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Rise of high-dimensionality
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Examples: Biological Sciences

High-dim variable selection characterizes many contemporary

statistical problems.

Bioinformatic: disease classification / predicting clinical

outcomes using microarray, proteomics, fMRI data;

Association studies between phenotypes and SNPs.
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Example: Economics, Finance, Marketing

HPA / drug sales collected in many regions

Local correlation makes dimensionality growths quickly.
Sample Correlation
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1000 neighborhoods requires 1 m parameters.

Managing 2K stocks involves 2m elements in covariance.
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Example: Spatial temporal data

�Meteorology & Earth Sciences & Ecology

Temperatures and other attributes (precipitation, population

size) are collected over time and over many regions.
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Forecasting large panel data over a short time horizon

poses more challenges.
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Example: Machine Learning

� Document or text classification: E-mail spam.

Feature extractions: Frequency counting

Word-document information: For document x and word y , define

Ix ,y = log

(
ncx ,y

 c,y  cx ,

)
,

where cx ,y = No. of word y in doc x .

�Each word is summarized by (I1,y , · · · , Ip,y)

�Each document summarized by (Ix ,1, · · · , Ix ,q)

� Computer vision.
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Growth of Dimensionality

�Dimen. grows rapidly w/ interactions: 5000 =⇒ 12.5m.

Synergy of Two Genes: colon cancer in Hanczar et al (2007).

e.g., Y = I(X1 +X2 > 3) and Y ⊥ X1.

G1

50% 50%

0%

white – patients; black – normal
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Aims of High-dimensional Regression and Classification

� To construct as effective a method as possible to predict

future observations.

� To gain insight into the relationship between features and

response for scientific purposes, as well as, hopefully, to

construct an improved prediction method.

�Bickel (2008)
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Goal of Feature Selection
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Goal of Feature Selection

Questions: �How to select? �How many?
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Popular Assumption: Sparsity

Dimen: logp = O(na) Intrinsic dim: s � n. (Sparsity)

Sparse Structure
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Essential Assumption: homogeneity

Sparsity: i ∼i.i.d. (1−p1)0 +p1F1, p1 ≈ 0.

�two mixtures with known atom 0

Homogeneity: i ∼i.i.d. p1F1 +p2F2 +p3F3 + · · ·+pkFk

e.g. F1 = 0, F2 = μ (unknown ).

Example: Projecting housing prices.

�Local regions have “≈” regression coefficients

�Time lag dependence have ”≈” homogeneous.

Example: Counting "+" in lab tests, collapsing categorical

variables.
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Impact of Dimensionality
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1. Noise accumulation

Regression:

�Not directly implementable if p > n.

�Prediction error is (1+ p
n)2, if p ≤ n.
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Classification: No implementation problems, but error rates

—depend on C2
p/
√

p (Fan & Fan 08), Cp is distance.

—perfectly classifiable if C2
p/
√

p → (Hall, Pittelkow & Ghosh,08).
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An illustration

�dimensionality: p = 4500, n = 200

�Signals: μ1 = 0.980 +0.02DE, μ2 = 0
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Impact of Dimensionality on classification

−5 0 5
−4

−2

0

2

4
(a) m=2

−5 0 5 10
−5

0

5

10
(b) m=100

−10 0 10 20
−10

−5

0

5

10
(c) m=500

−4 −2 0 2 4
−4

−2

0

2

4
(d) m=4500

�Classification power depends on d
i=12

i /
√

d .

Jianqing Fan Variable Selection



2. Spurious correlations

An experiment: Generate n = 50 Z1, · · · ,Zp ∼i.i.d. N(0,1);

�compute r = maxj≥2 corr(Z1,Zj).
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�compute maximum multiple correlation:

R = max|S|=5 corr(Z1,ZS).

Jianqing Fan Variable Selection



2. Spurious correlations

An experiment: Generate n = 50 Z1, · · · ,Zp ∼i.i.d. N(0,1);

�compute r = maxj≥2 corr(Z1,Zj).

0.4 0.5 0.6 0.7 0.8
0

2

4

6

8

10

12

14

Maximum absolute sample correlation

D
en

si
ty

 

 

0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

Maximum absolute multiple correlation
D

en
si

ty

 

 

p = 103

p = 104
p = 103

p = 104

�compute maximum multiple correlation:

R = max|S|=5 corr(Z1,ZS).

Jianqing Fan Variable Selection



2. Spurious correlations

An experiment: Generate n = 50 Z1, · · · ,Zp ∼i.i.d. N(0,1);

�compute r = maxj≥2 corr(Z1,Zj).

0.4 0.5 0.6 0.7 0.8
0

2

4

6

8

10

12

14

Maximum absolute sample correlation

D
en

si
ty

 

 

0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

Maximum absolute multiple correlation
D

en
si

ty

 

 

p = 103

p = 104
p = 103

p = 104

�compute maximum multiple correlation:

R = max|S|=5 corr(Z1,ZS).

Jianqing Fan Variable Selection



False scientific discoveries

If Z1 is responsible for breast cancer, but we can also discover

other 5 genes, indep of outcome!

�Y = 1 and 0, whether a neuroblastoma child has 3-y EFS.

n = 125: 25 "+" and 100 "−", testing = 114

�X ’s are independent normal, simulating gene expressions.
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Impact on Statistical Inference

False statistical inferences: If Y = Z1 and fit

Y = XT
M̂
+ ,

the residual variance

̂2 =
yT (In −PM̂)y

n− ŝ
= (1− 2

n)
‖‖2

n− ŝ
,

Fraction of bias: 2
n = T PM̂/‖‖2 = OP(ŝ logp/n).

Naive two-stage: Use the selected model and refit the data.

Seriously underestimate the variance.
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Impact of spurious correlation on variance est (I)

�ŝ = 1 with dimensionality p various.

0 0.2 0.4 0.6 0.8
0

2

4

6

8

10

12
(a)

de
ns

ity
 o

f 
n

p = 10
p = 100
p = 1000
p = 5000

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3
(b)

de
ns

ity
 o

f 
n2

p = 10
p = 100
p = 1000
p = 5000

Jianqing Fan Variable Selection



Spurious variables predict realized noises

Data Generating Process: Y = 2X1 +0.3X2 + 

Spurious variables: selected to predict realized noise.

Stepwise addition: Selected coordinated variables to best

predict .
�The more spurious variables, the better realized noises are

predicted.
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Impact of spurious correlation on variance est (II)

�p = 1000,n = 50 with various spurious variables ŝ.

�stepwise addition algorithm.
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Naive two-stage and RCV

�p = 1000,n = 50 with various spurious variables ŝ.

�Correlation screening (SIS).
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3. Estimated Covariance Matrices

Spectral distribution: of engenvalues 1, · · · ,p of Σ.

Identity matrix: Σ = Ip. 1 = · · · = p = 1.

Data: X1, · · · ,Xn ∼i.i.d. N(0, Ip). Let Σ̂n be the sample cov.

What is the spectral distribution of Σ̂?
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Curse of Ultrahigh Dimensionality

�Computational cost �Stability

�Estimation accuracy: �noise accumulation �spurious corr

Key Idea: Large-scale screening + moderate-scale searching.
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Penalized quasi-likelihood

a moderate-scale selection
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Folded concave penalized quasi-likelihood

Q() = n−1n
i=1 L(Yi ,xT

i )+p
j=1 p(|j |) (Fan & Li, 01)

�Simultaneously estimate coefs and choose variables.

All possible variables Independence Screening

What is the role of penalty functions?

Popular choice L1. Preferred choice: SCAD (folded-concave).

�Better bias property and model selection consistency.
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Iterated reweighted LASSO

Q()≈ n−1
n


i=1

L(Yi ,x
T
i )+

p


j=1

{
p(|(k)

j |)+p′
(|(k)

j |)(|j|− |(k)
j |)

}
.

Qapp() = n−1n
i=1 L(Yi ,xT

i )+p
j=1 wj ||j , wj = p′(|

(k)
j |)
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�(0) = 0 =⇒ LASSO.

�Iteration reduces the bias

�Zero is a non-absorbing state (comparing wj = 1/|(k)
j |).
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Remarks

Other algorithms: LQA (Fan & Li, 01); LLA (Zou & Li, 08);

PLUS (Zhang, 09); Coordinate optimization (Fu & Jiang, 99).

Capacity: handle NP-dimensionality with wider capacity.

�possesses an oracle property (Fan & Lv, 09),

reducing the bias of LASSO.
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The ISIS Method

a two-scale framework
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A two-scale method

Key Idea: Large-scale screening + moderate-scale searching.
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Illustration of ISIS

All possible variables Independence Screening

Moderate−scale Selection All candidates
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Illustration of ISIS

All candidates Conditional Screening

Moderate−scale selection All candidates
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A case study
Forecasting home price appreciation
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The Data and Objective

Data: HPA collected at ”≈” 1000 CBSA.
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Objective: To project HPA over 30-40 years for approx 1000

CBSAs based on national assumption.

Jianqing Fan Variable Selection



Some Examples
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Location Correlation and Seasonality

Sample Correlation
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Conditional sparsity

Model: Yt+1 is the HPA in one CBSA:

Yt+1 = 0 +1XN,t +
381


j=1

jXt ,j + t

�{j}381
j=2 are sparse

�Explored by penalized least-squares with SCAD and LLA

�Results 30% more accurate than the simple time series

modeling
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Local neighborhood selection

Sparse Structure
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Effectiveness of sparse modeling

Sample Correlation
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Summary

High-dimensionality and massive data collection

characterize many contemporary statistical problems from

frontiers of science, engineering and humanities.

Impact of dimensionality: �noise accumulation; �spurious

correlation; �intensive computation

Massive data collections and new scientific research have

strong impact on mathematical thinking, methodological

development, scientific computing and theoretical studies:
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Conclusion

� The exciting developments in frontiers of science and

technology clearly represent the golden opportunities for

mathematical sciences with significant challenges.

� Mathematical sciences will grow stronger when they

confront the problems of high societal impacts while

providing fundamental understanding to these problems

and their associated methods that push theory, methods,

computation and science forward.
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