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Finite fields

A finite field is a finite set E equipped with
elements 0, 1 € £ and maps +, -: E X FE — E
such that for all a, b, ¢ € E one has

(@a-b)-c=a-(b-c), (a+b)+c=a+ (b+ c),
dd :d+a =0, (Jde:e-a=1) < a#0,
1-a=a, (a+b)-c=(a-c)+ (b-c),
0+a=a, a-(b+c)=(a-b)+ (a-c).



Classifying finite fields

Theorem (E. Galois, 1830; E. H. Moore, 1893).

There is a bijective map
{finite fields}/= — {primes} X Z+
sending |E] to (char F,deg F).

A field of size p" is denoted by F,» or GF(p").



Explicit models

An explicit model for a field of size p" is a
field with additive group F = @?:_01 F, e,
where F, = Z/pZ.

Such a model is numerically specified by the
system (awk)” o of elements a;;;, € F,

satisfying
Zk o Gijker  for all 4, j.

Space: O(n’logp).



Recognizing explicit models

Theorem. For somet € Z-~, there is

an algorithm that, when p € Zi-1, n € Z,
and a system (aijk)?,;li:() of n? elements
aiix € Z/pZ are given, decides in time

at most (n + logp)’ whether these define

an explicit model for a field of size p".



Defining finite fields

A finite field is a finite set E equipped with
elements 0, 1 € £ and maps +, -: E X FE — E
such that for all a, b, ¢ € E one has

(@a-b)-c=a-(b-c), (a+b)+c=a+ (b+ c),
dd :d+a =0, (Jde:e-a=1) < a#0,
1-a=a, (a+b)-c=(a-c)+ (b-c),
0+a=a, a-(b+c)=(a-b)+ (a-c).



Characterizing finite fields

Theorem. Let R, + be a finite abelian
group equipped with a bilinear multiplication -.
Then R is a field with + and - if and only if
o the multiplication is associative,

e the exponent p of R is prime;

e the map F: R — R, x — xP is biyjective;

e the preimage of 0 under the map

F—-—1.R— R, x — x — x, has size p.



An algorithm for recognizing finite fields

Input: p, n, a;;r (0 <14, 7, k <n).

To be tested: R =@ (Z/pZ)e; is a field

. . q. . n—1
with multiplication e; - e; = > . k€.

e test commutativity and associativity;
e test primality of p;

. —1 _

o with e/ = 3" fije; and F = (fi;)I7 .

test rank ' = n and rank(F — ) =n — 1.



Irreducibility testing

Corollary. There is a polynomial-time
algorithm that, given a finite field £ and
f € E|X], tests whether f is irreducible.

Proof: f is irreducible if and only if
E|X]/(f) is a finite field.



Factoring polynomials

Open problem. Is there a polynomial-time
algorithm that, given a finite field £ and
f € E|X|\{0}, factors f into irreducible

factors?



Factoring polynomials

Open problem. Is there a polynomial-time
algorithm that, given a finite field £ and
f € E|X|\{0}, factors f into irreducible

factors?

e Yes if a probabilistic algorithm is allowed.
e Yes if char F is fixed.
e Yes if GRH is true and deg f is fixed.



Factoring quadratic polynomials

Theorem. There is, for somet € Zy,
an algorithm that, given a finite field E
and f € E|X], deg f =2, finds the set
Z(f) of all zeroes of f in E, and that,

of GRH 1is true, runs in time at most
(1+ log#FE)".



The case char B = 2

Let f =uX?+vX + w.
The map F — E, © — uz’® + vz,
i1s Fs-linear.

Using linear algebra over F,, one

can determine the preimage of w,
which equals Z(f).



The case char B > 2
Let f =uX?+vX +w and d = v* — 4uw.
0.

o If d = 0, then Z(f) = {—v/(2u)}.

o If d#F=D/2 = _1 then Z(f)

o If d#E-1/2 =1 then
Z(f)={(-v+=x)/(2u) : x € E, z* = d}.



The case char B > 2
Let f =uX?+vX +w and d = v* — 4uw.
0.

o If d = 0, then Z(f) = {—v/(2u)}.

o If d#F=D/2 = _1 then Z(f)

o If d#E-1/2 =1 then
Z(f)={(-v+=x)/(2u) : x € E, z* = d}.

Conclusion: we may assume f = X? —d
and d#E-D/2 = 1.



Taking squareroots in ¥, with p odd

First, trying ¢ = 2, 3, ... In succession,
find ¢ € F, with cP=1/2 = 1.

If GRH is true, then the least such c
is at most 4(log p)?.



Taking squareroots in ¥, with p odd

First, trying ¢ = 2, 3, ... In succession,
find ¢ € F, with cP=1/2 = 1.

If GRH is true, then the least such c
is at most 4(log p)?.

Next apply the Shanks-Tonelli method
to find v/d.



The Shanks-Tonellt method

Given an odd prime p and ¢, d € F,,
with ¢P~1/2 = —1 and dP~V/2 =1,
it finds x € F,, with 2% = d.



The Shanks-Tonelli method (1)

Given an odd prime p and ¢, d € F,,
with ¢P~1/2 = —1 and dP~V/2 =1,
it finds x € F,, with 2% = d.

Write p — 1 = 28 - (21 + 1).

Replacing ¢ and d by ¢**! and d**1,
one may assume
Cka—l _ _1’ dzk:—l _ 1

(Note: vVd = Vd2+1 . d~)



The Shanks-Tonelli method (2)

The method works with pairs (x, 1)
c F, x{0,1,...,k — 1} that satisfy

(ac2)2i _ d2737

starting with x = cand 1 = k — 1.



The Shanks-Tonelli method (2)

The method works with pairs (x, 1)

c F, x{0,1,...,k — 1} that satisfy
(ac2)2i _ d2737

starting with x = cand 1 = k — 1.

e If 7 = 0: done! Else:

o If (22" =d* ' replace (z,%) by
(x,i — 1) and repeat.

o If ()% = —d?" " replace (z,4) by

21{:—1—7; .

(x-c i — 1) and repeat.



Factoring quadratic polynomials

Theorem. There is, for somet € Zy,
an algorithm that, given a finite field E
and f € E|X], deg f =2, finds the set
Z(f) of all zeroes of f in E, and that,

of GRH 1is true, runs in time at most
(1+ log#FE)".



The remaining case

Given a finite field F and d € E with
HE=p", p>2 n>1,dP"V2=1
find z € F with 22 = d.



The remaining case

Given a finite field F and d € E with
HE=p", p>2 n>1,dP"V2=1
find z € F with 22 = d.

Use linear algebra over F, to find
y € B, y#0, with y? = dP=1/2.y.



The remaining case

Given a finite field F and d € E with
HE=p", p>2 n>1,dP"V2=1
find z € F with 22 = d.

Use linear algebra over F, to find
y € B, y#0, with y? = dP=1/2.y.

Then (d/y*)?P~V/2 =1, so d/y? is a
square in F,, and if 2° = d/y* then
(yz)? = d.



Classifying finite fields

Theorem (E. Galois, 1830; E. H. Moore, 1893).

There is a bijective map
{finite fields}/= — {primes} X Z+
sending |E] to (char F,deg F).

A field of size p" is denoted by F,» or GF(p").



Constructing finite fields

Conjecture. For somet € Z~, there is an
algorithm that for given p, n constructs in

time at most (n + logp)' an explicit model
for a field of size p".

This is correct

e if a probabilistic algorithm is allowed,
e if GRH is true,

o if p is fixed.



Constructing quadratic finite fields

For p > 2, knowing an explicit model

for F,2 is equivalent to knowing

c € F, with Yl p——

Such a value for ¢ can be efficiently
found with a probabilistic algorithm

by drawing ¢ at random.

Deterministically, one can try c = 2, 3, ...
in succession. If GRH is true, this method

runs in polynomial time.



Classifying finite fields

Theorem (E. Galois, 1830; E. H. Moore, 1893).

There is a bijective map
{finite fields}/= — {primes} X Z+
sending |E] to (char F,deg F).

A field of size p" is denoted by F,» or GF(p").

The number of isomorphisms between

two fields of size p" equals n.



Field homomorphisms

The number of field homomorphisms
from a finite field E to a finite field £’
equals deg F if

char F = char ' and deg E|deg E’

and 0 otherwise, and all these field

homomorphisms are injective.



Field homomorphisms

The number of field homomorphisms
E — E’ equals deg F if

char F = char ' and deg F|deg E’

and 0 otherwise, and all these field

homomorphisms are injective.

If £ and E’ are specified as explicit
models, then a field homomorphism

E — FE' is specified as a matrix over
F,, where p = char ¥ = char E'.



Finding field homomorphisms

Given two finite fields E, E’ with
char £ = char £’ = p, how to construct
all field embeddings £ — E'?



Finding field homomorphisms

Given two finite fields E, E’ with
char £ = char £’ = p, how to construct
all field embeddings £ — E'?

Conventional wisdom: write £ = F,(«);
find the irreducible polynomial f of «
over F; and find all zeroes  of f in E'.

All embeddings E — E’ are given by a +— (.



Finding a primitive element

If £ = @?:_01 F), - e; is a finite field, then
some « € {eg,e1,...,6, 1} satisfies
#{a? :0<i<n}=n.

For any such « one has ' = F,(«), and

the irreducible polynomial f of o over
F, equals [[/— (X — o?").



Modern wisdom

Theorem (HWL, 1991). There is a
polynomaal-time algorithm that, given
two explicit models E, E' for finite fields,
computes all field embeddings E — E'.



The quadratic case

Suppose p = char £ = char £’ > 2,
deg F = deg ' = 2.

Write E = F,(\/c) and E' = F,(v/d),
where ¢, d € F), P12 = qlp=1)/2 — _1,
Then (¢/d)?~1/2 =1, so using
Shanks-Tonelli we can find all e € F,,
with ¢/d = €>.

The two field isomorphisms are then

given by /¢ — e - Vd.



Consistent embeddings

Theorem (Bart de Smit & HWL). There
1s a polynomaal-time algorithm that, given
two explicit models E, E' for finite fields,
computes a field embedding pp p: B — E'
of there 1s one, and that has the property

Yr.E" = Y B ° YpE whenever meaningful.



Consistent embeddings

Theorem (Bart de Smit & HWL). There
1s a polynomaal-time algorithm that, given
two explicit models E, E' for finite fields,
computes a field embedding pp p: B — E'
of there 1s one, and that has the property

Yr.E" = Y B ° YpE whenever meaningful.

The algorithm is potentially useful for

large distributed computing projects.



Proof modulo the main theorem

Main theorem (Bart de Smit & HWL).
There 1s a polynomial-time algorithm that
on input p, n, and an explicit model E for
a field of size p"*, computes the standard

model F,n as well as a field isomorphism

VY Fpn — B,

To obtain consistent embeddings, it

suffices to take pgp pr = Yp o 1%1-



Standard models
Here F)» denotes the standard model
for a field of size p”.

There are compatible embeddings

F,» C Fym for n|m.



The quadratic case

For p > 2, n = 2 one can take

Fp2 ZFp-l@Fp-\/S(p),

where

s(9) =V VI

each squareroot being chosen in

{p+1)/2,...,p—2,p— 1},

and the number of v/ -signs being

the number of factors 2 in p — 1.



The general case

To define the standard model F )~
for general p and n, in such a way
that the main theorem can be proved,
we use a structural description of Fp,

to be presented tomorrow.



