
MODELLING

FINITE FIELDS

Hendrik Lenstra

Mathematisch Instituut

Universiteit Leiden



Finite fields

A finite field is a finite set E equipped with

elements 0, 1 ∈ E and maps +, · :E × E → E

such that for all a, b, c ∈ E one has

(a · b) · c = a · (b · c), (a+ b) + c = a+ (b+ c),

∃d : d+ a = 0, (∃e : e · a = 1) ⇔ a 6= 0,

1 · a = a, (a+ b) · c = (a · c) + (b · c),
0 + a = a, a · (b+ c) = (a · b) + (a · c).



Classifying finite fields

Theorem (E. Galois, 1830; E.H. Moore, 1893).

There is a bijective map

{finite fields}/∼= −→ {primes} × Z>0

sending [E] to (charE,degE).

A field of size pn is denoted by Fpn or GF(pn).



Explicit models

An explicit model for a field of size pn is a

field with additive group Fn
p =

⊕n−1
i=0 Fp · ei,

where Fp = Z/pZ.

Such a model is numerically specified by the

system (aijk)
n−1
i,j,k=0 of elements aijk ∈ Fp

satisfying

ei · ej =
∑n−1

k=0 aijkek for all i, j.

Space: O(n3 log p).



Recognizing explicit models

Theorem. For some t ∈ Z>0, there is

an algorithm that, when p ∈ Z>1, n ∈ Z>0,

and a system (aijk)
n−1
i,j,k=0 of n3 elements

aijk ∈ Z/pZ are given, decides in time

at most (n+ log p)t whether these define

an explicit model for a field of size pn.



Defining finite fields

A finite field is a finite set E equipped with

elements 0, 1 ∈ E and maps +, · :E × E → E

such that for all a, b, c ∈ E one has

(a · b) · c = a · (b · c), (a+ b) + c = a+ (b+ c),

∃d : d+ a = 0, (∃e : e · a = 1) ⇔ a 6= 0,

1 · a = a, (a+ b) · c = (a · c) + (b · c),
0 + a = a, a · (b+ c) = (a · b) + (a · c).



Characterizing finite fields

Theorem. Let R, + be a finite abelian

group equipped with a bilinear multiplication ·.
Then R is a field with + and · if and only if

• the multiplication is associative;

• the exponent p of R is prime;

• the map F :R→ R, x 7→ xp is bijective;

• the preimage of 0 under the map

F − 1:R→ R, x 7→ xp − x, has size p.



An algorithm for recognizing finite fields

Input: p, n, aijk (0 ≤ i, j, k < n).

To be tested: R =
⊕n−1

i=0 (Z/pZ)ei is a field

with multiplication ei · ej =
∑n−1

k=0 aijkek.

• test commutativity and associativity;

• test primality of p;

• with epi =
∑n−1

j=0 fijej and F = (fij)
n−1
i,j=0,

test rankF = n and rank(F − I) = n− 1.



Irreducibility testing

Corollary. There is a polynomial-time

algorithm that, given a finite field E and

f ∈ E[X], tests whether f is irreducible.

Proof : f is irreducible if and only if

E[X]/(f) is a finite field.



Factoring polynomials

Open problem. Is there a polynomial-time

algorithm that, given a finite field E and

f ∈ E[X]\{0}, factors f into irreducible

factors?



Factoring polynomials

Open problem. Is there a polynomial-time

algorithm that, given a finite field E and

f ∈ E[X]\{0}, factors f into irreducible

factors?

• Yes if a probabilistic algorithm is allowed.

• Yes if charE is fixed.

• Yes if GRH is true and deg f is fixed.



Factoring quadratic polynomials

Theorem. There is, for some t ∈ Z>0,

an algorithm that, given a finite field E

and f ∈ E[X], deg f = 2, finds the set

Z(f) of all zeroes of f in E, and that,

if GRH is true, runs in time at most

(1 + log #E)t.



The case charE = 2

Let f = uX2 + vX + w.

The map E → E, x 7→ ux2 + vx,

is F2-linear.

Using linear algebra over F2, one

can determine the preimage of w,

which equals Z(f).



The case charE > 2

Let f = uX2 + vX + w and d = v2 − 4uw.

• If d(#E−1)/2 = −1, then Z(f) = ∅.

• If d = 0, then Z(f) = {−v/(2u)}.

• If d(#E−1)/2 = 1, then

Z(f) = {(−v + x)/(2u) : x ∈ E, x2 = d}.



The case charE > 2

Let f = uX2 + vX + w and d = v2 − 4uw.

• If d(#E−1)/2 = −1, then Z(f) = ∅.

• If d = 0, then Z(f) = {−v/(2u)}.

• If d(#E−1)/2 = 1, then

Z(f) = {(−v + x)/(2u) : x ∈ E, x2 = d}.

Conclusion: we may assume f = X2 − d

and d(#E−1)/2 = 1.



Taking squareroots in Fp with p odd

First, trying c = 2, 3, . . . in succession,

find c ∈ Fp with c(p−1)/2 = −1.

If GRH is true, then the least such c

is at most 4(log p)2.



Taking squareroots in Fp with p odd

First, trying c = 2, 3, . . . in succession,

find c ∈ Fp with c(p−1)/2 = −1.

If GRH is true, then the least such c

is at most 4(log p)2.

Next apply the Shanks-Tonelli method

to find
√
d.



The Shanks-Tonelli method

Given an odd prime p and c, d ∈ Fp

with c(p−1)/2 = −1 and d(p−1)/2 = 1,

it finds x ∈ Fp with x2 = d.



The Shanks-Tonelli method (1)

Given an odd prime p and c, d ∈ Fp

with c(p−1)/2 = −1 and d(p−1)/2 = 1,

it finds x ∈ Fp with x2 = d.

Write p− 1 = 2k · (2l + 1).

Replacing c and d by c2l+1 and d2l+1,

one may assume

c2
k−1

= −1, d2k−1

= 1.

(Note:
√
d =

√
d2l+1 · d−l.)



The Shanks-Tonelli method (2)

The method works with pairs (x, i)

∈ Fp × {0, 1, . . . , k − 1} that satisfy

(x2)2i

= d2i

,

starting with x = c and i = k − 1.



The Shanks-Tonelli method (2)

The method works with pairs (x, i)

∈ Fp × {0, 1, . . . , k − 1} that satisfy

(x2)2i

= d2i

,

starting with x = c and i = k − 1.

• If i = 0: done! Else:

• If (x2)2i−1

= d2i−1

: replace (x, i) by

(x, i− 1) and repeat.

• If (x2)2i−1

= −d2i−1

: replace (x, i) by

(x · c2k−1−i

, i− 1) and repeat.



Factoring quadratic polynomials

Theorem. There is, for some t ∈ Z>0,

an algorithm that, given a finite field E

and f ∈ E[X], deg f = 2, finds the set

Z(f) of all zeroes of f in E, and that,

if GRH is true, runs in time at most

(1 + log #E)t.



The remaining case

Given a finite field E and d ∈ E with

#E = pn, p > 2, n > 1, d(pn−1)/2 = 1,

find x ∈ E with x2 = d.



The remaining case

Given a finite field E and d ∈ E with

#E = pn, p > 2, n > 1, d(pn−1)/2 = 1,

find x ∈ E with x2 = d.

Use linear algebra over Fp to find

y ∈ E, y 6= 0, with yp = d(p−1)/2 · y.



The remaining case

Given a finite field E and d ∈ E with

#E = pn, p > 2, n > 1, d(pn−1)/2 = 1,

find x ∈ E with x2 = d.

Use linear algebra over Fp to find

y ∈ E, y 6= 0, with yp = d(p−1)/2 · y.

Then (d/y2)(p−1)/2 = 1, so d/y2 is a

square in Fp, and if z2 = d/y2 then

(yz)2 = d.



Classifying finite fields

Theorem (E. Galois, 1830; E.H. Moore, 1893).

There is a bijective map

{finite fields}/∼= −→ {primes} × Z>0

sending [E] to (charE,degE).

A field of size pn is denoted by Fpn or GF(pn).



Constructing finite fields

Conjecture. For some t ∈ Z>0, there is an

algorithm that for given p, n constructs in

time at most (n+ log p)t an explicit model

for a field of size pn.

This is correct

• if a probabilistic algorithm is allowed,

• if GRH is true,

• if p is fixed.



Constructing quadratic finite fields

For p > 2, knowing an explicit model

for Fp2 is equivalent to knowing

c ∈ Fp with c(p−1)/2 = −1.

Such a value for c can be efficiently

found with a probabilistic algorithm

by drawing c at random.

Deterministically, one can try c = 2, 3, . . .

in succession. If GRH is true, this method

runs in polynomial time.



Classifying finite fields

Theorem (E. Galois, 1830; E.H. Moore, 1893).

There is a bijective map

{finite fields}/∼= −→ {primes} × Z>0

sending [E] to (charE,degE).

A field of size pn is denoted by Fpn or GF(pn).

The number of isomorphisms between

two fields of size pn equals n.



Field homomorphisms

The number of field homomorphisms

from a finite field E to a finite field E′

equals degE if

charE = charE′ and degE|degE′

and 0 otherwise, and all these field

homomorphisms are injective.



Field homomorphisms

The number of field homomorphisms

E → E′ equals degE if

charE = charE′ and degE|degE′

and 0 otherwise, and all these field

homomorphisms are injective.

If E and E′ are specified as explicit

models, then a field homomorphism

E → E′ is specified as a matrix over

Fp, where p = charE = charE′.



Finding field homomorphisms

Given two finite fields E, E′ with

charE = charE′ = p, how to construct

all field embeddings E → E′?



Finding field homomorphisms

Given two finite fields E, E′ with

charE = charE′ = p, how to construct

all field embeddings E → E′?

Conventional wisdom: write E = Fp(α);

find the irreducible polynomial f of α

over Fp; and find all zeroes β of f in E′.

All embeddings E → E′ are given by α 7→ β.



Finding a primitive element

If E =
⊕n−1

i=0 Fp · ei is a finite field, then

some α ∈ {e0, e1, . . . , en−1} satisfies

#{αpi

: 0 ≤ i < n} = n.

For any such α one has E = Fp(α), and

the irreducible polynomial f of α over

Fp equals
∏n−1

i=0 (X − αp
i

).



Modern wisdom

Theorem (HWL, 1991). There is a

polynomial-time algorithm that, given

two explicit models E, E′ for finite fields,

computes all field embeddings E → E′.



The quadratic case

Suppose p = charE = charE′ > 2,

degE = degE′ = 2.

Write E = Fp(
√
c) and E′ = Fp(

√
d),

where c, d ∈ Fp, c
(p−1)/2 = d(p−1)/2 = −1.

Then (c/d)(p−1)/2 = 1, so using

Shanks-Tonelli we can find all e ∈ Fp

with c/d = e2.

The two field isomorphisms are then

given by
√
c 7→ e ·

√
d.



Consistent embeddings

Theorem (Bart de Smit & HWL). There

is a polynomial-time algorithm that, given

two explicit models E, E′ for finite fields,

computes a field embedding ϕE,E′ :E → E′

if there is one, and that has the property

ϕE,E′′ = ϕE′,E′′ ◦ ϕE,E′ whenever meaningful.



Consistent embeddings

Theorem (Bart de Smit & HWL). There

is a polynomial-time algorithm that, given

two explicit models E, E′ for finite fields,

computes a field embedding ϕE,E′ :E → E′

if there is one, and that has the property

ϕE,E′′ = ϕE′,E′′ ◦ ϕE,E′ whenever meaningful.

The algorithm is potentially useful for

large distributed computing projects.



Proof modulo the main theorem

Main theorem (Bart de Smit & HWL).

There is a polynomial-time algorithm that

on input p, n, and an explicit model E for

a field of size pn, computes the standard

model Fpn as well as a field isomorphism

ψE :Fpn → E.

To obtain consistent embeddings, it

suffices to take ϕE,E′ = ψE′ ◦ ψ−1
E .



Standard models

Here Fpn denotes the standard model

for a field of size pn.

There are compatible embeddings

Fpn ⊂ Fpm for n|m.



The quadratic case

For p > 2, n = 2 one can take

Fp2 = Fp · 1 ⊕ Fp ·
√

s(p),

where

s(p) =

√

√

· · ·
√

1,

each squareroot being chosen in

{(p+ 1)/2, . . . , p− 2, p− 1},
and the number of

√
-signs being

the number of factors 2 in p− 1.



The general case

To define the standard model Fpn

for general p and n, in such a way

that the main theorem can be proved,

we use a structural description of F̄p,

to be presented tomorrow.


