MODELLING FINITE FIELDS

Hendrik Lenstra

Finite fields

A finite field is a finite set E equipped with elements $0, 1 \in E$ and maps $+, \cdot : E \times E \to E$ such that for all $a, b, c \in E$ one has

$$(a \cdot b) \cdot c = a \cdot (b \cdot c), \quad (a + b) + c = a + (b + c),$$

 $\exists d : d + a = 0, \qquad (\exists e : e \cdot a = 1) \Leftrightarrow a \neq 0,$
 $1 \cdot a = a, \qquad (a + b) \cdot c = (a \cdot c) + (b \cdot c),$
 $0 + a = a, \qquad a \cdot (b + c) = (a \cdot b) + (a \cdot c).$

Classifying finite fields

Theorem (E. Galois, 1830; E. H. Moore, 1893).

There is a bijective map

 $\{\text{finite fields}\}/\cong \longrightarrow \{\text{primes}\} \times \mathbf{Z}_{>0}$ $sending [E] \ to \ (\text{char} E, \deg E).$

A field of size p^n is denoted by \mathbf{F}_{p^n} or $GF(p^n)$.

Explicit models

An explicit model for a field of size p^n is a field with additive group $\mathbf{F}_p^n = \bigoplus_{i=0}^{n-1} \mathbf{F}_p \cdot e_i$, where $\mathbf{F}_p = \mathbf{Z}/p\mathbf{Z}$.

Such a model is numerically specified by the system $(a_{ijk})_{i,j,k=0}^{n-1}$ of elements $a_{ijk} \in \mathbf{F}_p$ satisfying

$$e_i \cdot e_j = \sum_{k=0}^{n-1} a_{ijk} e_k$$
 for all i, j .

Space: $O(n^3 \log p)$.

Recognizing explicit models

Theorem. For some $t \in \mathbf{Z}_{>0}$, there is an algorithm that, when $p \in \mathbf{Z}_{>1}$, $n \in \mathbf{Z}_{>0}$, and a system $(a_{ijk})_{i,j,k=0}^{n-1}$ of n^3 elements $a_{ijk} \in \mathbf{Z}/p\mathbf{Z}$ are given, decides in time at most $(n + \log p)^t$ whether these define an explicit model for a field of size p^n .

Defining finite fields

A finite field is a finite set E equipped with elements $0, 1 \in E$ and maps $+, \cdot : E \times E \to E$ such that for all $a, b, c \in E$ one has

$$(a \cdot b) \cdot c = a \cdot (b \cdot c), \quad (a + b) + c = a + (b + c),$$

 $\exists d : d + a = 0, \qquad (\exists e : e \cdot a = 1) \Leftrightarrow a \neq 0,$
 $1 \cdot a = a, \qquad (a + b) \cdot c = (a \cdot c) + (b \cdot c),$
 $0 + a = a, \qquad a \cdot (b + c) = (a \cdot b) + (a \cdot c).$

Characterizing finite fields

Theorem. Let R, + be a finite abelian group equipped with a bilinear multiplication \cdot . Then R is a field with + and \cdot if and only if

- the multiplication is associative;
- the exponent p of R is prime;
- the map $F: R \to R$, $x \mapsto x^p$ is bijective;
- the preimage of 0 under the map $F-1:R\to R,\ x\mapsto x^p-x,\ has\ size\ p.$

An algorithm for recognizing finite fields

Input:
$$p, n, a_{ijk} \ (0 \le i, j, k < n)$$
.

To be tested: $R = \bigoplus_{i=0}^{n-1} (\mathbf{Z}/p\mathbf{Z})e_i$ is a field with multiplication $e_i \cdot e_j = \sum_{k=0}^{n-1} a_{ijk}e_k$.

- test commutativity and associativity;
- test primality of p;
- with $e_i^p = \sum_{j=0}^{n-1} f_{ij} e_j$ and $F = (f_{ij})_{i,j=0}^{n-1}$, test rank F = n and rank(F - I) = n - 1.

Irreducibility testing

Corollary. There is a polynomial-time algorithm that, given a finite field E and $f \in E[X]$, tests whether f is irreducible.

Proof: f is irreducible if and only if E[X]/(f) is a finite field.

Factoring polynomials

Open problem. Is there a polynomial-time algorithm that, given a finite field E and $f \in E[X] \setminus \{0\}$, factors f into irreducible factors?

Factoring polynomials

Open problem. Is there a polynomial-time algorithm that, given a finite field E and $f \in E[X] \setminus \{0\}$, factors f into irreducible factors?

- Yes if a probabilistic algorithm is allowed.
- Yes if char E is fixed.
- Yes if GRH is true and $\deg f$ is fixed.

Factoring quadratic polynomials

Theorem. There is, for some $t \in \mathbb{Z}_{>0}$, an algorithm that, given a finite field E and $f \in E[X]$, $\deg f = 2$, finds the set Z(f) of all zeroes of f in E, and that, if GRH is true, runs in time at most $(1 + \log \# E)^t$.

The case char E=2

Let $f = uX^2 + vX + w$.

The map $E \to E$, $x \mapsto ux^2 + vx$, is \mathbf{F}_2 -linear.

Using linear algebra over \mathbf{F}_2 , one can determine the preimage of w, which equals Z(f).

The case char E > 2

Let $f = uX^2 + vX + w$ and $d = v^2 - 4uw$.

- If $d^{(\#E-1)/2} = -1$, then $Z(f) = \emptyset$.
- If d = 0, then $Z(f) = \{-v/(2u)\}.$
- If $d^{(\#E-1)/2} = 1$, then $Z(f) = \{(-v+x)/(2u) : x \in E, x^2 = d\}.$

The case char E > 2

Let $f = uX^2 + vX + w$ and $d = v^2 - 4uw$.

- If $d^{(\#E-1)/2} = -1$, then $Z(f) = \emptyset$.
- If d = 0, then $Z(f) = \{-v/(2u)\}.$
- If $d^{(\#E-1)/2} = 1$, then $Z(f) = \{(-v+x)/(2u) : x \in E, x^2 = d\}.$

Conclusion: we may assume $f = X^2 - d$ and $d^{(\#E-1)/2} = 1$.

Taking squareroots in \mathbf{F}_p with p odd

First, trying $c = 2, 3, \ldots$ in succession, find $c \in \mathbf{F}_p$ with $c^{(p-1)/2} = -1$.

If GRH is true, then the least such c is at most $4(\log p)^2$.

Taking squareroots in \mathbf{F}_p with p odd

First, trying $c = 2, 3, \ldots$ in succession, find $c \in \mathbf{F}_p$ with $c^{(p-1)/2} = -1$.

If GRH is true, then the least such c is at most $4(\log p)^2$.

Next apply the *Shanks-Tonelli* method to find \sqrt{d} .

The Shanks-Tonelli method

Given an odd prime p and c, $d \in \mathbf{F}_p$ with $c^{(p-1)/2} = -1$ and $d^{(p-1)/2} = 1$, it finds $x \in \mathbf{F}_p$ with $x^2 = d$.

The Shanks-Tonelli method (1)

Given an odd prime p and $c, d \in \mathbf{F}_p$ with $c^{(p-1)/2} = -1$ and $d^{(p-1)/2} = 1$, it finds $x \in \mathbf{F}_p$ with $x^2 = d$.

Write $p - 1 = 2^k \cdot (2l + 1)$. Replacing c and d by c^{2l+1} and d^{2l+1} , one may assume

$$c^{2^{k-1}} = -1, \quad d^{2^{k-1}} = 1.$$
(Note: $\sqrt{d} = \sqrt{d^{2l+1}} \cdot d^{-l}.$)

The Shanks-Tonelli method (2)

The method works with pairs (x, i)

 $\in \mathbf{F}_p \times \{0, 1, \dots, k-1\}$ that satisfy

$$(x^2)^{2^i} = d^{2^i},$$

starting with x = c and i = k - 1.

The Shanks-Tonelli method (2)

The method works with pairs (x, i) $\in \mathbf{F}_p \times \{0, 1, \dots, k-1\}$ that satisfy $(x^2)^{2^i} = d^{2^i},$

starting with x = c and i = k - 1.

- If i = 0: done! Else:
- If $(x^2)^{2^{i-1}} = d^{2^{i-1}}$: replace (x, i) by (x, i-1) and repeat.
- If $(x^2)^{2^{i-1}} = -d^{2^{i-1}}$: replace (x, i) by $(x \cdot c^{2^{k-1-i}}, i-1)$ and repeat.

Factoring quadratic polynomials

Theorem. There is, for some $t \in \mathbb{Z}_{>0}$, an algorithm that, given a finite field E and $f \in E[X]$, $\deg f = 2$, finds the set Z(f) of all zeroes of f in E, and that, if GRH is true, runs in time at most $(1 + \log \# E)^t$.

The remaining case

Given a finite field E and $d \in E$ with $\#E = p^n, p > 2, n > 1, d^{(p^n-1)/2} = 1,$ find $x \in E$ with $x^2 = d$.

The remaining case

Given a finite field E and $d \in E$ with $\#E = p^n, p > 2, n > 1, d^{(p^n-1)/2} = 1,$ find $x \in E$ with $x^2 = d$.

Use linear algebra over \mathbf{F}_p to find $y \in E, y \neq 0$, with $y^p = d^{(p-1)/2} \cdot y$.

The remaining case

Given a finite field E and $d \in E$ with $\#E = p^n, p > 2, n > 1, d^{(p^n-1)/2} = 1,$ find $x \in E$ with $x^2 = d$.

Use linear algebra over \mathbf{F}_p to find $y \in E, y \neq 0$, with $y^p = d^{(p-1)/2} \cdot y$.

Then $(d/y^2)^{(p-1)/2} = 1$, so d/y^2 is a square in \mathbf{F}_p , and if $z^2 = d/y^2$ then $(yz)^2 = d$.

Classifying finite fields

Theorem (E. Galois, 1830; E. H. Moore, 1893).

There is a bijective map

 $\{\text{finite fields}\}/\cong \longrightarrow \{\text{primes}\} \times \mathbf{Z}_{>0}$ $sending [E] \ to \ (\text{char} E, \deg E).$

A field of size p^n is denoted by \mathbf{F}_{p^n} or $GF(p^n)$.

Constructing finite fields

Conjecture. For some $t \in \mathbb{Z}_{>0}$, there is an algorithm that for given p, n constructs in time at most $(n + \log p)^t$ an explicit model for a field of size p^n .

This is correct

- if a probabilistic algorithm is allowed,
- if GRH is true,
- if p is fixed.

Constructing quadratic finite fields

For p > 2, knowing an explicit model for \mathbf{F}_{p^2} is equivalent to knowing $c \in \mathbf{F}_p$ with $c^{(p-1)/2} = -1$.

Such a value for c can be efficiently found with a probabilistic algorithm by drawing c at random.

Deterministically, one can try $c=2, 3, \ldots$ in succession. If GRH is true, this method runs in polynomial time.

Classifying finite fields

Theorem (E. Galois, 1830; E. H. Moore, 1893).

There is a bijective map

 $\{\text{finite fields}\}/\cong \longrightarrow \{\text{primes}\} \times \mathbf{Z}_{>0}$ $sending [E] \ to \ (\text{char} E, \deg E).$

A field of size p^n is denoted by \mathbf{F}_{p^n} or $GF(p^n)$.

The number of isomorphisms between two fields of size p^n equals n.

Field homomorphisms

The number of field homomorphisms from a finite field E to a finite field E' equals $\deg E$ if

char E = char E' and $\deg E | \deg E'$ and 0 otherwise, and all these field homomorphisms are *injective*.

Field homomorphisms

The number of field homomorphisms $E \to E'$ equals $\deg E$ if

char E = char E' and $\deg E | \deg E'$ and 0 otherwise, and all these field homomorphisms are *injective*.

If E and E' are specified as explicit models, then a field homomorphism $E \to E'$ is specified as a matrix over \mathbf{F}_p , where $p = \operatorname{char} E = \operatorname{char} E'$.

Finding field homomorphisms

Given two finite fields E, E' with $\operatorname{char} E = \operatorname{char} E' = p$, how to construct all field embeddings $E \to E'$?

Finding field homomorphisms

Given two finite fields E, E' with $\operatorname{char} E = \operatorname{char} E' = p$, how to construct all field embeddings $E \to E'$?

Conventional wisdom: write $E = \mathbf{F}_p(\alpha)$; find the irreducible polynomial f of α over \mathbf{F}_p ; and find all zeroes β of f in E'. All embeddings $E \to E'$ are given by $\alpha \mapsto \beta$. Finding a primitive element

If $E = \bigoplus_{i=0}^{n-1} \mathbf{F}_p \cdot e_i$ is a finite field, then some $\alpha \in \{e_0, e_1, \dots, e_{n-1}\}$ satisfies

$$\#\{\alpha^{p^i} : 0 \le i < n\} = n.$$

For any such α one has $E = \mathbf{F}_p(\alpha)$, and the irreducible polynomial f of α over \mathbf{F}_p equals $\prod_{i=0}^{n-1} (X - \alpha^{p^i})$.

Modern wisdom

Theorem (HWL, 1991). There is a polynomial-time algorithm that, given two explicit models E, E' for finite fields, computes all field embeddings $E \to E'$.

The quadratic case

Suppose $p = \operatorname{char} E = \operatorname{char} E' > 2$, $\operatorname{deg} E = \operatorname{deg} E' = 2$.

Write $E = \mathbf{F}_p(\sqrt{c})$ and $E' = \mathbf{F}_p(\sqrt{d})$, where $c, d \in \mathbf{F}_p$, $c^{(p-1)/2} = d^{(p-1)/2} = -1$.

Then $(c/d)^{(p-1)/2}=1$, so using Shanks-Tonelli we can find all $e\in \mathbf{F}_p$ with $c/d=e^2$.

The two field isomorphisms are then given by $\sqrt{c} \mapsto e \cdot \sqrt{d}$.

Consistent embeddings

Theorem (Bart de Smit & HWL). There is a polynomial-time algorithm that, given two explicit models E, E' for finite fields, computes a field embedding $\varphi_{E,E'}: E \to E'$ if there is one, and that has the property $\varphi_{E,E''} = \varphi_{E',E''} \circ \varphi_{E,E'}$ whenever meaningful.

Consistent embeddings

Theorem (Bart de Smit & HWL). There is a polynomial-time algorithm that, given two explicit models E, E' for finite fields, computes a field embedding $\varphi_{E,E'}: E \to E'$ if there is one, and that has the property $\varphi_{E,E''} = \varphi_{E',E''} \circ \varphi_{E,E'}$ whenever meaningful.

The algorithm is potentially useful for large distributed computing projects.

Proof modulo the main theorem

Main theorem (Bart de Smit & HWL). There is a polynomial-time algorithm that on input p, n, and an explicit model E for a field of size p^n , computes the standard model \mathbf{F}_{p^n} as well as a field isomorphism $\psi_E: \mathbf{F}_{p^n} \to E$.

To obtain consistent embeddings, it suffices to take $\varphi_{E,E'} = \psi_{E'} \circ \psi_E^{-1}$.

Standard models

Here \mathbf{F}_{p^n} denotes the standard model for a field of size p^n .

There are compatible embeddings

 $\mathbf{F}_{p^n} \subset \mathbf{F}_{p^m} \text{ for } n|m.$

The quadratic case

For p > 2, n = 2 one can take

$$\mathbf{F}_{p^2} = \mathbf{F}_p \cdot 1 \oplus \mathbf{F}_p \cdot \sqrt{s(p)},$$

where

$$s(p) = \sqrt{\sqrt{\cdots \sqrt{1}}},$$

each squareroot being chosen in

$$\{(p+1)/2,\ldots,p-2,p-1\},\$$

and the number of $\sqrt{\text{-signs being}}$ the number of factors 2 in p-1.

The general case

To define the standard model \mathbf{F}_{p^n} for general p and n, in such a way that the main theorem can be proved, we use a structural description of $\mathbf{\bar{F}}_p$, to be presented tomorrow.