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Bayes’s theorem ) )
Improper mixtures

Bayes’s theorem

Non-Bayesian model: Domain & = R
Parameter space ©; elements 6 € ©:
{Py : 6 € ©} family of prob distributions on S
Observation space S, = R"™; event A C S; elements y € S,

Bayesian model: above structure plus
m: prob distn on © implies
P;(A x df) = Py(A)r(d6) joint distnon S x ©
Qr(A) = P.(A x ©) mixture distribution on S

Bayes’s theorem: conditional probability given Y = y

associates with each y € S, a probability distribution on ©
y = Pr(d0|Y =y) = Pr(dy x df)/Q(dy)
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Bayes’s theorem ) )
Improper mixtures

Bayes/non-Bayes remarks

Non-Bayesian model:
family of distributions {Py} on S

Bayesian model is a single distribution/process:
Joint distribution Py(A) 7(df) on S x ©, or
Mixture distribution P(A) on S

Parametric inference:
Use the joint density to get a posterior distn P.(d6 | y)
e.g. Pr(23 <61 <3.7]|y)

Nonparametric inference (sample-space inference):
S=R®=R"xR®: Y. R>® RN
obs y(M € R" — Q. (A|y(M)forAc S
e.9. Q:(Ynp1 <3.71yM) or Q.(2.3 < Yoo <3.7|yM)

Peter McCullagh Improper mixtures



Bayes’s theorem .
Improper mixtures

Improper mixtures: v(©) = oo

Py(A)v(d0) not a probability distribution on § x ©
— No theorem of conditional probability

Nonetheless ..
If Q,(dy)= [ P9 (dy; ) v(df) < oo, the formal Bayes ratio
Py(dy) v(d0)/Q,(dy) is a probability distribution on ©

Distinction: Bayes calculus versus Bayes’s theorem

If there is a theorem here, what is its nature?

() conditional distn is associated with some y-values and not
others

(il) what about DSZ marginalization paradoxes?
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Marginalization paradoxes (Dawid, Stone and Zidek)

Exponential ratio model:
Y ~ e, X~ 0pe ? indep
Parameter of interest: 6 = E(Y)/E(X).
Prior: 7(6)d6 d¢

Analysis I:

Joint density: 026~ ?(0X+Y) dx dy

Marginal posterior: 7(6 | x, y) o (99:(29))3
where z = y/x.

Analysis Il: based on Z alone

pzl0) =Gy 7(012) x 1

Apparent contradiction or paradox
Prior 7(0)d60 d¢/¢ gives same answer both ways.
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Improper mixtures

What does Bayes’s theorem do?

Conventional proper Bayes:
Begins with the family {P, : 6 € ©} and =(d#)
Creates a random element (Y, 7)in S x ©
with distribution Py(dy) (d0)
Computes the conditional distribution given Y = y

Can we do something similar with an improper mixture v?

(i) Associate with the family { Py} and measure v some sort of
random objectin S x ©

(i) Observe a piece of this object, (projection onto S or Sp)

(iii) Compute the conditional distribution given the observation

What sort of random object?
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Improper mixtures and Bayes’s theorem

(i) Bayes’s theorem is just conditional probability;
joint distribution on S x © — conditional distribution

(ii) Bayes’s theorem needs joint probability distribution (Lindley)
— but not necessarilyon S x ©

(iii) Poisson process converts a measure v on © into
a prob distn on the power set Pow(©)

(iv) Prob distn = generates a random element T € ©
measure v generates a random subset T C ©

(v) Sampling: how do we observe a random set?

(vi) Can Bayes’s theorem now be used?
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Bayes'’s theorem for PP
Poisson processes Gaussian sequences

Poisson process in S = Sy x Sy

Domain S, measure space with measure g
Countability condition (Kingman 1993)

p=> pn  pn(S) < oo
n=1

Z C S a Poisson process with mean measure p: Z ~ PP(u)
#(Z N A) ~ Po(u(A)) independently for AN A =)

Product structure S = Sp x Sy gives
Z=(Y,X)={(Y;,X):i=1,2,...} (YieS, X e€S)

Projection Y = Z[n] C Sy is PP(1p) where 10(A) = (A x Sy)
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Bayes'’s theorem for PP
Poisson processes Gaussian sequences

Observation on a point process: S = R

Point process Z C R°°: countable set of infinite sequences

Yi=2[n]
Z1 = (241,412,210, Z1nsts - - )
Ym=2Zm[n]

Zm = (Z,m,ng, s »meZm,n—H P )

ZCR®~PP(u); Y=Z[NCR";, Y ~PP(u)

Sampling region A C R" such that p(A) = (A x R*®) < oo;
Observationy = YN A; #y < oo

Inference for sequences Z[A] = {Z;: Y, € A}
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Bayes'’s theorem for PP
Poisson processes Gaussian sequences

Observation on a point process: S = R

Point process Z C R°°: countable set of infinite sequences

PP events: Z ={Zy,2,,...}
one PP event Z; = (Zj1, Zj2, . . .) an infinite sequence

Zf - ()/17)(1) \/I - (Zi17' .. 7an); Xf - (Zi,n+1yzi,n+27 .. )
Y; = Zj[n] initial segment of Z;;  X; subsequent trajectory

Observation space S = R"™:
Sampling protocol: test set A C Sy such that pg(A) < oo

Observation: Y N A a finite subset of Sy

Inference for what?
for the subsequent trajectories X[A] = {X; : Y; € A}, if any.
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Bayes’s theorem for PP
Poisson processes Gaussian sequences

Bayes’s theorem for PPP

Test set A € R" such that 19(A) = p(A x R>®) < o
Observationy = YNAC R
Subsequent trajectories x = X[A] = {X; : Y € A}

(i) Finiteness: pg(A) < oo implies #y < oo w.p.1

(i) Trivial case: If y is empty x = ()

(iii) Assume pp(A) >0and m=#y >0

(iv) Label the events Yi, ..., Y, independently of Z.

(v) Givenm, Yy, ..., Yy areiid po(dy)/uo(A)

(vi) (Y1, X1), ..., (Ym, Xm) are iid with density p(dx, dy)/uo(A)
(vii) Conditional distribution

(dx;dy) 1
p(ax|y) = H“ ;,yy’ =T (o1 )
i=1 i) i=1
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Bayes’s theorem for PP
Poisson processes Gaussian sequences

Remarks on the conditional distribution

(dx; dy;)
p(dx|y) = H” 'dyly' 1Tty
i=1 i=1

(i) Finiteness assumption: up(A) < oo
given #(Y N A) = m < oo, the values Yi,..., Yy areiid

(if) Conditional independence of trajectories:
Xi, ..., Xm are conditionally independent given YNA=y

(iii) Lack of interference:
Conditional distn of X; given Y N A =y depends only on y;
— unaffected by m or by configuration of other events

(iv) Role of test set A
no guarantee that a test set exists such that 0 < pp(A) < oo!
if y € Sp has anbd As.t. 0 < 1p(A) < oo then the test set
has no effect.
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Poisson processes Gaussian sequences

Improper parametric mixtures

S = R" x © product space
{Py(dy): 0 € ©} a family of prob distns
v(d@) a countable measure on ©: v(0) = o
= p = Py(dy)r(df) countable on S = R" x ©
1o(A) = u(A x ©) = [5 Py(A) v(d) on R”
The process:

Z ~ PP(u) arandom subset of S

Z ={(Y1,X1),(Ye, X2), ...} (countability)

Y ~ PP(pp) in R"and X ~ PP(v) in ©

Infinite number of sequences Y C R"
one parameter X; € © foreach Y; € Y
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Bayes’s theorem for PP
Poisson processes Gaussian sequences

Improper parameteric mixture (contd.)

Observation:
atest set A C R" such that 19(A) < oo
the subset y = Y N A (finite but could be empty)
but #y > 0 implies 1o(A) >0

The inferential goal:
X[A] : Y;inA a finite random subset of ©

Elements (parameters) in X[A] are conditionally independent
with distribution v(d€)Py(dy)/uo(dy)

Vindication of the formal Bayes calculus!
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Bayes’s theorem for PP
Poisson processes Gaussian sequences

Summary of assumptions

The Poisson process:
Countability: v(A) = 377, j(A)  (1(S) < );
includes nearly every imaginable improper mixture!
implies that pq is countable on Sp = R"
o-finiteness, local finiteness,.. sufficient but not needed

Observation space and sampling protocol:
need Sy and A C Sy such that p(A) < oo
— not guaranteed by countability condition
— may be satisfied even if ;g not o-finite
— may requiren>2orn>3
— may exclude certain points s.t. po({y}) = oo
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Poisson processes Gaussian sequences

Gaussian sequences: parametric formulation

S=R"x 0, Py, iid N(6, 5?)

v(df) = dfdo/oP on R x R™ (improper on ©)

w(dy df) = Nu(,0?)(dy) df do /o (joint measure on S)
Z C R" x © is a PP with mean measure p

Marginal process Y C R" is Poisson with mean measure

F((n+ p—2)/2)2P=3)/2z=(n=1)/2n=1/2 gy
(X (yi — y)2)ntp=2)/2

Test sets A € R" such that 0 < uo(A) < oo

po(dy) =

does not existunlessn>2andn>2—-p

For each test set A, finite subsety ¢ Aand foreach y €y
p(0,0]y,y €y) = én(dy;0,0)0P/uo(dy)
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Bayes'’s theorem for PP
Poisson processes Gaussian sequences

Formal Bayes inferential statements

Given a proper mixture = on ©, what does Bayes’s theorem do?
associates with each integer n > 0, and almost every y € R"
a distribution

Pn(dodo | y) < ¢n(y; 6,0)m(d6 do)
This holds in particular for n =0 and y = 0 in R°.

Given an improper mixture v on ©, Bayes’s theorem
associates with each test set A ¢ R", with each finite subset
y C A, and with almost every y € y

Pn(0,0 1Y,y €Y) = ¢n(dy;0,0)07P/uo(dy)

independently for yq,...iny.

The first statement is not correct for improper mixtures.
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Bayes'’s theorem for PP
Poisson processes Gaussian sequences

Nonparametric version |

T C R x R* Poisson with mean measure df do/oP
To each t = (4, ) in T associate an iid N(t;, t22) sequence Z;
The set Z € R*> of sequences Z ~ PP(pu)

gy — [0+ p—2)/2)2P-9/27—(0-/271/2 g
o) = (O (zi — zp)?)(ntP-2)/2

such that pn(A) = pp1(A X R).
Projection: Z[n] ~ PP(up) in R".

Observation: test set Aplus Z[nfNnA=1z
For z € z the subsequent trajectory z,. 1, ... is distributed as

Nn+k(z1 vy Zny Zn+17 cee 7Zn+k)/l$n(z)

exchangeable Studenttonn+p—2d.f.

Peter McCullagh Improper mixtures



Bayes'’s theorem for PP
Poisson processes Gaussian sequences

Nonparametric version |l

Y[2] ¢ R? is Poisson with mean measure

dyr dyz/|ys — yol°
Extend each y € Y|[2] by the Gosset rule

Ynet = T+ Snemy/ (12— 1)/(n(n + p — 2))

where ep ~ th,p—2 indep.

Then Y C R* is the same point process as Z
Y ~Z ~PP(u)in R
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Bayes'’s theorem for PP
Poisson processes Gaussian sequences

Bernoulli sequences

Yi,..., Yn,...iid Bernoulli(9)
Take Sp = {0, 1}" as observation space
v(df) = do/(6(1 — 9)).

Product measure p(y, df) = df o™ W=1(1 — g)m)-1
Marginal measure on {0, 1}"

1o(y) = {;()no(}/))r(m ¥)/T(n) ;Oiy())%n;r(};)f 0

Test set A C {0,1}" excludes 0",1",so n > 2

P,(6|YNA=Y,y €y)=Betan, (y)ny)(0)
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Bayes'’s theorem for PP
Poisson processes Gaussian sequences

Marginalization paradox revisited

Exponential ratio model:
Y ~ope?, X~ 0pe % indep Prior: 7(0)df d¢

Joint measure ¢?0e~?0+9)7(9) on R? x ©
Bivariate marginal measure has a density in R?

* On(6)do
\x,y)=2 [ —21—Z
by) /o (0x + y)3
Locally finite, so observable on small test sets A ¢ R?

Bayes’s PP theorem gives

pO|YNA=Y, (x,y)€y)x

where z = y/x.
Correct standard conclusion derived from the Bayes calculus.
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Bayes'’s theorem for PP
Poisson processes Gaussian sequences

Marginalization paradox contd.

Conclusion depends on z = y/x alone
Induced marginal measure on R for the ratios z = y/x

(0 Leb(A)=0
Az(A) = {oo Leb(A) > 0

No test set such that 0 < A(A) < o
Bayes PP theorem does not support the formal Bayes calculus

Could adjust the mixture measure: =(0) do d¢/¢
Two versions of Bayes calculus give 07(6)/(z + 0)?

But there is no PP theorem to support version I
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Bayes'’s theorem for PP
Poisson processes Gaussian sequences

Conclusions

(i) Is there a version of Bayes’s theorem for improper mixtures?
— Yes.

(ii) Is it the same theorem?
— No. Sampling scheme is different
— Conclusions are of a different structure

(iii) Are the conclusions compatible with the formal Bayes

calculus?
— To a certain extent, yes.

(iv) How do the conclusions differ from proper Bayes?
— Nature of the sampling schemes:
proper Bayes: sample {1,2, ..., n}, observation Y € R"
improper Bayes: sample A C R, observation Y N A
— Finiteness condition on sampling region A:
— usually A ¢ R" does not exist unless n > k
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