \lambda_1$ or if p_2 has strict dominance over p_1 .

What if Characteristics are Commonly Observed?

- trade-off between adverse selection and gains from trade.
- more informed/connected investor may achieve lower profits than less informed/connected investor.
- ▶ If $v_1 = v_2 = 0.9$, $v_3 = 0$, $v^H = 1.9$,

$$\psi_{10}(x) = 12 \, \frac{e^{3x}}{(1+e^x)^5},$$

and $\psi_{20}(x) = \psi_{10} * \psi_{10}$.

Then,

$$E[\mathcal{U}_2(t,\Theta_{1t})] < E[\mathcal{U}_1(t,\Theta_{2t})]$$

and

$$E[\hat{\mathcal{U}}_1(t,\Theta_{1t})] < E[\mathcal{U}_1(t,\Theta_{2t})].$$

Even If Characteristics are Commonly Observed Connectivity May be Valuable

Proposition: Suppose that $\kappa_1=\kappa_2$, $v_1=v_2$ and $\lambda_1<\lambda_2$, and suppose that class-1 and class-2 investors have the same initial information quality, that is, $\psi_{10}=\psi_{20}$, and assume the exponential tail condition $\psi_{it}^H\sim \mathrm{Exp}_{+\infty}\left(c_{it},\gamma_{it},-\alpha_{it}\right)$ for all i and t, with $\alpha_{10}>3$, $\alpha_{30}<3$ and

$$\alpha_{30} > \frac{\alpha_{10} - 1}{3 - \alpha_{10}},$$

and

$$\frac{\alpha_{1t}+1}{\alpha_{1t}-1} > \alpha_{3t}, \quad t \in [0,T].$$

If $\frac{v_1-v_3}{v^H-v_1}$ is sufficiently large, then for any time t we have

$$\frac{E[\mathcal{U}_2(t,\Theta_{2t})]}{\lambda_2} \ > \ \frac{E[\hat{\mathcal{U}}_2(t,\Theta_{2t})]}{\lambda_2} \ > \ \frac{E[\hat{\mathcal{U}}_1(t,\Theta_{1t})]}{\lambda_1} \ > \ \frac{E[\mathcal{U}_1(t,\Theta_{1t})]}{\lambda_1} \ .$$

Remarks

- tractable model of information diffusion in over-the-counter markets.
- ▶ initial information and connectivity may or may not increase profits:
 - more informed/connected investors attain higher profits than less informed connected investors when investors can disguise trades.
 - more informed/connected investors may attain lower profits than less informed connected investors when investors' characteristics are commonly observed.

Other Applications

- centralized exchanges, decentralized information transmission
- bank runs
- knowledge spillovers
- social learning
- technology diffusion