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Rise of high-dimensionality
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Examples: Biological Sciences

High-dim variable selection characterizes many contemporary
statistical problems.

@ Bioinformatic: disease classification / predicting clinical
outcomes using microarray, proteomics, fMRI data;

@ Association studies between phenotypes and SNPs.
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Example: Economics, Finance, Marketing

@ HPA / drug sales collected in many regions

@ Local correlation makes dimensionality growths quickly.

@ 1000 neighborhoods requires 1 m parameters.

@ Managing 2K stocks involves 2m elements in covariance.
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Example: Spatial temporal data

BMeteorology & Earth Sciences & Ecology

@ Temperatures and other attributes (precipitation, population
size) are collected over time and over many regions.

Market Sale

10406 30406 5e+06  7e+06

@ Forecasting large panel data over a short time horizon
poses more challenges.
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Example: Machine Learning

B Document or text classification: E-mail spam.

@ Feature extractions: Frequency counting
@ Word-document information: For document x and word y, define

by =log [ e—xd
=9\ See, Se )

where ¢y, = No. of word y in doc x.
% Each word is summarized by (f1.y,- - ,lpy)
% Each document summarized by (/x.1,-+ , Ix.q)

B Computer vision.
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Growth of Dimensionality

EDimen. grows rapidly w/ interactions: 5000 = 12.5m.
Synergy of Two Genes: colon cancer in Hanczar et al (2007).
eg., Y=I(X;+Xo>3)and Y L Xj.
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Aims of High-dimensional Regression and Classification

B To construct as effective a method as possible to predict

future observations.
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Aims of High-dimensional Regression and Classification

B To construct as effective a method as possible to predict

future observations.

B To gain insight into the relationship between features and
response for scientific purposes, as well as, hopefully, to
construct an improved prediction method.

MBickel (2008)
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Goal of Feature Selection
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Goal of Feature Selection
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Goal of Feature Selection
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Questions: BHow to select? mHow many?ﬁ
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Popular Assumption: Sparsity

Dimen: logp = O(n?) Intrinsic dim: s < n. (Sparsity)

Sparse Structure

250 [
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Essential Assumption: homogeneity

Sparsity: 0; ~j.q4. (1—p1)do+p1Fi1, py ~ 0.
Wiwo mixtures with known atom 0
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Sparsity: 0; ~j.q4. (1—p1)do+p1Fi1, py ~ 0.
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Essential Assumption: homogeneity

Sparsity: 0; ~j.q4. (1—p1)do+p1Fi1, py ~ 0.
Wiwo mixtures with known atom 0

Homogeneity: 0; ~; ;4. p1F1+poFo+psFz+ - -+ piFik
e.g. F1 = 9o, F> =8, (unknown ).

Example: Projecting housing prices.
MLocal regions have “~” regression coefficients
ETime lag dependence have =" homogeneous.

Example: Counting "+" in lab tests, collapsing categorical
variables.
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Impact of Dimensionality
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1. Noise accumulation
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1. Noise accumulation

Regression: I
ENot directly implementable if p > n. .o,
WPrediction error is (14 £)o?, if p < n. | fe

Classification: No implementation problems, but error rates
—depend on C3/./p (Fan & Fan 08), Cp is distance.
—perfectly classifiable if C5/./p — o (Hall, Pittelkow & Ghosh,08).
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Edimensionality: p = 4500, n=200
MSignals: y; =0.985p +0.02DE,  u, =0
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Impact of Dimensionality on classification

(a) m=2 (b) m=100
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2. Spurious correlations

An experiment: Generate n =50 Zy,--- ,Z, ~j 4. N(0,1);
BMcompute r = max;>2corr(Zy, Z;).
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2. Spurious correlations

An experiment: Generate n =50 Zy,--- ,Z, ~j 4. N(0,1);

BMcompute r = max;>2corr(Zy, Z;).
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Ecompute maximum multiple correlation:
R = maxg|—scorr(Z,Zs).
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Ecompute maximum multiple correlation:
R = maxg|—scorr(Z,Zs).
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False scientific discoveries

If Z; is responsible for breast cancer, but we can also discover

other 5 genes, indep of outcomel!
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False scientific discoveries

If Z; is responsible for breast cancer, but we can also discover

other 5 genes, indep of outcome!

MY = 1 and 0, whether a neuroblastoma child has 3-y EFS.
n=125: 25 "4+" and 100 "—", testing = 114

B X’s are independent normal, simulating gene expressions.
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Impact on Statistical Inference

False statistical inferences: If Y = Z; and fit

_wyT
Y_XMB+87

the residual variance
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Impact on Statistical Inference

False statistical inferences: If Y = Z; and fit

T
Y = XMB+ €,
the residual variance
ge VU =Py)y (o el?
n—=3 "n—3§’

Fraction of bias: y2 = ¢"Pye/||€[|> = Op(8 logp/n).

Naive two-stage: Use the selected model and refit the data.

Seriously underestimate the variance.
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Spurious variables predict realized noises

Data Generating Process: Y =2X; +0.3X>+¢€

Spurious variables: selected to predict realized noise.

Stepwise addition: Selected coordinated variables to best

predict €.
B The more spurious variables, the better realized noises are
predicted.
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Impact of spurious correlation on variance est (ll)

Bp = 1000, n = 50 with various spurious variables S.
Hstepwise addition algorithm.
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Naive two-stage and RCV

N

= 50 with various spurious variables s.

Hp = 1000, n

BCorrelation screening (SIS).
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3. Estimated Covariance Matrices

Spectral distribution: of engenvalues A1,--- ,A, of .

Identity matrix: X = [,. Ay =--- =Ap=1.

Data: X1,---,Xn ~jia N(O,/p). Let 3, be the sample cov.
What is the spectral distribution of 3?2

=20 p = s0

Frequency

Frequency
[ A A
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3. Estimated Covariance Matrices

Spectral distribution: of engenvalues A1,--- ,A, of .

Identity matrix: X = [,. Ay =--- =Ap=1.
Data: X1,---,Xn ~jia N(O,/p). Let 3, be the sample cov.
What is the spectral distribution of 3?2

p = s0

> = 20

Frequency
[ A A
Frequency

cigenvalue cigenvalue

Low-dim Moderate-dim High-dim Ultra-High
p<Ln p=cn,c <1 p=cn,c>1 p>n
1 Tracy-Wisdom Law Mixture do
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Curse of Ultrahigh Dimensionality

BComputational cost W Stability
BEstimation accuracy: ¥ noise accumulation sk spurious corr

Key Idea: Large-scale screening + moderatﬂe-s%ale searching.
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Penalized quasi-likelihood

a moderate-scale selection
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Folded concave penalized quasi-likelihood

Q(B) =T34 L(Yi,x[B)+ 21 oo (IB)]) (Fan & Li, 01)
B Simultaneously estimate coefs and choose variables.

Al possible variables Independence Screening
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Folded concave penalized quasi-likelihood

Q(B) =T34 L(Yi,x[B)+ 21 oo (IB)]) (Fan & Li, 01)
B Simultaneously estimate coefs and choose variables.

Al possible variables Independence Screening

@ What is the role of penalty functions?

@ Popular choice Lq. Preferred choice: SCAD (folded-concave).
MBetter bias property and model selection consistency.
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Iterated reweighted LASSO

< S 0xTB) 3 (o) 108008 - D)

@*P(B) = ' S L(Yix! B) + 32 wilBl,  w=p(1BY))
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Iterated reweighted LASSO

~n S LY TB)+Z{ )+e 18108 - 18D }-

1

Q0 (B) =~ Sy LY xXTB) + S wlBl  w = (B])

nnnnnnn

beta

mp© = 0 = LASSO.
Hlteration reduces the bias
MZero is a non-absorbing state (comparing w; = 1/|B}k)\“/).
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Other algorithms: LQA (Fan & Li, 01); LLA (Zou & Li, 08);

PLUS (zhang, 09); Coordinate optimization (Fu & Jiang, 99).
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Remarks

Other algorithms: LQA (Fan & Li, 01); LLA (Zou & Li, 08);
PLUS (zhang, 09); Coordinate optimization (Fu & Jiang, 99).

Capacity: handle NP-dimensionality with wider capacity.
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Remarks

Other algorithms: LQA (Fan & Li, 01); LLA (Zou & Li, 08);
PLUS (zhang, 09); Coordinate optimization (Fu & Jiang, 99).

Capacity: handle NP-dimensionality with wider capacity.

Hpossesses an oracle property (Fan & Ly, 09),
reducing the bias of LASSO.
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The ISIS Method

a two-scale framework
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A two-scale method

Key Idea: Large-scale screening + moderate-scale searching.
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Illustration of ISIS

All possible variables Independence Screening

| R ——————

Moderate-scale Selection All candidates

—
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Illustration of ISIS

All candidates Conditional Screening

Moderate-scale selection All candidates
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A case study

Forecasting home price appreciation
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The Data and Objective

Data: HPA collected at "~” 1000 CBSA.

Objective: To project HPA over 30-40 years for approx 1000
CBSAs based on national assumption.
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© Sum of RepeatSales
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Location Correlation and Seasonality

National HPA
.
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Conditional sparsity

Model: Y;;4 is the HPA in one CBSA:

381
Yit1 = Bo+B1Xnt+ 2 Bj Xt + €t

=
m{[3;}7%} are sparse

BExplored by penalized least-squares with SCAD and LLA

BResults 30% more accurate than the simple time series
modeling
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Local neighborhood selection

Sparse Structure
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Effectiveness of sparse modeling
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Summary

@ High-dimensionality and massive data collection
characterize many contemporary statistical problems from

frontiers of science, engineering and humanities.
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correlation; Yintensive computation
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@ High-dimensionality and massive data collection
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@ Massive data collections and new scientific research have
strong impact on mathematical thinking, methodological
development, scientific computing and theoretical studies:
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Summary

@ High-dimensionality and massive data collection
characterize many contemporary statistical problems from
frontiers of science, engineering and humanities.

@ Impact of dimensionality: ¥ noise accumulation; ¥ spurious
correlation; Yintensive computation

@ Massive data collections and new scientific research have
strong impact on mathematical thinking, methodological
development, scientific computing and theoretical studies:
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Conclusion

B The exciting developments in frontiers of science and
technology clearly represent the golden opportunities for
mathematical sciences with significant challenges.

B Mathematical sciences will grow stronger when they
confront the problems of high societal impacts while
providing fundamental understanding to these problems
and their associated methods that push theory, methods,
computation and science forward.
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