MODELLING FINITE FIELDS

Hendrik Lenstra

Mathematisch Instituut

Universiteit Leiden

Finite fields

A finite field is a finite set E equipped with elements $0,1 \in E$ and maps $+, \cdot: E \times E \rightarrow E$ such that for all $a, b, c \in E$ one has

$$
\begin{array}{cr}
(a \cdot b) \cdot c=a \cdot(b \cdot c), & (a+b)+c=a+(b+c), \\
\exists d: d+a=0, & (\exists e: e \cdot a=1) \Leftrightarrow a \neq 0, \\
1 \cdot a=a, & (a+b) \cdot c=(a \cdot c)+(b \cdot c), \\
0+a=a, & a \cdot(b+c)=(a \cdot b)+(a \cdot c) .
\end{array}
$$

Classifying finite fields
Theorem (E. Galois, 1830; E. H. Moore, 1893).
There is a bijective map
$\{$ finite fields $\} / \cong \longrightarrow\{$ primes $\} \times \mathbf{Z}_{>0}$
sending $[E]$ to (char $E, \operatorname{deg} E)$.
A field of size p^{n} is denoted by $\mathbf{F}_{p^{n}}$ or $\operatorname{GF}\left(p^{n}\right)$.

Explicit models
An explicit model for a field of size p^{n} is a field with additive group $\mathbf{F}_{p}^{n}=\bigoplus_{i=0}^{n-1} \mathbf{F}_{p} \cdot e_{i}$, where $\mathbf{F}_{p}=\mathbf{Z} / p \mathbf{Z}$.

Such a model is numerically specified by the $\operatorname{system}\left(a_{i j k}\right)_{i, j, k=0}^{n-1}$ of elements $a_{i j k} \in \mathbf{F}_{p}$ satisfying

$$
e_{i} \cdot e_{j}=\sum_{k=0}^{n-1} a_{i j k} e_{k} \quad \text { for all } i, j
$$

Space: $O\left(n^{3} \log p\right)$.

Recognizing explicit models
Theorem. For some $t \in \mathbf{Z}_{>0}$, there is
an algorithm that, when $p \in \mathbf{Z}_{>1}, n \in \mathbf{Z}_{>0}$, and a system $\left(a_{i j k}\right)_{i, j, k=0}^{n-1}$ of n^{3} elements $a_{i j k} \in \mathbf{Z} / p \mathbf{Z}$ are given, decides in time at most $(n+\log p)^{t}$ whether these define an explicit model for a field of size p^{n}.

Defining finite fields
A finite field is a finite set E equipped with elements $0,1 \in E$ and maps $+, \cdot: E \times E \rightarrow E$ such that for all $a, b, c \in E$ one has

$$
\begin{array}{rr}
(a \cdot b) \cdot c=a \cdot(b \cdot c), & (a+b)+c=a+(b+c), \\
\exists d: d+a=0, & (\exists e: e \cdot a=1) \Leftrightarrow a \neq 0, \\
1 \cdot a=a, & (a+b) \cdot c=(a \cdot c)+(b \cdot c), \\
0+a=a, & a \cdot(b+c)=(a \cdot b)+(a \cdot c) .
\end{array}
$$

Characterizing finite fields

Theorem. Let $R,+$ be a finite abelian group equipped with a bilinear multiplication \cdot.
Then R is a field with + and \cdot if and only if

- the multiplication is associative;
- the exponent p of R is prime;
- the map $F: R \rightarrow R, x \mapsto x^{p}$ is bijective;
- the preimage of 0 under the map

$$
F-1: R \rightarrow R, x \mapsto x^{p}-x, \text { has size } p
$$

An algorithm for recognizing finite fields
Input: $p, n, a_{i j k}(0 \leq i, j, k<n)$.
To be tested: $R=\bigoplus_{i=0}^{n-1}(\mathbf{Z} / p \mathbf{Z}) e_{i}$ is a field with multiplication $e_{i} \cdot e_{j}=\sum_{k=0}^{n-1} a_{i j k} e_{k}$.

- test commutativity and associativity;
- test primality of p;
- with $e_{i}^{p}=\sum_{j=0}^{n-1} f_{i j} e_{j}$ and $F=\left(f_{i j}\right)_{i, j=0}^{n-1}$, test $\operatorname{rank} F=n$ and $\operatorname{rank}(F-I)=n-1$.

Irreducibility testing
Corollary. There is a polynomial-time algorithm that, given a finite field E and $f \in E[X]$, tests whether f is irreducible.

Proof: f is irreducible if and only if $E[X] /(f)$ is a finite field.

Factoring polynomials
Open problem. Is there a polynomial-time algorithm that, given a finite field E and $f \in E[X] \backslash\{0\}$, factors f into irreducible factors?

Factoring polynomials
Open problem. Is there a polynomial-time algorithm that, given a finite field E and $f \in E[X] \backslash\{0\}$, factors f into irreducible factors?

- Yes if a probabilistic algorithm is allowed.
- Yes if char E is fixed.
- Yes if GRH is true and $\operatorname{deg} f$ is fixed.

Factoring quadratic polynomials
Theorem. There is, for some $t \in \mathbf{Z}_{>0}$, an algorithm that, given a finite field E and $f \in E[X], \operatorname{deg} f=2$, finds the set $Z(f)$ of all zeroes of f in E, and that, if GRH is true, runs in time at most
$(1+\log \# E)^{t}$.

The case char $E=2$
Let $f=u X^{2}+v X+w$.
The map $E \rightarrow E, x \mapsto u x^{2}+v x$, is \mathbf{F}_{2}-linear.

Using linear algebra over \mathbf{F}_{2}, one can determine the preimage of w, which equals $Z(f)$.

The case char $E>2$
Let $f=u X^{2}+v X+w$ and $d=v^{2}-4 u w$.

- If $d^{(\# E-1) / 2}=-1$, then $Z(f)=\emptyset$.
- If $d=0$, then $Z(f)=\{-v /(2 u)\}$.
- If $d^{(\# E-1) / 2}=1$, then

$$
Z(f)=\left\{(-v+x) /(2 u): x \in E, x^{2}=d\right\}
$$

The case char $E>2$
Let $f=u X^{2}+v X+w$ and $d=v^{2}-4 u w$.

- If $d^{(\# E-1) / 2}=-1$, then $Z(f)=\emptyset$.
- If $d=0$, then $Z(f)=\{-v /(2 u)\}$.
- If $d^{(\# E-1) / 2}=1$, then

$$
Z(f)=\left\{(-v+x) /(2 u): x \in E, x^{2}=d\right\}
$$

Conclusion: we may assume $f=X^{2}-d$ and $d^{(\# E-1) / 2}=1$.

Taking squareroots in \mathbf{F}_{p} with p odd
First, trying $c=2,3, \ldots$ in succession,
find $c \in \mathbf{F}_{p}$ with $c^{(p-1) / 2}=-1$.
If GRH is true, then the least such c is at most $4(\log p)^{2}$.

Taking squareroots in \mathbf{F}_{p} with p odd
First, trying $c=2,3, \ldots$ in succession, find $c \in \mathbf{F}_{p}$ with $c^{(p-1) / 2}=-1$.

If GRH is true, then the least such c is at most $4(\log p)^{2}$.

Next apply the Shanks-Tonelli method to find \sqrt{d}.

The Shanks-Tonelli method
Given an odd prime p and $c, d \in \mathbf{F}_{p}$ with $c^{(p-1) / 2}=-1$ and $d^{(p-1) / 2}=1$, it finds $x \in \mathbf{F}_{p}$ with $x^{2}=d$.

The Shanks-Tonelli method (1)
Given an odd prime p and $c, d \in \mathbf{F}_{p}$ with $c^{(p-1) / 2}=-1$ and $d^{(p-1) / 2}=1$, it finds $x \in \mathbf{F}_{p}$ with $x^{2}=d$.

Write $p-1=2^{k} \cdot(2 l+1)$.
Replacing c and d by $c^{2 l+1}$ and $d^{2 l+1}$,
one may assume

$$
c^{2^{k-1}}=-1, \quad d^{2^{k-1}}=1
$$

(Note: $\sqrt{d}=\sqrt{d^{2 l+1}} \cdot d^{-l}$.)

The Shanks-Tonelli method (2)
The method works with pairs (x, i)
$\in \mathbf{F}_{p} \times\{0,1, \ldots, k-1\}$ that satisfy

$$
\left(x^{2}\right)^{2^{i}}=d^{2^{i}}
$$

starting with $x=c$ and $i=k-1$.

The Shanks-Tonelli method (2)
The method works with pairs (x, i)
$\in \mathbf{F}_{p} \times\{0,1, \ldots, k-1\}$ that satisfy

$$
\left(x^{2}\right)^{2^{i}}=d^{2^{i}}
$$

starting with $x=c$ and $i=k-1$.

- If $i=0$: done! Else:
- If $\left(x^{2}\right)^{2^{i-1}}=d^{2^{i-1}}$: replace (x, i) by ($x, i-1$) and repeat.
- If $\left(x^{2}\right)^{2^{i-1}}=-d^{2^{i-1}}$: replace (x, i) by $\left(x \cdot c^{2^{k-1-i}}, i-1\right)$ and repeat.

Factoring quadratic polynomials
Theorem. There is, for some $t \in \mathbf{Z}_{>0}$, an algorithm that, given a finite field E and $f \in E[X], \operatorname{deg} f=2$, finds the set $Z(f)$ of all zeroes of f in E, and that, if GRH is true, runs in time at most
$(1+\log \# E)^{t}$.

The remaining case
Given a finite field E and $d \in E$ with $\# E=p^{n}, p>2, n>1, d^{\left(p^{n}-1\right) / 2}=1$, find $x \in E$ with $x^{2}=d$.

The remaining case
Given a finite field E and $d \in E$ with $\# E=p^{n}, p>2, n>1, d^{\left(p^{n}-1\right) / 2}=1$, find $x \in E$ with $x^{2}=d$.

Use linear algebra over \mathbf{F}_{p} to find
$y \in E, y \neq 0$, with $y^{p}=d^{(p-1) / 2} \cdot y$.

The remaining case
Given a finite field E and $d \in E$ with $\# E=p^{n}, p>2, n>1, d^{\left(p^{n}-1\right) / 2}=1$, find $x \in E$ with $x^{2}=d$.

Use linear algebra over \mathbf{F}_{p} to find
$y \in E, y \neq 0$, with $y^{p}=d^{(p-1) / 2} \cdot y$.
Then $\left(d / y^{2}\right)^{(p-1) / 2}=1$, so d / y^{2} is a
square in \mathbf{F}_{p}, and if $z^{2}=d / y^{2}$ then $(y z)^{2}=d$.

Classifying finite fields
Theorem (E. Galois, 1830; E. H. Moore, 1893).
There is a bijective map
$\{$ finite fields $\} / \cong \longrightarrow\{$ primes $\} \times \mathbf{Z}_{>0}$
sending $[E]$ to (char $E, \operatorname{deg} E)$.
A field of size p^{n} is denoted by $\mathbf{F}_{p^{n}}$ or $\operatorname{GF}\left(p^{n}\right)$.

Constructing finite fields

Conjecture. For some $t \in \mathbf{Z}_{>0}$, there is an algorithm that for given p, n constructs in time at most $(n+\log p)^{t}$ an explicit model for a field of size p^{n}.

This is correct

- if a probabilistic algorithm is allowed,
- if GRH is true,
- if p is fixed.

Constructing quadratic finite fields
For $p>2$, knowing an explicit model for $\mathbf{F}_{p^{2}}$ is equivalent to knowing
$c \in \mathbf{F}_{p}$ with $c^{(p-1) / 2}=-1$.
Such a value for c can be efficiently
found with a probabilistic algorithm
by drawing c at random.
Deterministically, one can try $c=2,3, \ldots$ in succession. If GRH is true, this method runs in polynomial time.

Classifying finite fields

Theorem (E. Galois, 1830; E. H. Moore, 1893).
There is a bijective map
$\{$ finite fields $\} / \cong \longrightarrow\{$ primes $\} \times \mathbf{Z}_{>0}$
sending $[E]$ to (char $E, \operatorname{deg} E)$.
A field of size p^{n} is denoted by $\mathbf{F}_{p^{n}}$ or $\operatorname{GF}\left(p^{n}\right)$.
The number of isomorphisms between two fields of size p^{n} equals n.

Field homomorphisms
The number of field homomorphisms
from a finite field E to a finite field E^{\prime}
equals $\operatorname{deg} E$ if
char $E=\operatorname{char} E^{\prime}$ and $\operatorname{deg} E \mid \operatorname{deg} E^{\prime}$
and 0 otherwise, and all these field
homomorphisms are injective.

Field homomorphisms
The number of field homomorphisms
$E \rightarrow E^{\prime}$ equals $\operatorname{deg} E$ if
$\operatorname{char} E=\operatorname{char} E^{\prime}$ and $\operatorname{deg} E \mid \operatorname{deg} E^{\prime}$
and 0 otherwise, and all these field
homomorphisms are injective.
If E and E^{\prime} are specified as explicit models, then a field homomorphism
$E \rightarrow E^{\prime}$ is specified as a matrix over
\mathbf{F}_{p}, where $p=\operatorname{char} E=\operatorname{char} E^{\prime}$.

Finding field homomorphisms
Given two finite fields E, E^{\prime} with char $E=\operatorname{char} E^{\prime}=p$, how to construct all field embeddings $E \rightarrow E^{\prime}$?

Finding field homomorphisms
Given two finite fields E, E^{\prime} with $\operatorname{char} E=\operatorname{char} E^{\prime}=p$, how to construct all field embeddings $E \rightarrow E^{\prime}$?

Conventional wisdom: write $E=\mathbf{F}_{p}(\alpha)$; find the irreducible polynomial f of α over \mathbf{F}_{p}; and find all zeroes β of f in E^{\prime}.
All embeddings $E \rightarrow E^{\prime}$ are given by $\alpha \mapsto \beta$.

Finding a primitive element
If $E=\bigoplus_{i=0}^{n-1} \mathbf{F}_{p} \cdot e_{i}$ is a finite field, then some $\alpha \in\left\{e_{0}, e_{1}, \ldots, e_{n-1}\right\}$ satisfies

$$
\#\left\{\alpha^{p^{i}}: 0 \leq i<n\right\}=n .
$$

For any such α one has $E=\mathbf{F}_{p}(\alpha)$, and the irreducible polynomial f of α over \mathbf{F}_{p} equals $\prod_{i=0}^{n-1}\left(X-\alpha^{p^{i}}\right)$.

Modern wisdom
Theorem (HWL, 1991). There is a
polynomial-time algorithm that, given
two explicit models E, E^{\prime} for finite fields, computes all field embeddings $E \rightarrow E^{\prime}$.

The quadratic case
Suppose $p=\operatorname{char} E=\operatorname{char} E^{\prime}>2$,
$\operatorname{deg} E=\operatorname{deg} E^{\prime}=2$.
Write $E=\mathbf{F}_{p}(\sqrt{c})$ and $E^{\prime}=\mathbf{F}_{p}(\sqrt{d})$,
where $c, d \in \mathbf{F}_{p}, c^{(p-1) / 2}=d^{(p-1) / 2}=-1$.
Then $(c / d)^{(p-1) / 2}=1$, so using
Shanks-Tonelli we can find all $e \in \mathbf{F}_{p}$
with $c / d=e^{2}$.
The two field isomorphisms are then given by $\sqrt{c} \mapsto e \cdot \sqrt{d}$.

Consistent embeddings

Theorem (Bart de Smit \& HWL). There

 is a polynomial-time algorithm that, given two explicit models E, E^{\prime} for finite fields, computes a field embedding $\varphi_{E, E^{\prime}}: E \rightarrow E^{\prime}$ if there is one, and that has the property $\varphi_{E, E^{\prime \prime}}=\varphi_{E^{\prime}, E^{\prime \prime}} \circ \varphi_{E, E^{\prime}}$ whenever meaningful.Consistent embeddings
Theorem (Bart de Smit \& HWL). There is a polynomial-time algorithm that, given two explicit models E, E^{\prime} for finite fields, computes a field embedding $\varphi_{E, E^{\prime}}: E \rightarrow E^{\prime}$ if there is one, and that has the property $\varphi_{E, E^{\prime \prime}}=\varphi_{E^{\prime}, E^{\prime \prime}} \circ \varphi_{E, E^{\prime}}$ whenever meaningful.

The algorithm is potentially useful for large distributed computing projects.

Proof modulo the main theorem
Main theorem (Bart de Smit \& HWL).
There is a polynomial-time algorithm that on input p, n, and an explicit model E for a field of size p^{n}, computes the standard model $\mathbf{F}_{p^{n}}$ as well as a field isomorphism $\psi_{E}: \mathbf{F}_{p^{n}} \rightarrow E$.

To obtain consistent embeddings, it suffices to take $\varphi_{E, E^{\prime}}=\psi_{E^{\prime}} \circ \psi_{E}^{-1}$.

Standard models
Here $\mathbf{F}_{p^{n}}$ denotes the standard model
for a field of size p^{n}.
There are compatible embeddings
$\mathbf{F}_{p^{n}} \subset \mathbf{F}_{p^{m}}$ for $n \mid m$.

The quadratic case
For $p>2, n=2$ one can take

$$
\mathbf{F}_{p^{2}}=\mathbf{F}_{p} \cdot 1 \oplus \mathbf{F}_{p} \cdot \sqrt{s(p)},
$$

where

$$
s(p)=\sqrt{\sqrt{\cdots \sqrt{1}}},
$$

each squareroot being chosen in

$$
\{(p+1) / 2, \ldots, p-2, p-1\}
$$

and the number of $\sqrt{ }$-signs being the number of factors 2 in $p-1$.

The general case
To define the standard model $\mathbf{F}_{p^{n}}$
for general p and n, in such a way
that the main theorem can be proved, we use a structural description of $\overline{\mathbf{F}}_{p}$,
to be presented tomorrow.

