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The Model

Y; = f(U;) + ¢
where

U]_, c ey Un Y H
are unobserved variables on [0,1] and f : [0, 1] — R2.
Noise model for g;:

e; ~ F' is supported on a Disc of radius o.

Later, we include background clutter:

Y — f(U;) + ¢ with prob =
’ Uniform  with prob 1 — =«



In general, f can be: open, closed, simple, self-intersecting, dis-
continuous (multiple curves).

For now, ignore the background clutter.



The Model

We don'’'t use a Normal noise model since then:

max |[Y; — f(Up|| — oo

aS n — 00.

But we expect the points to cluster around the filaments.
Hence, the compactly supported noise model is better.

Also, with Normal noise one gets rates of the form O(1/(logn)%).
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Available Methods

e Principal curves (Hastie and Stuetzle 1989)

e Second generation principal curves (Kegl et al. 2000, Smola
et al. 1999)

e Penalized nonparametric likelihood (Tibshirani 1992)

e Manifold learning (ISOMAP, LLE, LLP)

e Deconvolution

e Beamlets (Xuo and Donoho)

e Combinatorial curve reconstruction (computational geometry)
e Gradient-based (GPVW 2009)

e Geometric Smoothing(Today)
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Unanswered Questions
e When are these methods consistent?
e What is the rate of convergence?
e How do we choose the tuning parameters?

e \What is the minimax risk?

17



GEOMETRIC BACKGROUND
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Hausdorff Distance

For any set A define the enlargement

ADs= U B(x,9)
r€A

where B(x,d) is a ball centered at x with radius §.

The Hausdorff distance between two sets A and B is

dg(A,B) =inf{ld: ACB®d and BC A®dJ}.

LLoss function:
I_fz{f(u): O0<u<1}

is the filament set.
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Relation to Regression

o If Uq,...,U, were observed, this reduces to ordinary nonpara-
metric regression.

e If only the order of the Y,;'s were known, this is related to
nonparametric regression with measurement error.
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The Noise Free Case
(An Aside)

Unlike regression, even if ¢, = 0 for all 2, we are not done. Sup-
pose that

Vi=fU) i=1,...,n

There is no error but you only observe Y7,...,Y,. How do you
estimate f7

You need to order the Y]'s.
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Ordering
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Three Relevant Orderings

e [ he true order T is the permutation such that

mp(i) <mp(G) I T ) < £ g)-
e Travelling Salesman ordering: mprg = permutation that gives
the shortest path through the points.

e Nearest Neighbor ordering: wnyny = permutation obtained by
consecutively connecting each point to its nearest neighbor.

Theorem(Giesen 1999) Assume no noise. Then

7Tf=7TTS=7TNN a.s.
for all large n. Also, the linear interpolant based on any of these
orderings converges to f. In fact, dg(I"s, ") = Op(1/n).

But the main problem is the noise.
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Medial AXis

Let S be a set. Let 0S be the boundary of S. A ball BC S is
medial if

interior(B) N oS = (
and
|IBNas| > 2.
The medial axis M(S) is

M (S) = closure{centers of the medial balls}.
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Medial AXis



Medial AXis

Let g(y) be the density of Y. Let
S = support(q) = {y : q(y) > 0}.
Under regularity conditions we have
M(S) = s

that is, the filament is the medial axis of the support of gq.

26



Medial AXis

However, the medial axis is not continuous in Hausdorff distance.
Small perturbations to S give a completely different medial axis.
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T hickness

Let »(x,y,2) be the radius of a ball passing through z,y,z. De-
fine the thickness A(f) (global radius of curvature, or normal
injectivity radius) by

A =minr(x,y,z).

aj?y7z

(See Gonzalez and Maddocks 1999.)
T his measures local curvature as well as ‘‘closeness of approach.”

A ball of radius A can roll freely around the curve. So A
large means that f is smooth and not too close to being self-
intersecting.
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T hickness

If a ball B has radius A then it can roll freely:
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T hickness

If B has radius larger than A then one of these two things hap-
pen. It can’t roll because of curvature:

o ®
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T hickness

. or it can't roll because of a ‘close approach’” of the curve:

R D
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EDT

The Euclidean Distance Transform (EDT) is

A(y) = d(y.0S) = mi _
(v) (y,0S) xﬂ;%\ly ||

for y € S. Thus, A(y) is the distance from y to the boundary.

A(y) = 0 for y € 3S. Otherwise, A(y) > 0.
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Nice Sets

S is standard if there are 6, A\ > 0 such that

Lebesgue(B(y,e) NS) > § Lebesgue(B(y,€))

for all y € S and all 0 < e < X. This means that S has no pointy
parts.

S is expandable if there are »r > 0 and R > 1 such that

d(0S,05°) < Re
forall 0 <e<r.
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Medial Axis = Filament
Let S={y: q(y) >0} be the support.
T heorem:

If ¢ < A(f) then

o[ = M(S).

e S is standard.

e S is expandable.

e yc M(S) iff A(y) = 0.
o y & M(S) iff AN(y) < o.
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ESTIMATING THE FILAMENT
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Estimation

For now, assume no background clutter and a single filament.
First we estimate S and 0S. Let

n
S = U B(Yuen)
i=1
where ¢, = O(y/logn/n). Then, almost surely, for all large n,
. e ~ O
di(5,8) < 22" and  dy(08,88) < ¢y 22",
n

n

(Cuevas and Ridriguez-Casal 2004.)

Later, we will discuss improved estimators. But note that S is
very simple.
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Estimation
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Estimation

Next we construct two estimators: the EDT estimator and the
medial estmator.

The EDT Estimator. Let

A(y) = d(y, d5).
Let

Let
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T heorem:

n

_ logn
dH(M,rf>:Op( )

Note that M is a set not a curve.



Estimation
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Estimation
The Medial Estimator. (For closed curves.)
e Decompose dS = S U 851.

e For each y € 9Sp, find closest z € 851 and let fi(y) be the
midpoint of the line joining y and =.

o Set M = {fi(y) : y € 8So}-.

T heorem:

dH(]\/Z, ) = Op (Iog n) 1/4.

We will improve these rates shortly.
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Estimation
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Curve Extraction

EDT. (Open curves.)
1. Find two furthest points yg and yq in M (in arc length.)
2. Connect ypg and y; with shortest path r.

T hese steps can be approximated by sampling from M and using
a minimal spanning tree. Then

dy(F 7, F) = Op (,/'02”)

Any smoothing procedure can be applied to . As long as the
fitted value stay in M, the rate of convergence is preserved.
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Curve Extraction

Medial estimator. The set M consists of a union of disconnected
curves. Complete the estimator by linearly interpolating the dis-

connected components.

Theorem The completed estimator is a simple closed curve and

dy (M, ) = Op (,/'02”).

Note the faster rate.

The differences of the fitted values also provide an estimate of
the gradient with rate (logn/n)l/4.
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Multiple Curves

e \We have similar results for multiple curves that are sufficiently
separated.

e For self-interecting curves, the same results apply to the parts
of the curve not too close to the intersections.

44



MINIMAX ESTIMATION
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Minimax Estimation

Let

©={(fiho): 0<o<A(f)—a, A(f)2dheH}
where h is the density of U; and

H:{hi c1§h§c2}.

T heorem

~ C
inf sup E(dg (I ¢, M) > ——.
nf sup E(dp (M7, ) > 7
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Minimax Estimation

Proof uses Assoaud’s lemma. The hypercube is built from the
following least favorable filament:

Oy)

(0,0

(0,-d+y)

Push the middle ball up. Roll in balls from left and right.
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Minimax Estimation

e [0 achieve the minimax rate, replace S with a smoother esti-
mator as in Mammen and Tsybakov (1995). If we do this then
both estimators are minimax.

e Create a finite net of sets G = {S1,..., SN}

e [ake

AN

S = argmin{Lebesgue(S) : {Y7,...,Yn} C S}.

e Take 05 = 5. Then
— C
sup FE dg(08,08) < —~.
(fomyeo 7" n?/3
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Minimax Estimation

e However, this estimator is mainly of theoretical interest. Can't
really compute this.

e The Hall-Park-Turlach (2002) “rolling ball” estimator may be
feasible and appears to achieve the same rate of convergence.

e Currently, we use the (suboptimal) union of balls estimator
because it is extremely simple and only requires one tuning pa-
rameter.
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Decluttering

Yi,..., Yo ~m(y) = (1 —n)qo + ng

where qg is uniform. Bayes rule:

c(y) = I(m(y) > 2(1 —n)qo(y))
conservative rule:

c(y) = I(m(y) > 2q0(y))
estimate:

c(y) = I(m(y) > 2q0(y))
Use:

y=A{Y;: ;) =1}
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EXAMPLES
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Conclusion
Currently we are working on the following extensions:

e apply to astro data (SDSS and n-body simulations)
e extends readily to higher dimensions

e can allow o to vary

e smoother methods

e Other noise models

e tuning parameters

e compare to beamlets

THE END
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OTHER METHODS
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Principal Curves
Original version (Hastie and Stuetzle 1989).
f« is the self-consistent smooth curve:
fe(z) =EY|NY =x).
Algorithm: iterate these two steps:
(1) Project data onto curve

(2) Regress (smooth) data given the projections.
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Principal Curves
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Principal Curves
e fi« need not exist
e f # f« but close: fx = f + O(c2 Curvature)
e NOot much theory
e very sensitive to starting values.

e doesn’t handle multiple curves well
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Principal Curves
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Second Generation Principal Curves

T he principal curve fi is

f« = argmin rc £E[]Y — I‘IfY||2

where F is a class of functions. If
N 1 5
f=argmin;cr - Y — Ny
i=1
then, under conditions on F,

sup | f(u) - f(w)|| - 0.

Problems:

(i)difficult algorithms and

(D) fe 7 f.
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Spin and Smooth

Suppose that

Rolm f = {(2,9(2)) 1 a < z<b}

for some rotation Ry and some function g. In other words, f is
a function after some rotation.

e Rotate by Ry
e apply smoother
e Minimize RSS over 0

Then f has the same asymptotic behavior as nonparametric re-
gresson with measurement error.
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Example
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For Multiple Filaments: Quantization
A codebook is a finite set of vectors C' = {c1,...,c}-

A codebook induces a quantization function Q(z) = argmin;||x —
cj|| with risk R(Q) = R(C) = E||X — Q(X)[|%.

The minimal risk for codebooks of size k is Ry, = infgeg, R(Q).
Given data Xq,..., Xy, the empirical risk is
. 1 X2 5
RQ =3 I1% - QEX)IP,
i=1

which is minimized at some Q.

With high probability, R(Q) < Ry, + O(,/klog k/n).
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For Multiple Filaments: Quantization

Extend quantization algorithm and theory to codebooks of curves
C=A{f1,.---, fr} (cf. Kegl et al. 2000;Smola et al. 2001).

Use k-means clustering but apply spin-and-smooth within each
cluster.

With high probability,

R(Q) < Ry + O(y/klog k/n).

But this inherits all the problems of clustering: chosing k, starting
values etc. (See also Stanford and Raftery 2000).
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For Multiple Filaments: Quantization
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For Multiple Filaments: Quantization
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Local Smoothing

Called moving least squares in computational geometry and local
linear projection LLP in manifold learning.

e For each Y] fit PCA line to all points in a neighborhood of size

h.
e i; = projection of Y; onto the line.

A simpler (and essentially equivalent) version is to set pg; = to
the local average:

b, = > YiKR (1Y = Yil])
' > Kn(1Y; = Y]

However, this method is not consistent. (Closely related to the

mean shift algorithm.)
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Example
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n = 250



Example
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n = 2000

We see the lack of consistency here.



Prune and Smooth

e Density estimate p
e Order the points by density:

p(Y(1)) > p(Y(2)) > --- > D(Y(y))

Select the k, = n3/4 points with highest density

e Apply local smoother to these points with hy, = n—1/8
e Decimate: ||fi; — fij_1|| > 6n =n—1/4

e Apply NN ordering algorithm.

Then

N logn
max ||fz; — pill = Op (n1/4) :

This is similar in spirit to the method in Cheng et al (2004) and
Lee (2000).

Y — prune — smooth — decimate — order
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Example
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Normal Smoothing

Estimate the gradient towards the medial axis (normal of the
filament). Let

line; ={Y; +t Vp(Y;) : t €R}.

Let

7i; = midpoint (Iinez- N §)
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Normal Smoothing
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Normal Smoothing
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Normal Smoothing
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Normal Smoothing
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Normal Smoothing
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Normal Smoothing

80



a

f1



Bias Adjustment
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Gradient Method

Filaments correspond to ridges of the marginal density p(y) of
Y.
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Genovese, Perone-Pacifico, Verdinelli and Wasserman (Annals,
to appear).



Gradient Method

83



Gradient Method

Filaments are ridges of the density
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Mean Shift

The mean shift algorithm (Fukunaga and Hostetler 1975, Cheng
1995) is a mode-finding procedure that moves a point along the
steepest-ascent paths of the kernel density estimate until a mode
IS reached.

The path sa produced by the algorithm from any point approxi-
mates the steepest-ascent path for p.

Empirical observation: the mean-shift paths concentrate along
filaments.
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Mean-shift paths concentrate along filaments:
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Mean-shift paths




Gradient Method

T he concentration of the mean-shift paths suggests an approach
to filament estimation: look for regions with a high concentration
of paths.

We formalize this by studying the relationship between filaments
and the steepest-ascent paths of the true density p.

We define the path density based on the probability that the
steepest-ascent path starting at a random point X gets close to
x:

p(y) = lim P(sa(Y) N f(% r) Z= ()

For any ¢ > 0 and for A\ > e,
M C{p>A CB(Ifr(N) +e),
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for r(\) decreasing.



path density estimator

We define a kernel estimator for the path density based on the
mean shift paths sa

R & 1 inf,csav) 11z — vl

Un

. B logn
sup pn(y) — p(y)| = Op (n1/4>
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Example
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levelset at 90-th percentile of density estimate
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Example
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