Preliminaries	Likelihood Approaches	Empirical Likelihood	Pseudo Empirical Likelihood	Additional Remarks
00	0000	000000	000000000000	00

Empirical Likelihood Methods for Survey Data

J.N.K. Rao (Carleton University) and Changbao Wu (University of Waterloo)

Invite paper presented at the DASF Conference, Toronto April 30, 2010

<ロ> <四> <四> <四> <三</td>

1/34

Preliminaries	Likelihood Approaches	Empirical Likelihood	Pseudo Empirical Likelihood	Additional Remarks
00	0000	000000	000000000000	00

- 2 Likelihood-based Approaches
- 3 Empirical Likelihood Approach: SRS and STSRS
- Pseudo Empirical Likelihood Approach for Complex Surveys

Preliminaries	Likelihood Approaches	Empirical Likelihood	Pseudo Empirical Likelihood	Additional Remarks
00	0000	000000	000000000000	00

- 2 Likelihood-based Approaches
- Empirical Likelihood Approach: SRS and STSRS
- Pseudo Empirical Likelihood Approach for Complex Surveys
- 6 Additional Remarks

Likelihood Approaches

Preliminaries

.

Empirical Likelihood

Pseudo Empirical Likelihood

Additional Remarks

Traditional Design-Based Approach

- Strategies (design and estimation) that appeared reasonable were entertained (accounting for costs). Relative properties carefully studied by analytical and/or empirical methods, mainly through comparison of MSE and anticipated MSE under plausible models
- Design unbiasedness not insisted upon because it "often results in much larger MSE than necessary". Instead, design consistency is deemed necessary for large samples
- Working models used to obtain efficient design-consistent estimators: model-assisted, GREG estimators

Preliminaries ○●	Likelihood Approaches	Empirical Likelihood	Pseudo Empirical Likelihood	Additional Remarks
Unified	Theory			

- Finite population: $U = \{1, 2, \cdots, N\}$
- Sampling design: s, p(s)
- Sample data: $\{(i, y_i), i \in s\}$
- Godambe class: Estimator of population total $Y = \sum_{i=1}^{N} y_i$ uses weights $d_i(s)$ that may depend on both *i* and *s*

$$\hat{Y} = \sum_{i \in s} d_i(s) y_i$$

• **Theorem**: BLUE of *Y* does not exist in the Godambe class even for simple random sampling.

Preliminaries	Likelihood Approaches	Empirical Likelihood	Pseudo Empirical Likelihood	Additional Remarks
00	0000	000000	00000000000	00

- 2 Likelihood-based Approaches
- Empirical Likelihood Approach: SRS and STSRS
- Pseudo Empirical Likelihood Approach for Complex Surveys
- 6 Additional Remarks

minaries Likelih

Likelihood Approaches

Empirical Likelihood

Pseudo Empirical Likelihood

Additional Remarks

Non-Parametric Likelihood

- Parameter vector ỹ = (ỹ₁, · · · , ỹ_N)'; labels *i* Sample data: {(*i*, y_i), *i* ∈ s} minimal sufficient
- Godambe (1966) likelihood function:

$$L(\tilde{\mathbf{y}}) = \begin{cases} p(s), \text{ if sample data consistent with } \tilde{\mathbf{y}} \\ 0, \text{ otherwise} \end{cases}$$

• Godambe likelihood is **uninformative**: all possible non-observed y_i , $i \notin s$ lead to the same (flat) likelihood.

Likelihood Approaches

Empirical Likelihood

Pseudo Empirical Likelihood

Additional Remarks

Non-Parametric Likelihood (Cont'd)

Resolution I: Bayesian route (Ericson, 1969)
 Specify an informative (exchangeable) prior distribution:
 Given a joint N-dimensional prior on y with pdf g(y) and assume the sampling design is independent of y, the posterior density is given by

$$h(\tilde{\mathbf{y}}|y_i, i \in s) = \begin{cases} g(\tilde{\mathbf{y}})/g(\tilde{\mathbf{y}}_s) & \text{if } y_i = \tilde{y}_i \text{ for } i \in s, \\ 0 & \text{otherwise}, \end{cases}$$

- Problems:
 - How to specify $g(\tilde{y})$?
 - Posterior inferences are independent of the sampling design, usually invalid under the design-based frameowrk

Likelihood Approaches

Empirical Likelihood

Pseudo Empirical Likelihood

Additional Remarks

Non-Parametric Likelihood (cont'd)

- Resolution II: Likelihood route (Hartley and Rao, 1968) Ignore certain aspects of data. For example, for SRS suppress labels *i* and use $(y_i, i \in s)$. Likelihood now becomes informative and inference depends on the sample design.
- C. R. Rao (1970): "In situations where the full likelihood does not satisfy our purpose, we may have to depend on a statistic T which for every observed value supplies information (however poor it may be) on parameters of interest. Unfortunately, no unique choice of T may be possible."

Preliminaries Likelihood Approaches Empirical Likelihood Pseudo Empirical Likelihood Additional Remarks Scale-Load Approach (Hartley and Rao, 1968): SRSWOR

- Finite set of known scale points y_1^*, \dots, y_D^* with scale loads N_1, \dots, N_D
- Population mean $\bar{Y} = \sum_{j=1}^{D} p_j y_j^*$ where $p_j = N_j/N$ Sample scale loads n_1, \dots, n_D
- Likelihood function $L(N_1, \dots, N_D)$ is hypergeometric likelihood with support on $n_j > 0$ $(j = 1, \dots, d)$: $\prod_{j=1}^d {N_j \choose n_j}$
- For SRS with replacement, $L(p_1, \dots, p_d)$ reduces to multinomial likelihood, now popularly known as empirical likelihood (Owen, 1988)

Preliminaries	Likelihood Approaches	Empirical Likelihood	Pseudo Empirical Likelihood	Additional Remarks
00	0000	000000	00000000000	00

3 Empirical Likelihood Approach: SRS and STSRS

Pseudo Empirical Likelihood Approach for Complex Surveys

6 Additional Remarks

 Preliminaries
 Likelihood Approaches
 Empirical Likelihood
 Pseudo Empirical Likelihood
 Additional Remarks

 Observations
 Observations
 Observations
 Observations
 Observations

• y_1, \dots, y_n IID with CDF F(t); Empirical likelihood function

$$L(\boldsymbol{p}) = \prod_{i=1}^{n} p_i$$

12/34

Maximizing $L(\mathbf{p})$ subject to $p_i > 0$ and $\sum_{i=1}^n p_i = 1$ gives $\hat{p}_i = 1/n$ $\hat{F}(t) = \sum_{i=1}^n \hat{p}_i I(y_i \le t) = F_n(t)$

Empirical Likelihood (Cont'd)

• Owen (1988): Empirical likelihood ratio statistic for $\mu = \int y dF(y)$

$$R(\mu) = \max\left\{\prod_{i=1}^{n} (np_i) \mid \sum_{i=1}^{n} p_i y_i = \mu, \sum_{i=1}^{n} p_i = 1\right\}$$

 $-2\log R(\mu)$ is asymptotically distributed as χ_1^2

- EL ratio confidence intervals: Shape and orientation of CI determined entirely by the data; CI are range preserving and transformation respecting
- Qin and Lawless (1994): Estimating equations and EL; side information; additional constraints

Empirical Likelihood (Cont'd)

• Chen and Qin (1993): EL for survey data under simple random sampling Maximum EL estimators $\bar{K} = N^{-1} \sum_{i=1}^{N} N^{-1}$

Maximum EL estimator of $\overline{Y} = N^{-1} \sum_{i=1}^{N} y_i$ is given by $\hat{Y}_{EL} = \sum_{i \in s} \hat{p}_i y_i$, where \hat{p}_i maximize

$$l(\boldsymbol{p}) = \sum_{i \in s} \log(p_i)$$

subject to

$$\sum_{i\in s} p_i = 1$$
 and $\sum_{i\in s} p_i \boldsymbol{x}_i = \bar{\boldsymbol{X}}$

• \overline{Y}_{EL} is asymptotically equivalent to the regression estimator under SRS

Empirical Likelihood (Cont'd)

• Zhong and Rao (2000): EL for stratified simple random sampling

$$l(\boldsymbol{p}) = \sum_{h=1}^{L} \sum_{i \in s_h} \log(p_{hi})$$

Constraints:

$$\sum_{i \in s_h} p_{hi} = 1 \ (h = 1, \cdots, L) \text{ and } \sum_{h=1}^L W_h \sum_{i \in s_h} p_{hi} \mathbf{x}_{hi} = \bar{\mathbf{X}}$$

• Maximum EL estimator of \overline{Y} is asymptotically equivalent to optimal regression estimator

ikelihood Approaches

Empirical Likelihood

Pseudo Empirical Likelihood

<ロ> (四) (四) (三) (三) (三)

16/34

Additional Remarks

Empirical Likelihood (Cont'd)

- An application: Population containing many zero values (Chen, Chen and Rao, 2003)
 Accounting practice: Amount of money owed to government Audit sampling: Estimate μ, average amount of excessive claim
- Parametric mixture models (Kvanli, Shen and Deng, 1998): Normal mixture, Exponential mixture

ikelihood Approaches

Empirical Likelihood

Pseudo Empirical Likelihood

Additional Remarks

Empirical Likelihood (Cont'd)

p: Population error rate (% Non-zeros)LNR: Lower non-coverage rate (nominal value: 2.5%)LB: Average lower boundTrue model: Normal mixture

p	Normal		Expon	ential	Normal		EL	
	App	roxi.	Mixture		Mixture			
	LNR	LB	LNR	LB	LNR	LB	LNR	LB
0.10	0.58	0.19	0.87	0.25	2.08	0.28	2.21	0.28
0.20	1.17	0.63	0.74	0.65	2.13	0.71	2.20	0.71

Preliminaries	Likelihood Approaches	Empirical Likelihood	Pseudo Empirical Likelihood	Additional Remarks
00	0000	000000	000000000000	00

- 2 Likelihood-based Approaches
- 3 Empirical Likelihood Approach: SRS and STSRS
- Pseudo Empirical Likelihood Approach for Complex Surveys
- 6 Additional Remarks

Likelihood Approaches

Empirical Likelihood

Pseudo Empirical Likelihood •00000000000 Additional Remarks

Pseudo Empirical Likelihood

- Design-based inference using complex survey data
 {(y_i, x_i), i ∈ s}; π_i = P(i ∈ s), π_{ij} = P(i, j ∈ s); d_i = 1/π_i
- Pseudo empirical log-likelihood (PEL) function (Chen and Sitter, 1999)

$$l(\boldsymbol{p}) = \sum_{i \in s} d_i \log(p_i)$$

- $l(\mathbf{p})$ is the Horvitz-Thompson estimator of the census empirical log-likelihood function $l_N(\mathbf{p}) = \sum_{i=1}^N \log(p_i)$
- Maximum PEL estimator $\hat{Y}_{PEL} = \sum_{i \in s} \hat{p}_i y_i$, where \hat{p}_i maximize $l(\mathbf{p})$ subject to

$$\sum_{i\in s}p_i=1 \quad ext{and} \quad \sum_{i\in s}p_ioldsymbol{x}_i=oldsymbol{ar{X}}\,,$$

is asymptotically equivalent to the generalized regression (GREG) estimator of \overline{Y}

Likelihood Approaches

Empirical Likelihood

Pseudo Empirical Likelihood

・ロト ・回 ト ・ ヨト ・ ヨト … ヨ

20/34

Additional Remarks

Pseudo Empirical Likelihood (Cont'd)

- The PEL function of Chen and Sitter does not involve π_{ij}
- PEL function adjusted by the design effect (Wu and Rao, 2006)

$$l(\boldsymbol{p}) = n^* \sum_{i \in s} \tilde{d}_i(s) \log(p_i) \,,$$

where $n^* = n/\text{deff}$ (effective sample size), "deff" is the design effect and $\tilde{d}_i(s) = d_i / \sum_{i \in s} d_i$

• Under simple random sampling with replacement, $l(\mathbf{p}) = \sum_{i \in s} \log(p_i)$

ikelihood Approaches

Empirical Likelihood

Pseudo Empirical Likelihood

Additional Remarks

Pseudo Empirical Likelihood (Cont'd)

• PEL ratio function of $\theta = \bar{Y}$

$$r(\theta) = n^* \sum_{i \in s} \tilde{d}_i(s) \log(\hat{p}_i(\theta)) - n^* \sum_{i \in s} \tilde{d}_i(s) \log(\hat{p}_i)$$

 $\hat{p}_i(\theta)$ subject to the additional parameter constraint

$$\sum_{i\in s} p_i y_i = \theta$$

- $-2r(\theta)$ converges in distribution to the χ_1^2 random variable (Wu and Rao, 2006)
- (1α) -level PEL ratio confidence interval on \overline{Y}

$$\mathcal{C} = \left\{ \theta \mid -2r(\theta) \le \chi_1^2(\alpha) \right\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - の≪

Likelihood Approaches

Empirical Likelihood

Pseudo Empirical Likelihood

Additional Remarks

Pseudo Empirical Likelihood (Cont'd)

- Confidence intervals on $F(t) = N^{-1} \sum_{i=1}^{N} I(y_i \le t)$ at $t = t_q$
- NA: $\hat{\theta} \pm Z_{\alpha/2} \{ v(\hat{\theta}) \}^{1/2}$; EL: EL confidence intervals C
- PPS sampling
- CP: Coverage probability; L, U: Lower and Upper tail error rates; AL: Average length

n	q	CI	СР	L	U	AL
80	0.10	NA	90.7	0.2	9.1	0.134
		EL	94.1	1.7	4.2	0.134
	0.50	NA	95.3	2.4	2.3	0.212
		EL	95.5	2.4	2.1	0.208
	0.90	NA	93.9	5.0	1.1	0.116
		EL	95.2	2.7	2.1	0.115

Likelihood Approaches

Empirical Likelihood

Pseudo Empirical Likelihood

Additional Remarks

PEL: Multiple Surveys

• Two independent surveys

$$\{(y_i, \mathbf{x}_i), i \in s_1\}$$
 and $\{(y_i, \mathbf{x}_i), i \in s_2\}$

• Joint PEL function (Rao and Wu, 2005)

$$l(\boldsymbol{p}_1, \boldsymbol{p}_2) = n_1^* \sum_{i \in s_1} \tilde{d}_{i1}(s_1) \log(p_{i1}) + n_2^* \sum_{i \in s_2} \tilde{d}_{i2}(s_2) \log(p_{i2})$$

- Maximum PEL estimator $\hat{Y}_{PEL} = \sum_{i \in s_1} \hat{p}_{i1} y_i = \sum_{i \in s_2} \hat{p}_{i2} y_i$ is asymptotically optimal
- PEL ratio confidence intervals available
- Very flexible in using auxiliary information through added constraints

ies Likelihood A 0000

celihood Approaches

Empirical Likelihood 000000 Pseudo Empirical Likelihood

Additional Remarks

PEL: Multiple Frame Surveys

- Multiple sampling frames: each of them can be incomplete; together they cover the entire finite population
- Dualframe A and B: $U = a \cup ab \cup b$ (three domains)
- *Q*-frame survey samples: $\{(y_i, \mathbf{x}_i), i \in s_q\}, q = 1, \cdots, Q$
- Multiplicity-based PEL function (Rao and Wu, 2009)

$$l_M(\boldsymbol{p}_1,\cdots,\boldsymbol{p}_Q) = \frac{n_M}{\hat{N}_M} \sum_{q=1}^Q \sum_{i \in s_q} \frac{d_{qi}}{m_{qi}} \log(p_{qi})$$

 $-n_M = \sum_{q=1}^Q n_q;$ n_q : *q*th frame sample size $-\hat{N}_M = \sum_{q=1}^Q \sum_{i \in s_q} d_{qi}/m_{qi}$ $-d_{qi}$: *q*th frame sampling weights $-m_{qi}$: number of frames to which unit *i* on frame *q* belongs

< □ > < □ > < □ > < □ > < □ > < Ξ > < Ξ > = Ξ

ikelihood Approaches

Empirical Likelihood 000000 Pseudo Empirical Likelihood

Additional Remarks

PEL: Multiple Frame Surveys

- Pooling together the Q samples into a single one without removing duplicated units
- Auxiliary information can be used through added constraints
- PEL ratio function for \bar{Y} is asymptotically χ_1^2
- Excellent performance in estimating population proportions of rare items

ikelihood Approaches

Empirical Likelihood

Pseudo Empirical Likelihood

Additional Remarks

Bayesian Pseudo Empirical Likelihood

- Three issues:
 - (i) likelihood function for complex survey data
 - (ii) prior distribution
 - (iii) posterior distribution providing valid inference under design-based set-up
- Bayesian PEL formulation I: Profile PEL function on $\theta = \overline{Y}$ and flat prior on θ
- Bayesian PEL formulation II: PEL function $l(p_1, \dots, p_n)$ and Dirichlet-Haldane prior on (p_1, \dots, p_n)
- Both formulations provide posterior inferences which are valid under the design-based set-up (Rao and Wu, 2010)

• Profile PEL for θ

$$l_{PEL}(\theta) = n^* \sum_{i \in s} \tilde{d}_i(s) \log \hat{p}_i(\theta) \,,$$

where the $\hat{p}_i(\theta)$ maximize $\sum_{i \in s} \tilde{d}_i(s) \log p_i$ subject to

$$\sum_{i \in s} p_i = 1$$

$$\sum_{i \in s} p_i y_i = \theta$$

$$\sum_{i \in s} p_i \mathbf{x}_i = \bar{\mathbf{X}}.$$

< □ > < □ > < □ > < Ξ > < Ξ > < Ξ > Ξ のQ(?) 27/34

Preliminaries 00	Likelihood Approaches	Empirical Likelihood	Pseudo Empirical Likelihood	Additional Remarks
Bayesia	n PEL for θ	$= \overline{Y}$		

• Posterior distribution of θ under noninformative prior $p(\theta) \propto 1$

$$\pi(\theta|\mathbf{y},\mathbf{x}) = c(\mathbf{y},\mathbf{x}) \exp\left\{-n^* \sum_{i \in s} \tilde{d}_i(s) \log(1+\boldsymbol{\lambda}'\boldsymbol{u}_i)\right\}$$

where λ solves

$$g(\boldsymbol{\lambda}) = \sum_{i \in s} \frac{\tilde{d}_i(s)\boldsymbol{u}_i}{1 + \boldsymbol{\lambda}' \boldsymbol{u}_i} = \boldsymbol{0}$$

< □ > < □ > < □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ

28/34

with $\boldsymbol{u}_i = (y_i - \theta, \boldsymbol{x}'_i - \bar{\boldsymbol{X}}')'$

Likelihood Approaches

Empirical Likelihood

Pseudo Empirical Likelihood

Additional Remarks

Bayesian PEL for $\theta = \overline{Y}$

- The posterior distribution $\pi(\theta | \mathbf{y}, \mathbf{x})$ is asymptotically normal
- The posterior mean is asymptotically equivalent to the GREG estimator of \bar{Y} and hence is design consistent
- The posterior variance matches the design-based variance of the GREG estimator
- Posterior inferences are valid under the design-based framework

ikelihood Approaches

Empirical Likelihood

Pseudo Empirical Likelihood

Additional Remarks

Bayesian PEL based on (p_1, \cdots, p_n)

- Treat p_1, \cdots, p_n as parameters
- The pseudo empirical log-likelihood

$$l_{PEL}(\boldsymbol{p}) = n^* \sum_{i \in s} \tilde{d}_i(s) \log p_i$$

• The pseudo empirical likelihood

$$L_{PEL}(\boldsymbol{p}) = \exp\{l_{PEL}(\boldsymbol{p})\} = \prod_{i \in s} p_i^{\gamma_i}$$

$$\gamma_i = n^* \tilde{d}_i(s)$$

With the Dirichlet-Haldane prior π(**p**) ∝ ∏p_i⁻¹, the posterior distribution of (p₁, · · · , p_n) is also Dirichlet:

$$\pi(p_1,\cdots,p_n|s) \propto \prod_{i=1}^n p_i^{\gamma_i-1}$$

 Preliminaries
 Likelihood Approaches
 Empirical Likelihood
 Pseudo Empirical Likelihood
 Additional Remarks

 00
 0000
 00000000000
 000
 00000000000
 000

Bayesian PEL based on (p_1, \cdots, p_n)

- This is a generalization of Hartley-Rao scale-load method to an arbitrary sampling design
- The posterior distribution of $\theta = \overline{Y}$ is the distribution of $\theta = \sum_{i \in s} p_i y_i$ based on the Dirichlet distribution for (p_1, \dots, p_n)
- Posterior mean and variance of θ match the design-based GREG estimator and its variance
- Valid posterior inference for the mean under the design
- May have an advantage in handling other type of parameters such as quantiles

Preliminaries	Likelihood Approaches	Empirical Likelihood	Pseudo Empirical Likelihood	Additional Remarks
00	0000	000000	00000000000	00

- 2 Likelihood-based Approaches
- Empirical Likelihood Approach: SRS and STSRS
- Pseudo Empirical Likelihood Approach for Complex Surveys

Preliminaries 00	Likelihood Approaches	Empirical Likelihood	Pseudo Empirical Likelihood	Additional Remarks

<ロ> <四> <四> <四> <三</td>

33/34

• Adaptive sampling

Other topics

- Gini and income inequality measures
- Bootstrap procedures
- Missing data
- Analytic use of survey data
- Longitudinal surveys

Likelihood Approaches

Empirical Likelihood

Pseudo Empirical Likelihood

<ロ> <四> <四> <四> <三</td>

34/34

Additional Remarks

Empirical Likelihood: Canadian Connections

- Art Owen: BMath, University of Waterloo
- Jing Qin: PhD in Statistics, University of Waterloo
- Jerry Lawless: University of Waterloo
- J.N.K. Rao: Carleton University
- Jiahua Chen: Waterloo and UBC
- Randy Sitter: PhD Waterloo; Carleton; Simon Fraser
- Changbao Wu: PhD Simon Fraser; University of Waterloo