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Traditional Design-Based Approach

Strategies (design and estimation) that appeared reasonable were
entertained (accounting for costs). Relative properties carefully
studied by analytical and/or empirical methods, mainly through
comparison of MSE and anticipated MSE under plausible models

Design unbiasedness not insisted upon because it “often results
in much larger MSE than necessary”. Instead, design consistency
is deemed necessary for large samples

Working models used to obtain efficient design-consistent
estimators: model-assisted, GREG estimators
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Unified Theory

Finite population: U = {1, 2, · · · ,N}
Sampling design: s, p(s)
Sample data: {(i, yi), i ∈ s}
Godambe class: Estimator of population total Y =

∑N
i=1 yi uses

weights di(s) that may depend on both i and s

Ŷ =
∑
i∈s

di(s)yi

Theorem: BLUE of Y does not exist in the Godambe class even
for simple random sampling.
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Non-Parametric Likelihood

Parameter vector ỹ = (ỹ1, · · · , ỹN)′; labels i
Sample data: {(i, yi), i ∈ s} minimal sufficient

Godambe (1966) likelihood function:

L(ỹ) =

{
p(s), if sample data consistent with ỹ
0, otherwise

Godambe likelihood is uninformative: all possible
non-observed yi, i /∈ s lead to the same (flat) likelihood.
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Non-Parametric Likelihood (Cont’d)

Resolution I: Bayesian route (Ericson, 1969)
Specify an informative (exchangeable) prior distribution:
Given a joint N-dimensional prior on ỹ with pdf g(ỹ) and assume
the sampling design is independent of ỹ, the posterior density is
given by

h(ỹ|yi, i ∈ s) =
{

g(ỹ)/g(ỹs) if yi = ỹi for i ∈ s ,
0 otherwise ,

Problems:
– How to specify g(ỹ)?
– Posterior inferences are independent of the sampling design,

usually invalid under the design-based frameowrk
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Non-Parametric Likelihood (cont’d)

Resolution II: Likelihood route (Hartley and Rao, 1968)
Ignore certain aspects of data. For example, for SRS suppress
labels i and use (yi, i ∈ s). Likelihood now becomes informative
and inference depends on the sample design.

C. R. Rao (1970): “In situations where the full likelihood does
not satisfy our purpose, we may have to depend on a statistic T
which for every observed value supplies information (however
poor it may be) on parameters of interest. Unfortunately, no
unique choice of T may be possible.”

9 / 34



Preliminaries Likelihood Approaches Empirical Likelihood Pseudo Empirical Likelihood Additional Remarks

Scale-Load Approach (Hartley and Rao, 1968):
SRSWOR

Finite set of known scale points y∗1, · · · , y∗D with scale loads
N1, · · · ,ND

Population mean Ȳ =
∑D

j=1 pjy∗j where pj = Nj/N
Sample scale loads n1, · · · , nD

Likelihood function L(N1, · · · ,ND) is hypergeometric likelihood
with support on nj > 0 (j = 1, · · · , d):

∏d
j=1

(Nj
nj

)
For SRS with replacement, L(p1, · · · , pd) reduces to multinomial
likelihood, now popularly known as empirical likelihood (Owen,
1988)
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Empirical Likelihood (EL) for Independent
Observations

y1, · · · , yn IID with CDF F(t); Empirical likelihood function

L(p) =
n∏

i=1

pi

Maximizing L(p) subject to pi > 0 and
∑n

i=1 pi = 1 gives
p̂i = 1/n
F̂(t) =

∑n
i=1 p̂iI(yi ≤ t) = Fn(t)
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Empirical Likelihood (Cont’d)

Owen (1988): Empirical likelihood ratio statistic for
µ =

∫
ydF(y)

R(µ) = max
{ n∏

i=1

(npi)

∣∣∣∣∣
n∑

i=1

piyi = µ ,

n∑
i=1

pi = 1
}

−2 log R(µ) is asymptotically distributed as χ2
1

EL ratio confidence intervals: Shape and orientation of CI
determined entirely by the data; CI are range preserving and
transformation respecting

Qin and Lawless (1994): Estimating equations and EL; side
information; additional constraints
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Empirical Likelihood (Cont’d)

Chen and Qin (1993): EL for survey data under simple random
sampling
Maximum EL estimator of Ȳ = N−1∑N

i=1 yi is given by
ˆ̄YEL =

∑
i∈s p̂iyi, where p̂i maximize

l(p) =
∑
i∈s

log(pi)

subject to ∑
i∈s

pi = 1 and
∑
i∈s

pixi = X̄

ˆ̄YEL is asymptotically equivalent to the regression estimator
under SRS
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Empirical Likelihood (Cont’d)

Zhong and Rao (2000): EL for stratified simple random sampling

l(p) =
L∑

h=1

∑
i∈sh

log(phi)

Constraints:

∑
i∈sh

phi = 1 (h = 1, · · · ,L) and
L∑

h=1

Wh

∑
i∈sh

phixhi = X̄

Maximum EL estimator of Ȳ is asymptotically equivalent to
optimal regression estimator
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Empirical Likelihood (Cont’d)

An application: Population containing many zero values (Chen,
Chen and Rao, 2003)
Accounting practice: Amount of money owed to government
Audit sampling: Estimate µ, average amount of excessive claim

Parametric mixture models (Kvanli, Shen and Deng, 1998):
Normal mixture, Exponential mixture
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Empirical Likelihood (Cont’d)

p: Population error rate (% Non-zeros)
LNR: Lower non-coverage rate (nominal value: 2.5%)
LB: Average lower bound
True model: Normal mixture

p Normal Exponential Normal EL
Approxi. Mixture Mixture

LNR LB LNR LB LNR LB LNR LB
0.10 0.58 0.19 0.87 0.25 2.08 0.28 2.21 0.28
0.20 1.17 0.63 0.74 0.65 2.13 0.71 2.20 0.71
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Pseudo Empirical Likelihood

Design-based inference using complex survey data
{(yi, xi), i ∈ s}; πi = P(i ∈ s), πij = P(i, j ∈ s); di = 1/πi

Pseudo empirical log-likelihood (PEL) function (Chen and Sitter,
1999)

l(p) =
∑
i∈s

di log(pi)

l(p) is the Horvitz-Thompson estimator of the census empirical
log-likelihood function lN(p) =

∑N
i=1 log(pi)

Maximum PEL estimator ˆ̄YPEL =
∑

i∈s p̂iyi, where p̂i maximize
l(p) subject to ∑

i∈s

pi = 1 and
∑
i∈s

pixi = X̄ ,

is asymptotically equivalent to the generalized regression
(GREG) estimator of Ȳ
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Pseudo Empirical Likelihood (Cont’d)

The PEL function of Chen and Sitter does not involve πij

PEL function adjusted by the design effect (Wu and Rao, 2006)

l(p) = n∗
∑
i∈s

d̃i(s) log(pi) ,

where n∗ = n/deff (effective sample size), “deff” is the design
effect and d̃i(s) = di/

∑
i∈s di

Under simple random sampling with replacement,
l(p) =

∑
i∈s log(pi)
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Pseudo Empirical Likelihood (Cont’d)

PEL ratio function of θ = Ȳ

r(θ) = n∗
∑
i∈s

d̃i(s) log(p̂i(θ))− n∗
∑
i∈s

d̃i(s) log(p̂i)

p̂i(θ) subject to the additional parameter constraint∑
i∈s

piyi = θ

−2r(θ) converges in distribution to the χ2
1 random variable (Wu

and Rao, 2006)

(1− α)-level PEL ratio confidence interval on Ȳ

C =
{
θ | −2r(θ) ≤ χ2

1(α)
}
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Pseudo Empirical Likelihood (Cont’d)

Confidence intervals on F(t) = N−1∑N
i=1 I(yi ≤ t) at t = tq

NA: θ̂ ± Zα/2{v(θ̂)}1/2; EL: EL confidence intervals C
PPS sampling

CP: Coverage probability; L, U: Lower and Upper tail error
rates; AL: Average length

n q CI CP L U AL
80 0.10 NA 90.7 0.2 9.1 0.134

EL 94.1 1.7 4.2 0.134
0.50 NA 95.3 2.4 2.3 0.212

EL 95.5 2.4 2.1 0.208
0.90 NA 93.9 5.0 1.1 0.116

EL 95.2 2.7 2.1 0.115
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PEL: Multiple Surveys

Two independent surveys

{(yi, xi), i ∈ s1} and {(yi, xi), i ∈ s2}

Joint PEL function (Rao and Wu, 2005)

l(p1, p2) = n∗1
∑
i∈s1

d̃i1(s1) log(pi1) + n∗2
∑
i∈s2

d̃i2(s2) log(pi2)

Maximum PEL estimator ˆ̄YPEL =
∑

i∈s1
p̂i1yi =

∑
i∈s2

p̂i2yi

is asymptotically optimal

PEL ratio confidence intervals available

Very flexible in using auxiliary information through added
constraints
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PEL: Multiple Frame Surveys

Multiple sampling frames: each of them can be incomplete;
together they cover the entire finite population

Dualframe A and B: U = a ∪ ab ∪ b (three domains)

Q-frame survey samples: {(yi, xi), i ∈ sq}, q = 1, · · · ,Q
Multiplicity-based PEL function (Rao and Wu, 2009)

lM(p1, · · · , pQ) =
nM

N̂M

Q∑
q=1

∑
i∈sq

dqi

mqi
log(pqi)

– nM =
∑Q

q=1 nq; nq: qth frame sample size

– N̂M =
∑Q

q=1
∑

i∈sq
dqi/mqi

– dqi: qth frame sampling weights
– mqi: number of frames to which unit i on frame q belongs
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PEL: Multiple Frame Surveys

Pooling together the Q samples into a single one without
removing duplicated units

Auxiliary information can be used through added constraints

PEL ratio function for Ȳ is asymptotically χ2
1

Excellent performance in estimating population proportions of
rare items
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Bayesian Pseudo Empirical Likelihood

Three issues:
– (i) likelihood function for complex survey data
– (ii) prior distribution
– (iii) posterior distribution providing valid inference under
design-based set-up

Bayesian PEL formulation I: Profile PEL function on θ = Ȳ and
flat prior on θ

Bayesian PEL formulation II: PEL function l(p1, · · · , pn) and
Dirichlet-Haldane prior on (p1, · · · , pn)
Both formulations provide posterior inferences which are valid
under the design-based set-up (Rao and Wu, 2010)
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Bayesian PEL for θ = Ȳ

Profile PEL for θ

lPEL(θ) = n∗
∑
i∈s

d̃i(s) log p̂i(θ) ,

where the p̂i(θ) maximize
∑

i∈s d̃i(s) log pi subject to∑
i∈s

pi = 1∑
i∈s

piyi = θ∑
i∈s

pixi = X̄ .
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Bayesian PEL for θ = Ȳ

Posterior distribution of θ under noninformative prior p(θ) ∝ 1

π(θ| y, x) = c(y, x) exp

{
−n∗

∑
i∈s

d̃i(s) log(1 + λ′ui)

}

where λ solves

g(λ) =
∑
i∈s

d̃i(s)ui

1 + λ′ui
= 0

with ui = (yi − θ, x′i − X̄′)′

28 / 34



Preliminaries Likelihood Approaches Empirical Likelihood Pseudo Empirical Likelihood Additional Remarks

Bayesian PEL for θ = Ȳ

The posterior distribution π(θ| y, x) is asymptotically normal

The posterior mean is asymptotically equivalent to the GREG
estimator of Ȳ and hence is design consistent

The posterior variance matches the design-based variance of the
GREG estimator

Posterior inferences are valid under the design-based framework
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Bayesian PEL based on (p1, · · · , pn)

Treat p1, · · · , pn as parameters
The pseudo empirical log-likelihood

lPEL(p) = n∗
∑
i∈s

d̃i(s) log pi

The pseudo empirical likelihood

LPEL(p) = exp{lPEL(p)} =
∏
i∈s

pγi
i

γi = n∗d̃i(s)
With the Dirichlet-Haldane prior π(p) ∝

∏
p−1

i , the posterior
distribution of (p1, · · · , pn) is also Dirichlet:

π(p1, · · · , pn|s) ∝
n∏

i=1

pγi−1
i
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Bayesian PEL based on (p1, · · · , pn)

This is a generalization of Hartley-Rao scale-load method to an
arbitrary sampling design

The posterior distribution of θ = Ȳ is the distribution of
θ =

∑
i∈s piyi based on the Dirichlet distribution for (p1, · · · , pn)

Posterior mean and variance of θ match the design-based GREG
estimator and its variance

Valid posterior inference for the mean under the design

May have an advantage in handling other type of parameters
such as quantiles
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Other topics

Adaptive sampling

Gini and income inequality measures

Bootstrap procedures

Missing data

Analytic use of survey data

Longitudinal surveys
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Empirical Likelihood: Canadian Connections

Art Owen: BMath, University of Waterloo

Jing Qin: PhD in Statistics, University of Waterloo

Jerry Lawless: University of Waterloo

J.N.K. Rao: Carleton University

Jiahua Chen: Waterloo and UBC

Randy Sitter: PhD Waterloo; Carleton; Simon Fraser

Changbao Wu: PhD Simon Fraser; University of Waterloo
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