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Finite fields

A finite field is a finite set E equipped with

elements 0, 1 ∈ E and maps +, · :E × E → E

such that for all a, b, c ∈ E one has

(a · b) · c = a · (b · c), (a + b) + c = a + (b + c),

∃d : d + a = 0, (∃e : e · a = 1) ⇔ a 6= 0,

1 · a = a, (a + b) · c = (a · c) + (b · c),
0 + a = a, a · (b + c) = (a · b) + (a · c).



Two magic squares of Lee Sallows



Prime fields

Example: for p prime, Fp = Z/pZ =

{0, 1, . . . , p − 1} is a field of size p.



Prime fields

Example: for p prime, Fp = Z/pZ =

{0, 1, . . . , p − 1} is a field of size p.

Let E be a finite field. The subset

{1 + 1 + . . . + 1} is the prime field of E.

It may be identified with Fp for a unique

prime p, the characteristic charE of E.



Finite fields everywhere

Finite fields occur in

• finite group theory,

• algebraic number theory,

• statistics,

• combinatorics,

• algebraic geometry,

• coding theory,

• cryptography,

• . . .



Degree and cardinality

Let E be a finite field, and p = char E.

The degree deg E of E is the least number

of generators of the additive group of E,

which is the same as dimFp
E.

If deg E = n then #E = pn.



A field of size 4

Any set {0, 1, α, β} of size 4 has

exactly one field structure with

zero element 0 and unit element 1.

Notation: F4.

Addition: x + x = 0 for all x, and

any two of {1, α, β} add up to the third.

Multiplication: α2 = α−1 = β.

One has charF4 = degF4 = 2.



Other quadratic finite fields

Let p be an odd prime, and

let c ∈ Fp = Z/pZ be such that

c(p−1)/2 = −1 (= p − 1).

Then the set Fp ⊕ Fp
√

c consisting

of the p2 expressions {a + b
√

c} with

a, b ∈ Fp is a field, the multiplication

being determined by
√

c
2

= c.

It has characteristic p and degree 2.



Classifying finite fields

Theorem (E. Galois, 1830; E.H. Moore, 1893).

There is a bijective map

{finite fields}/∼= −→ {primes} × Z>0

sending [E] to (charE,deg E).

A field of size pn is denoted by Fpn or GF(pn).



Founding fathers

Évariste Galois Eliakim Hastings Moore

(1811–1832) (1862–1932)



Classifying finite fields

Theorem (E. Galois, 1830; E.H. Moore, 1893).

There is a bijective map

{finite fields}/∼= −→ {primes} × Z>0

sending [E] to (charE,deg E).

A field of size pn is denoted by Fpn or GF(pn).

The number of isomorphisms between

two fields of size pn equals n, so for n ≥ 2

a field of size pn is not uniquely unique.



Modelling Fpn

• Fpn = any set of size pn,

addition and multiplication by table look-up;

• Fpn = {∞} ∐
(

Z/(pn − 1)Z
)

,

multiplication = addition modulo pn − 1,

x 7→ x + 1 by table look-up (Zech logarithm),

a + b = (ab−1 + 1) · b for b 6= 0.



Vector space models

• n = 1: Fp = Z/pZ = {0, 1, . . . , p − 1},
addition and multiplication modulo p;

• general n: Fpn = (Z/pZ)n =
⊕n−1

i=0 Fp · ei,

addition is vector addition,

multiplication is determined by

ei · ej =
∑n−1

k=0 aijkek

for certain aijk ∈ Fp.



Special cases

• Fpn = Fp[X]/(f), where f ∈ Fp[X] is

monic of degree n and irreducible,

with basis {X i mod f : 0 ≤ i < n};

• towers or tensor products of such fields;

• subfields of fields given by vector space

models.



Explicit models

An explicit model for a field of size pn is a

field with additive group Fn
p =

⊕n−1
i=0 Fp · ei,

where Fp = Z/pZ.

Such a model is numerically specified by the

system (aijk)
n−1
i,j,k=0 of elements aijk ∈ Fp

satisfying

ei · ej =
∑n−1

k=0 aijkek for all i, j.

Space: O(n3 log p).



Example

For odd p, the field

Fp2 = Fp ⊕ Fp
√

c

(where c ∈ Fp satisfies c(p−1)/2 = −1)

is specified by

a000 = a011 = a101 = 1,

a110 = c,

aijk = 0 whenever i + j + k is odd.



A converse

Exercise. If (aijk)
1
i,j,k=0 defines a

field of size p2, with p odd, and

bij =
∑

0≤k,l≤1 aijkakll,

c = b00b11 − b01b10 ∈ Fp,

then one has c(p−1)/2 = −1.



A converse

Exercise. If (aijk)
1
i,j,k=0 defines a

field of size p2, with p odd, and

bij =
∑

0≤k,l≤1 aijkakll,

c = b00b11 − b01b10 ∈ Fp,

then one has c(p−1)/2 = −1.

Conclusion. Constructing Fp2

is “equivalent” to finding c ∈ Fp

with c(p−1)/2 = −1.



Finding a quadratic non-residue

For an odd prime p, the number of

c ∈ Fp with c(p−1)/2 = −1 equals (p − 1)/2.

Hence there is a probabilistic algorithm

with polynomial expected run time

that, given p, finds such an element c.

No deterministic polynomial-time

algorithm for this problem is known.



Constructing finite fields

Conjecture. For some t ∈ R>0, there is an

algorithm that for given p, n constructs in

time at most (n + log p)t an explicit model

for a field of size pn.



Constructing finite fields

Conjecture. For some t ∈ Z>0, there is an

algorithm that for given p, n constructs in

time at most (n + log p)t an explicit model

for a field of size pn.

This is correct

• if a probabilistic algorithm is allowed,

• if GRH is true,

• if p is fixed.



Classifying finite fields

Theorem (E. Galois, 1830; E.H. Moore, 1893).

There is a bijective map

{finite fields}/∼= −→ {primes} × Z>0

sending [E] to (charE,deg E).

A field of size pn is denoted by Fpn or GF(pn).

The number of isomorphisms between

two fields of size pn equals n, so for n ≥ 2

a field of size pn is not uniquely unique.



Isomorphisms of quadratic fields

Let p be an odd prime.

If c, d ∈ Fp satisfy c(p−1)/2 = d(p−1)/2 = −1,

then the number of e ∈ Fp with c = e2 · d
equals 2, and for each such e the map

Fp ⊕ Fp
√

c → Fp ⊕ Fp

√
d

a + b
√

c 7→ a + be
√

d

is a field isomorphism.



What does the notation Fpn mean?

• “the” finite field of size pn, well-defined

only up to isomorphism,

• a finite field of size pn,

• {α ∈ F̄p : αpn

= α}, where F̄p is an

algebraic closure of Z/pZ.



What does the notation Fpn mean?

• “the” finite field of size pn, well-defined

only up to isomorphism,

• a finite field of size pn,

• {α ∈ F̄p : αpn

= α}, where F̄p is an

algebraic closure of Z/pZ.

Bourbaki: “par abus de langage”.

M. Artin: “this notation is not too ambiguous”.

Should we care?



What does the notation C mean?

Unsatisfactory definitions:

• “the” quadratic field extension of R,

• “the” algebraic closure of R.

Satisfactory definition:

• C = R[X]/(X2 + 1).



Three models for the field of complex numbers

• R ×R, with (a, b) · (c, d) = (ac − bd, ad + bc),

• {(a b
c d) ∈ M(2,R) : a = d, b + c = 0},

• (R1 ⊕ Rγ ⊕ Rδ)/R·(1 + γ + δ), with

γ2 = γ−1 = δ.

Any two of these admit two R-isomorphisms.



Finding consistent identifications

In each model, single out a special

square root of −1.

Choose the isomorphism under which

these special square roots correspond.



Finding consistent identifications

In each model, single out a special

square root of −1.

Choose the isomorphism under which

these special square roots correspond.

Equivalently: for each model, pick an

isomorphism with the standard model

R[X]/(X2 + 1), and let the isomorphisms

pass through the standard model.



Why define Fpn?

Three computer-related reasons:

• it helps finding consistent

isomorphisms between finite

fields of the same size;

• it is convenient in computer

algebra systems;

• formal correctness enhances

computer-checkability.



Desirable properties of Fpn

(i) there are compatible

embeddings Fpn ⊂ Fpm for n|m;

(ii) Fpn is easy to construct;

(iii) it is easy to identify any

given field of size pn with Fpn .



Definition with Conway polynomials

GF(pn) = Z[X]/(p, fp,n), where fp,n ∈ Z[X]

is the Conway polynomial, see

http://www.math.rwth-aachen.de/

∼Frank.Luebeck/data/ConwayPol/



Definition with Conway polynomials

GF(pn) = Z[X]/(p, fp,n), where fp,n ∈ Z[X]

is the Conway polynomial, see

http://www.math.rwth-aachen.de/

∼Frank.Luebeck/data/ConwayPol/

fp,n = Xn − a1X
n−1 + a2X

n−2 − . . . + (−1)nan,

with (a1, a2, . . . , an) ∈ {0, 1, . . . , p − 1}n

lexicographically minimal such that

•
(

Z[X]/(p, fp,n)
)∗

= 〈X̄〉 ∼= Z/(pn − 1)Z,

• fp,d(X
(pn−1)/(pd−1)) ∈ (p, fp,n) for each d|n.



Desirable properties of Fpn

(i) there are compatible

embeddings Fpn ⊂ Fpm for n|m;

(ii) Fpn is easy to construct;

(iii) it is easy to identify any

given field of size pn with Fpn .



How do Conway polynomials score?

The fields GF(pn) as just defined satisfy (i),

they do not satisfy (ii), but once GF(pn)

has been constructed, it satisfies (iii).

Due to their algorithmic inaccessibility,

Conway polynomials need to be replaced.



Existence

Theorem (Bart de Smit & HWL).

One can define explicit models Fpn ,

one for each pair (p, n), such that

(i), (ii), and (iii) are satisfied.



Desirable properties of Fpn

(i) there are compatible

embeddings Fpn ⊂ Fpm for n|m;

(ii) Fpn is easy to construct;

(iii) it is easy to identify any

given field of size pn with Fpn .



Existence and uniqueness

Theorem (Bart de Smit & HWL).

One can define explicit models Fpn ,

one for each pair (p, n), such that

(i), (ii), and (iii) are satisfied.

There is a sense in which the sequence

(Fpn)p,n of explicit models is uniquely

determined.



Property (ii) in the quadratic case

Theorem. There is a probabilistic

algorithm with polynomial expected run time

that, on input an odd prime p, finds c ∈ Fp

with c(p−1)/2 = −1, and that finds the same

c when called twice for the same p.



Property (ii) in the quadratic case

Theorem. There is a probabilistic

algorithm with polynomial expected run time

that, on input an odd prime p, finds c ∈ Fp

with c(p−1)/2 = −1, and that finds the same

c when called twice for the same p.

The output of the algorithm on input

p is called the standard quadratic

non-residue modulo p, notation: s(p).



Property (iii) in the quadratic case

Theorem. There is a deterministic

polynomial-time algorithm that, on

input an odd prime p and an element

d ∈ Fp with d(p−1)/2 = −1, computes s(p)

as well as e ∈ Fp with s(p) = e2 · d.



Existence of s

Define

s(p) =

√

√

· · ·
√

1,

each squareroot being chosen in

{(p + 1)/2, . . . , p − 2, p − 1},

and the number of
√

-signs being

the number of factors 2 in p − 1.

One can show that s has all asserted

properties.



A table of standard quadratic non-residues

p s(p) p s(p) p s(p) p s(p) p s(p)

3 2 29 17 61 50 101 91 139 138

5 3 31 30 67 66 103 102 149 105

7 6 37 31 71 70 107 106 151 150

11 10 41 27 73 51 109 76 157 129

13 8 43 42 79 78 113 78 163 162

17 14 47 46 83 82 127 126 167 166

19 18 53 30 89 77 131 130 173 93

23 22 59 58 97 78 137 127 179 178



Uniqueness of s

Let s′(p) ∈ Fp, s′(p)(p−1)/2 = −1,

for each odd prime p.

Theorem. The function s′ also has

property (iii) if and only if there is a

function f that can be computed in

polynomial time such that for all p

one has f
(

p, s(p)
)

∈ Fp and

s′(p) = f
(

p, s(p)
)2 · s(p).



Property (iii) in the quadratic case

Theorem. There is a deterministic

polynomial-time algorithm that, on

input an odd prime p and an element

d ∈ Fp with d(p−1)/2 = −1, computes s(p)

as well as e ∈ Fp with s(p) = e2 · d.



Standard models for finite fields

For p odd, write Fp2 = Fp · 1 ⊕ Fp ·
√

s(p).

It is an explicit model for a field of size p2,

called the standard model.

For general p and n, one can define the

standard model for a field of size pn,

notation: Fpn .

It is an explicit model, and the sequence

(Fpn)p,n has the desired properties.



Desired properties

(i) there are compatible

embeddings Fpn ⊂ Fpm for n|m;

(ii) Fpn is easy to construct;

(iii) it is easy to identify any

given field of size pn with Fpn .



Existence of the standard models

See

http://www.math.leidenuniv.nl/

∼desmit/papers/standard models.pdf

(Bart de Smit & HWL).



Property (iii) in general

Main theorem (Bart de Smit & HWL).

There is a polynomial-time algorithm that

on input p, n, and an explicit model A for

a field of size pn, computes the standard

model Fpn as well as a field isomorphism

Fpn → A.



Two more lectures

Thursday :

fundamental algorithms

for finite fields.

Friday :

the structure of F̄p,

construction of the

standard model.


