Estimating Filaments

Christopher Genovese, Marco Perone-Pacifico, Isabella Verdinelli and Larry Wasserman

arxiv.org/abs/1003.5536

Toronto, April 2010

$$
\begin{aligned}
& 260 \\
& 36 \\
& 36
\end{aligned}
$$

Related Problems

- Estimating blood vessel networks in neuroimaging
- Estimating seismic faults from earthquake epicenters
- Detecting minefields in aerial reconaissance images
- Identifying object boundaries in images
- Principal curves
- Manifold Iearning

Outline

- The Model
- Geometric Background
- Existing Methods
- New Methods
- Asymptotics
- Minimax Theory
- Examples

The Model

$$
Y_{i}=f\left(U_{i}\right)+\epsilon_{i}
$$

where

$$
U_{1}, \ldots, U_{n} \sim H
$$

are unobserved variables on $[0,1]$ and $f:[0,1] \rightarrow \mathbb{R}^{2}$.
Noise model for ϵ_{i} :

$$
\epsilon_{i} \sim F \text { is supported on a Disc of radius } \sigma .
$$

Later, we include background clutter:

$$
Y_{i}= \begin{cases}f\left(U_{i}\right)+\epsilon_{i} & \text { with prob } \pi \\ \text { Uniform } & \text { with prob } 1-\pi\end{cases}
$$

In general, f can be: open, closed, simple, self-intersecting, discontinuous (multiple curves).

For now, ignore the background clutter.

The Model

We don't use a Normal noise model since then:

$$
\max _{i}\left\|Y_{i}-f\left(U_{i}\right)\right\| \rightarrow \infty
$$

as $n \rightarrow \infty$.

But we expect the points to cluster around the filaments.

Hence, the compactly supported noise model is better.

Also, with Normal noise one gets rates of the form $O\left(1 /(\log n)^{\alpha}\right)$.

$0 \rightarrow-1$

$0 \rightarrow-1$

Available Methods

- Principal curves (Hastie and Stuetzle 1989)
- Second generation principal curves (Kegl et al. 2000, Smola et al. 1999)
- Penalized nonparametric likelihood (Tibshirani 1992)
- Manifold learning (ISOMAP, LLE, LLP)
- Deconvolution
- Beamlets (Xuo and Donoho)
- Combinatorial curve reconstruction (computational geometry)
- Gradient-based (GPVW 2009)
- Geometric Smoothing(Today)

Unanswered Questions

- When are these methods consistent?
- What is the rate of convergence?
- How do we choose the tuning parameters?
- What is the minimax risk?

GEOMETRIC BACKGROUND

Hausdorff Distance

For any set A define the enlargement

$$
A \oplus \delta=\bigcup_{x \in A} B(x, \delta)
$$

where $B(x, \delta)$ is a ball centered at x with radius δ.
The Hausdorff distance between two sets A and B is

$$
d_{H}(A, B)=\inf \{\delta: A \subset B \oplus \delta \quad \text { and } B \subset A \oplus \delta\}
$$

Loss function:

$$
\begin{gathered}
d_{H}\left(\Gamma_{f}, \hat{\Gamma}\right) \\
\Gamma_{f}=\{f(u): 0 \leq u \leq 1\}
\end{gathered}
$$

is the filament set.

Relation to Regression

- If U_{1}, \ldots, U_{n} were observed, this reduces to ordinary nonparametric regression.
- If only the order of the Y_{i} 's were known, this is related to nonparametric regression with measurement error.

The Noise Free Case
 (An Aside)

Unlike regression, even if $\epsilon_{i}=0$ for all i, we are not done. Suppose that

$$
Y_{i}=f\left(U_{i}\right) \quad i=1, \ldots, n
$$

There is no error but you only observe Y_{1}, \ldots, Y_{n}. How do you estimate f ?

You need to order the Y_{i} 's.

Ordering

Three Relevant Orderings

- The true order π_{f} is the permutation such that

$$
\pi_{f}(i)<\pi_{f}(j) \quad \text { iff } \quad f^{-1}\left(\mu_{\pi(i)}\right)<f^{-1}\left(\mu_{\pi(j)}\right)
$$

- Travelling Salesman ordering: $\pi_{T S}=$ permutation that gives the shortest path through the points.
- Nearest Neighbor ordering: $\pi_{N N}=$ permutation obtained by consecutively connecting each point to its nearest neighbor.

Theorem(Giesen 1999) Assume no noise. Then

$$
\pi_{f}=\pi_{T S}=\pi_{N N} \quad \text { a.s. }
$$

for all large n. Also, the linear interpolant based on any of these orderings converges to f. In fact, $d_{H}\left(\Gamma_{f}, \widehat{\Gamma}\right)=O_{P}(1 / n)$.

But the main problem is the noise.

Medial Axis

Let S be a set. Let ∂S be the boundary of S. A ball $B \subset S$ is medial if

$$
\text { interior }(B) \cap \partial S=\emptyset
$$

and

$$
|B \cap \partial S| \geq 2
$$

The medial axis $M(S)$ is

$$
M(S)=\text { closure\{centers of the medial balls }\}
$$

Medial Axis

Medial Axis

Let $q(y)$ be the density of Y. Let

$$
S=\operatorname{support}(q)=\{y: q(y)>0\} .
$$

Under regularity conditions we have

$$
M(S)=\Gamma_{f}
$$

that is, the filament is the medial axis of the support of q.

Medial Axis

However, the medial axis is not continuous in Hausdorff distance. Small perturbations to S give a completely different medial axis.

Thickness

Let $r(x, y, z)$ be the radius of a ball passing through x, y, z. Define the thickness $\Delta(f)$ (global radius of curvature, or normal injectivity radius) by

$$
\Delta=\min _{x, y, z} r(x, y, z) .
$$

(See Gonzalez and Maddocks 1999.)

This measures local curvature as well as "closeness of approach."

A ball of radius Δ can roll freely around the curve. So Δ large means that f is smooth and not too close to being selfintersecting.

Thickness

If a ball B has radius Δ then it can roll freely:

Thickness

If B has radius larger than Δ then one of these two things happen. It can't roll because of curvature:

Thickness

... or it can't roll because of a "close approach" of the curve:

EDT

The Euclidean Distance Transform (EDT) is

$$
\wedge(y)=d(y, \partial S)=\min _{x \in \partial S}\|y-x\|
$$

for $y \in S$. Thus, $\wedge(y)$ is the distance from y to the boundary.
$\Lambda(y)=0$ for $y \in \partial S$. Otherwise, $\Lambda(y)>0$.

Nice Sets

S is standard if there are $\delta, \lambda>0$ such that

$$
\operatorname{Lebesgue}(B(y, \epsilon) \cap S) \geq \delta \operatorname{Lebesgue}(B(y, \epsilon))
$$

for all $y \in S$ and all $0<\epsilon \leq \lambda$. This means that S has no pointy parts.
S is expandable if there are $r>0$ and $R \geq 1$ such that

$$
d_{H}\left(\partial S, \partial S^{\epsilon}\right) \leq R \epsilon
$$

for all $0 \leq \epsilon<r$.

Medial Axis $=$ Filament

Let $S=\{y: q(y)>0\}$ be the support.
Theorem:

If $\sigma<\Delta(f)$ then

- $\Gamma_{f}=M(S)$.
- S is standard.
- S is expandable.
- $y \in M(S)$ iff $\wedge(y)=\sigma$.
- $y \notin M(S)$ iff $\wedge(y)<\sigma$.

ESTIMATING THE FILAMENT

Estimation

For now, assume no background clutter and a single filament. First we estimate S and ∂S. Let

$$
\widehat{S}=\bigcup_{i=1}^{n} B\left(Y_{i}, \epsilon_{n}\right)
$$

where $\epsilon_{n}=O(\sqrt{\log n / n})$. Then, almost surely, for all large n,

$$
d_{H}(S, \widehat{S}) \leq C \sqrt{\frac{\log n}{n}} \quad \text { and } \quad d_{H}(\partial S, \partial \widehat{S}) \leq C \sqrt{\frac{\log n}{n}}
$$

(Cuevas and Ridriguez-Casal 2004.)
Later, we will discuss improved estimators. But note that \widehat{S} is very simple.

Estimation

Estimation

Next we construct two estimators: the EDT estimator and the medial estmator.

The EDT Estimator. Let

$$
\widehat{\wedge}(y)=d(y, \widehat{\partial S})
$$

Let

$$
\widehat{\sigma}=\max _{y \in \widehat{S}} \widehat{\wedge}(y)
$$

Let

$$
\widehat{M}=\left\{y \in \widehat{S}: \widehat{\Lambda}(y) \geq \widehat{\sigma}-2 \epsilon_{n}\right\}
$$

Theorem:

$$
d_{H}\left(\widehat{M}, \Gamma_{f}\right)=O_{P}\left(\sqrt{\frac{\log n}{n}}\right) .
$$

Note that \widehat{M} is a set not a curve.

Estimation

Estimation

The Medial Estimator. (For closed curves.)

- Decompose $\widehat{\partial S}=\widehat{\partial S}_{0} \cup \widehat{\partial S}_{1}$.
- For each $y \in \widehat{\partial S}_{0}$, find closest $x \in \widehat{\partial S}_{1}$ and let $\widehat{\mu}(y)$ be the midpoint of the line joining y and x.
- Set $\widehat{M}=\left\{\widehat{\mu}(y): y \in \widehat{\partial S}_{0}\right\}$.

Theorem:

$$
d_{H}\left(\widehat{M}, \Gamma_{f}\right)=O_{P}\left(\frac{\log n}{n}\right)^{1 / 4}
$$

We will improve these rates shortly.

Estimation

Curve Extraction

EDT. (Open curves.)

1. Find two furthest points y_{0} and y_{1} in \widehat{M} (in arc length.)
2. Connect y_{0} and y_{1} with shortest path $\hat{\Gamma}$.

These steps can be approximated by sampling from \widehat{M} and using a minimal spanning tree. Then

$$
d_{H}\left(\Gamma_{f}, \hat{\Gamma}\right)=O_{P}\left(\sqrt{\frac{\log n}{n}}\right)
$$

Any smoothing procedure can be applied to $\hat{\Gamma}$. As long as the fitted value stay in \widehat{M}, the rate of convergence is preserved.

Curve Extraction

Medial estimator. The set \widehat{M} consists of a union of disconnected curves. Complete the estimator by linearly interpolating the disconnected components.

Theorem The completed estimator is a simple closed curve and

$$
d_{H}\left(\widehat{M}, \Gamma_{f}\right)=O_{P}\left(\sqrt{\frac{\log n}{n}}\right) .
$$

Note the faster rate.

The differences of the fitted values also provide an estimate of the gradient with rate $(\log n / n)^{1 / 4}$.

Multiple Curves

- We have similar results for multiple curves that are sufficiently separated.
- For self-interecting curves, the same results apply to the parts of the curve not too close to the intersections.

MINIMAX ESTIMATION

Minimax Estimation

Let

$$
\Theta=\{(f, h, \sigma): 0 \leq \sigma \leq \Delta(f)-a, \quad \Delta(f) \geq d, h \in \mathcal{H}\}
$$

where h is the density of U_{i} and

$$
\mathcal{H}=\left\{h: c_{1} \leq h \leq c_{2}\right\}
$$

Theorem

$$
\inf _{\hat{\Gamma}} \sup _{f, \sigma, h} \mathbb{E}\left(d_{H}\left(\Gamma_{f}, \hat{\Gamma}\right)\right) \geq \frac{C}{n^{2 / 3}}
$$

Minimax Estimation

Proof uses Assoaud's lemma. The hypercube is built from the following least favorable filament:

Push the middle ball up. Roll in balls from left and right.

Minimax Estimation

- To achieve the minimax rate, replace \widehat{S} with a smoother estimator as in Mammen and Tsybakov (1995). If we do this then both estimators are minimax.
- Create a finite net of sets $\mathcal{G}=\left\{S_{1}, \ldots, S_{N}\right\}$.
- Take

$$
\widehat{S}=\operatorname{argmin}\left\{\operatorname{Lebesgue}(S):\left\{Y_{1}, \ldots, Y_{n}\right\} \subset S\right\} .
$$

- Take $\widehat{\partial S}=\partial \widehat{S}$. Then

$$
\sup _{(f, \sigma, h) \in \Theta} E_{f, \sigma, h} d_{H}(\partial S, \widehat{\partial S}) \leq \frac{C}{n^{2 / 3}}
$$

Minimax Estimation

- However, this estimator is mainly of theoretical interest. Can't really compute this.
- The Hall-Park-Turlach (2002) "rolling ball" estimator may be feasible and appears to achieve the same rate of convergence.
- Currently, we use the (suboptimal) union of balls estimator because it is extremely simple and only requires one tuning parameter.

Decluttering

$$
Y_{1}, \ldots, Y_{n} \sim m(y)=(1-\eta) q_{0}+\eta q
$$

where q_{0} is uniform. Bayes rule:

$$
c(y)=I\left(m(y) \geq 2(1-\eta) q_{0}(y)\right)
$$

conservative rule:

$$
c(y)=I\left(m(y) \geq 2 q_{0}(y)\right)
$$

estimate:

$$
\widehat{c}(y)=I\left(\widehat{m}(y) \geq 2 q_{0}(y)\right)
$$

Use:

$$
\mathcal{Y}=\left\{Y_{i}: \widehat{c}\left(Y_{i}\right)=1\right\}
$$

EXAMPLES

$$
\begin{array}{ll}
0 & 0 \\
& S \\
0 & \} \\
0 & 0 \\
5 & \delta
\end{array}
$$

$$
\begin{aligned}
& 9 \\
& \rho \\
& \rho
\end{aligned}
$$

Conclusion

Currently we are working on the following extensions:

- apply to astro data (SDSS and n-body simulations)
- extends readily to higher dimensions
- can allow σ to vary
- smoother methods
- other noise models
- tuning parameters
- compare to beamlets

THE END

OTHER METHODS

Principal Curves

Original version (Hastie and Stuetzle 1989).
f_{*} is the self-consistent smooth curve:
$f_{*}(x)=\mathbb{E}\left(Y \mid \Pi_{f} Y=x\right)$.
Algorithm: iterate these two steps:
(1) Project data onto curve
(2) Regress (smooth) data given the projections.

Principal Curves

Principal Curves

- f_{*} need not exist
- $f \neq f_{*}$ but close: $f_{*}=f+O\left(\sigma^{2}\right.$ Curvature $)$
- not much theory
- very sensitive to starting values.
- doesn't handle multiple curves well

Principal Curves

Second Generation Principal Curves

The principal curve f_{*} is

$$
f_{*}=\operatorname{argmin}_{f \in \mathcal{F}} \mathbb{E}\left\|Y-\Pi_{f} Y\right\|^{2}
$$

where \mathcal{F} is a class of functions. If

$$
\widehat{f}=\operatorname{argmin}_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n}\left\|Y_{i}-\Pi_{f} Y_{i}\right\|^{2}
$$

then, under conditions on \mathcal{F},

$$
\sup _{u}\left\|\widehat{f}(u)-f_{*}(u)\right\| \xrightarrow{P} 0 .
$$

Problems:
(i)difficult algorithms and
(ii) $f_{*} \neq f$.

Spin and Smooth

Suppose that

$$
R_{\theta} \Gamma_{f}=\{(z, g(z)): a \leq z \leq b\}
$$

for some rotation R_{θ} and some function g. In other words, f is a function after some rotation.

- Rotate by R_{θ}
- apply smoother
- minimize RSS over θ

Then \hat{f} has the same asymptotic behavior as nonparametric regresson with measurement error.

Example

For Multiple Filaments: Quantization

A codebook is a finite set of vectors $C=\left\{c_{1}, \ldots, c_{k}\right\}$.

A codebook induces a quantization function $Q(x)=\operatorname{argmin}_{j} \| x-$ $c_{j} \|$ with risk $R(Q) \equiv R(C)=\mathbb{E}\|X-Q(X)\|^{2}$.

The minimal risk for codebooks of size k is $R_{k}=\inf _{Q \in \mathcal{Q}_{k}} R(Q)$.
Given data X_{1}, \ldots, X_{n}, the empirical risk is

$$
\widehat{R}(Q)=\frac{1}{n} \sum_{i=1}^{n}\left\|X_{i}-Q\left(X_{i}\right)\right\|^{2},
$$

which is minimized at some \widehat{Q}.
With high probability, $R(\widehat{Q}) \leq R_{k}+O(\sqrt{k \log k / n})$.

For Multiple Filaments: Quantization

Extend quantization algorithm and theory to codebooks of curves $C=\left\{f_{1}, \ldots, f_{k}\right\}$ (cf. Kegl et al. 2000;Smola et al. 2001).

Use k-means clustering but apply spin-and-smooth within each cluster.

With high probability,
$R(\widehat{Q}) \leq R_{k}+O(\sqrt{k \log k / n})$.

But this inherits all the problems of clustering: chosing k, starting values etc. (See also Stanford and Raftery 2000).

For Multiple Filaments: Quantization

For Multiple Filaments: Quantization

Local Smoothing

Called moving least squares in computational geometry and local linear projection LLP in manifold learning.

- For each Y_{i} fit PCA line to all points in a neighborhood of size h.
- $\widehat{\mu}_{i}=$ projection of Y_{i} onto the line.

A simpler (and essentially equivalent) version is to set $\widehat{\mu}_{i}=$ to the local average:

$$
\widehat{\mu}_{i}=\frac{\sum_{j} Y_{j} K_{h}\left(\left\|Y_{j}-Y_{i}\right\|\right)}{\sum_{j} K_{h}\left(\left\|Y_{j}-Y_{i}\right\|\right)} .
$$

However, this method is not consistent. (Closely related to the mean shift algorithm.)

Example

$$
n=250
$$

Example

$n=2000$

We see the lack of consistency here.

Prune and Smooth

- Density estimate \widehat{p}
- Order the points by density:

$$
\hat{p}\left(Y_{(1)}\right)>\hat{p}\left(Y_{(2)}\right)>\cdots>\hat{p}\left(Y_{(n)}\right)
$$

Select the $k_{n}=n^{3 / 4}$ points with highest density

- Apply local smoother to these points with $h_{n}=n^{-1 / 8}$
- Decimate: $\left\|\widehat{\mu}_{i}-\widehat{\mu}_{i-1}\right\|>\delta_{n}=n^{-1 / 4}$
- Apply NN ordering algorithm.

Then

$$
\max _{i}\left\|\widehat{\mu}_{i}-\mu_{i}\right\|=O_{P}\left(\frac{\log n}{n^{1 / 4}}\right) .
$$

This is similar in spirit to the method in Cheng et al (2004) and Lee (2000).

$$
Y \longrightarrow \text { prune } \longrightarrow \text { smooth } \longrightarrow \text { decimate } \longrightarrow \text { order } \hat{\mu}
$$

Example

Normal Smoothing

Estimate the gradient towards the medial axis (normal of the filament). Let

$$
\text { line }_{i}=\left\{Y_{i}+t \nabla \widehat{p}\left(Y_{i}\right): t \in \mathbb{R}\right\}
$$

Let

$$
\widehat{\mu}_{i}=\operatorname{midpoint}\left(\text { line }_{i} \cap \widehat{S}\right) .
$$

Normal Smoothing

Normal Smoothing

Normal Smoothing

Normal Smoothing

Normal Smoothing

Normal Smoothing

Bias Adjustment

Gradient Method

Filaments correspond to ridges of the marginal density $p(y)$ of Y.

Genovese, Perone-Pacifico, Verdinelli and Wasserman (Annals, to appear).

Gradient Method

Gradient Method

Filaments are ridges of the density

Mean Shift

The mean shift algorithm (Fukunaga and Hostetler 1975, Cheng 1995) is a mode-finding procedure that moves a point along the steepest-ascent paths of the kernel density estimate until a mode is reached.

The path sa produced by the algorithm from any point approximates the steepest-ascent path for p.

Empirical observation: the mean-shift paths concentrate along filaments.

Mean-shift paths concentrate along filaments:

Mean-shift paths

Gradient Method

The concentration of the mean-shift paths suggests an approach to filament estimation: look for regions with a high concentration of paths.

We formalize this by studying the relationship between filaments and the steepest-ascent paths of the true density p.

We define the path density based on the probability that the steepest-ascent path starting at a random point X gets close to x :

$$
p(y)=\lim _{r \rightarrow 0} \frac{\mathbb{P}(\operatorname{sa}(Y) \cap B(y, r) \neq \emptyset)}{r}
$$

For any $\epsilon>0$ and for $\lambda \geq \epsilon$,

$$
\Gamma_{f} \subset\{p>\lambda\} \subset B\left(\Gamma_{f}, r(\lambda)+\epsilon\right),
$$

for $r(\lambda)$ decreasing.

path density estimator

We define a kernel estimator for the path density based on the mean shift paths sà

$$
\begin{gathered}
\widehat{p}_{n}(y)=\frac{1}{n} \sum_{i=1}^{n} \frac{1}{\nu_{n}} K\left(\frac{\inf _{z \in \widehat{\operatorname{sa}}\left(Y_{i}\right)}\|z-y\|}{\nu_{n}}\right) \\
\sup _{y}\left|\widehat{p}_{n}(y)-p(y)\right|=O_{P}\left(\frac{\log n}{n^{1 / 4}}\right)
\end{gathered}
$$

Example

levelset at 90-th percentile of density estimate

Example

