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Bayes’s theorem

Non-Bayesian model: Domain S = R∞

Parameter space Θ; elements θ ∈ Θ:
{Pθ : θ ∈ Θ} family of prob distributions on S
Observation space Sn = Rn; event A ⊂ S; elements y ∈ Sn

Bayesian model: above structure plus
π: prob distn on Θ implies
Pπ(A× dθ) = Pθ(A)π(dθ) joint distn on S ×Θ
Qπ(A) = Pπ(A×Θ) mixture distribution on S

Bayes’s theorem: conditional probability given Y = y
associates with each y ∈ Sn a probability distribution on Θ
y 7→ Pπ(dθ |Y = y) = Pπ(dy × dθ)/Qπ(dy)
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Bayes/non-Bayes remarks

Non-Bayesian model:
family of distributions {Pθ} on S

Bayesian model is a single distribution/process:
Joint distribution Pθ(A) π(dθ) on S ×Θ, or
Mixture distribution Pπ(A) on S

Parametric inference:
Use the joint density to get a posterior distn Pπ(dθ | y)
e.g. Pπ(2.3 < θ1 < 3.7 | y)

Nonparametric inference (sample-space inference):
S = R∞ = Rn ×R∞: Y (n) : R∞ → Rn

obs y (n) ∈ Rn 7→ Qπ(A | y (n)) for A ⊂ S
e.g. Qπ(Yn+1 < 3.7 | y (n)) or Qπ(2.3 < Ȳ∞ < 3.7 | y (n))

Peter McCullagh Improper mixtures



university-logo

Bayes’s theorem
Poisson processes

Improper mixtures

Improper mixtures: ν(Θ) = ∞

Pθ(A)ν(dθ) not a probability distribution on S ×Θ
— No theorem of conditional probability

Nonetheless ....
If Qν(dy) =

∫
Pθ(dy ; θ) ν(dθ) < ∞, the formal Bayes ratio

Pθ(dy) ν(dθ)/Qν(dy) is a probability distribution on Θ

Distinction: Bayes calculus versus Bayes’s theorem

If there is a theorem here, what is its nature?
(i) conditional distn is associated with some y -values and not
others
(ii) what about DSZ marginalization paradoxes?
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Marginalization paradoxes (Dawid, Stone and Zidek)

Exponential ratio model:
Y ∼ φe−φy , X ∼ θφe−θφx indep
Parameter of interest: θ = E(Y )/E(X ).
Prior: π(θ)dθ dφ

Analysis I:
Joint density: θφ2e−φ(θx+y) dx dy
Marginal posterior: π(θ | x , y) ∝ θ π(θ)

(θ+z)3

where z = y/x .

Analysis II: based on Z alone
p(z | θ) = θ

(θ+z)2 π(θ | z) ∝ θ π(θ)
(θ+z)2

Apparent contradiction or paradox
Prior π(θ)dθ dφ/φ gives same answer both ways.
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What does Bayes’s theorem do?

Conventional proper Bayes:
Begins with the family {Pθ : θ ∈ Θ} and π(dθ)
Creates a random element (Y , T ) in S ×Θ

with distribution Pθ(dy) π(dθ)
Computes the conditional distribution given Y = y

Can we do something similar with an improper mixture ν?

(i) Associate with the family {Pθ} and measure ν some sort of
random object in S ×Θ

(ii) Observe a piece of this object, (projection onto S or Sn)
(iii) Compute the conditional distribution given the observation

What sort of random object?
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Improper mixtures and Bayes’s theorem

(i) Bayes’s theorem is just conditional probability;
joint distribution on S ×Θ 7→ conditional distribution

(ii) Bayes’s theorem needs joint probability distribution (Lindley)
— but not necessarily on S ×Θ

(iii) Poisson process converts a measure ν on Θ into
a prob distn on the power set Pow(Θ)

(iv) Prob distn π generates a random element T ∈ Θ
measure ν generates a random subset T ⊂ Θ

(v) Sampling: how do we observe a random set?

(vi) Can Bayes’s theorem now be used?

Peter McCullagh Improper mixtures



university-logo

Bayes’s theorem
Poisson processes

Bayes’s theorem for PP
Gaussian sequences

Poisson process in S = S0 × S1

Domain S, measure space with measure µ
Countability condition (Kingman 1993)

µ =
∞∑

n=1

µn µn(S) < ∞.

Z ⊂ S a Poisson process with mean measure µ: Z ∼ PP(µ)
#(Z ∩ A) ∼ Po(µ(A)) independently for A ∩ A′ = ∅

Product structure S = S0 × S1 gives

Z = (Y , X ) = {(Yi , Xi) : i = 1, 2, . . .} (Yi ∈ S0, Xi ∈ S1)

Projection Y = Z [n] ⊂ S0 is PP(µ0) where µ0(A) = µ(A× S1)
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Observation on a point process: S = R∞

Point process Z ⊂ R∞: countable set of infinite sequences

Z1 =

Y1=Z1[n]︷ ︸︸ ︷
(Z11, Z12, . . . , Z1n, Z1,n+1, . . .)

Zm =

Ym=Zm[n]︷ ︸︸ ︷
(Zm1, Zm2, . . . , Zmn, Zm,n+1, . . .)

Z ⊂ R∞ ∼ PP(µ); Y = Z [n] ⊂ Rn; Y ∼ PP(µ0)
Sampling region A ⊂ Rn such that µ0(A) = µ(A×R∞) < ∞;

Observation y = Y ∩ A; #y < ∞
Inference for sequences Z [A] = {Zi : Yi ∈ A}
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Observation on a point process: S = R∞

Point process Z ⊂ R∞: countable set of infinite sequences
PP events: Z = {Z1, Z2, . . .}
one PP event Zi = (Zi1, Zi2, . . .) an infinite sequence
Zi = (Yi , Xi): Yi = (Zi1, . . . , Zin); Xi = (Zi,n+1, Zi,n+2, . . .)

Yi = Zi [n] initial segment of Zi ; Xi subsequent trajectory

Observation space S0 = Rn:
Sampling protocol: test set A ⊂ S0 such that µ0(A) < ∞
Observation: Y ∩ A a finite subset of S0

Inference for what?
for the subsequent trajectories X [A] = {Xi : Yi ∈ A}, if any.

Peter McCullagh Improper mixtures



university-logo

Bayes’s theorem
Poisson processes

Bayes’s theorem for PP
Gaussian sequences

Bayes’s theorem for PPP

Test set A ⊂ Rn such that µ0(A) = µ(A×R∞) < ∞
Observation y = Y ∩ A ⊂ Rn;
Subsequent trajectories x = X [A] = {Xi : Yi ∈ A}

(i) Finiteness: µ0(A) < ∞ implies #y < ∞ w.p.1
(ii) Trivial case: If y is empty x = ∅
(iii) Assume µ0(A) > 0 and m = #y > 0
(iv) Label the events Y1, . . . , Ym independently of Z .
(v) Given m, Y1, . . . , Ym are iid µ0(dy)/µ0(A)
(vi) (Y1, X1), . . . , (Ym, Xm) are iid with density µ(dx , dy)/µ0(A)
(vii) Conditional distribution

p(dx |y) =
m∏

i=1

µ(dxi dyi)

µ0(dyi)
=

n∏
i=1

µ(dxi | yi)

Peter McCullagh Improper mixtures



university-logo

Bayes’s theorem
Poisson processes

Bayes’s theorem for PP
Gaussian sequences

Remarks on the conditional distribution

p(dx |y) =
m∏

i=1

µ(dxi dyi)

µ0(dyi)
=

n∏
i=1

µ(dxi | yi)

(i) Finiteness assumption: µ0(A) < ∞
given #(Y ∩ A) = m < ∞, the values Y1, . . . , Ym are iid

(ii) Conditional independence of trajectories:
X1, . . . , Xm are conditionally independent given Y ∩ A = y

(iii) Lack of interference:
Conditional distn of Xi given Y ∩ A = y depends only on yi
– unaffected by m or by configuration of other events

(iv) Role of test set A
no guarantee that a test set exists such that 0 < µ0(A) < ∞!
if y ∈ S0 has a nbd A s.t. 0 < µ0(A) < ∞ then the test set

has no effect.
Peter McCullagh Improper mixtures
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Improper parametric mixtures

S = Rn ×Θ product space
{Pθ(dy) : θ ∈ Θ} a family of prob distns
ν(dθ) a countable measure on Θ: ν(Θ) = ∞
⇒ µ = Pθ(dy)ν(dθ) countable on S = Rn ×Θ
µ0(A) = µ(A×Θ) =

∫
Θ Pθ(A) ν(dθ) on Rn

The process:
Z ∼ PP(µ) a random subset of S
Z = {(Y1, X1), (Y2, X2), . . .} (countability)
Y ∼ PP(µ0) in Rn and X ∼ PP(ν) in Θ

Infinite number of sequences Y ⊂ Rn

one parameter Xi ∈ Θ for each Yi ∈ Y
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Improper parameteric mixture (contd.)

Observation:
a test set A ⊂ Rn such that µ0(A) < ∞
the subset y = Y ∩ A (finite but could be empty)
but #y > 0 implies µ0(A) > 0

The inferential goal:
X [A] : Yi inA a finite random subset of Θ

Elements (parameters) in X [A] are conditionally independent
with distribution ν(dθ)Pθ(dy)/µ0(dy)

Vindication of the formal Bayes calculus!
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Summary of assumptions

The Poisson process:
Countability: ν(A) =

∑∞
j=0 νj(A) (νj(S) < ∞);

includes nearly every imaginable improper mixture!
implies that µ0 is countable on S0 = Rn

σ-finiteness, local finiteness,.. sufficient but not needed

Observation space and sampling protocol:
need S0 and A ⊂ S0 such that µ0(A) < ∞
— not guaranteed by countability condition
— may be satisfied even if µ0 not σ-finite
— may require n ≥ 2 or n ≥ 3
— may exclude certain points s.t. µ0({y}) = ∞
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Gaussian sequences: parametric formulation

S = Rn ×Θ, Pθ,σ iid N(θ, σ2)
ν(dθ) = dθ dσ/σp on R×R+ (improper on Θ)
µ(dy dθ) = Nn(θ, σ

2)(dy) dθ dσ/σ (joint measure on S)
Z ⊂ Rn ×Θ is a PP with mean measure µ
Marginal process Y ⊂ Rn is Poisson with mean measure

µ0(dy) =
Γ((n + p − 2)/2)2(p−3)/2π−(n−1)/2n−1/2 dy

(
∑n

i=1(yi − ȳ)2)(n+p−2)/2 .

Test sets A ⊂ Rn such that 0 < µ0(A) < ∞

does not exist unless n ≥ 2 and n > 2− p

For each test set A, finite subset y ⊂ A and for each y ∈ y

p(θ, σ |y, y ∈ y) = φn(dy ; θ, σ)σ−p/µ0(dy)
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Formal Bayes inferential statements

Given a proper mixture π on Θ, what does Bayes’s theorem do?
associates with each integer n ≥ 0, and almost every y ∈ Rn

a distribution

Pn(dθ dσ | y) ∝ φn(y ; θ, σ) π(dθ dσ)

This holds in particular for n = 0 and y = 0 in R0.

Given an improper mixture ν on Θ, Bayes’s theorem
associates with each test set A ⊂ Rn, with each finite subset

y ⊂ A, and with almost every y ∈ y

Pn(θ, σ |y, y ∈ y) = φn(dy ; θ, σ)σ−p/µ0(dy)

independently for y1, . . . in y.

The first statement is not correct for improper mixtures.
Peter McCullagh Improper mixtures



university-logo

Bayes’s theorem
Poisson processes

Bayes’s theorem for PP
Gaussian sequences

Nonparametric version I

T ⊂ R×R+ Poisson with mean measure dθ dσ/σp

To each t = (t1, t2) in T associate an iid N(t1, t2
2 ) sequence Zt

The set Z ⊂ R∞ of sequences Z ∼ PP(µ)

µn(dz) =
Γ((n + p − 2)/2)2(p−3)/2π−(n−1)/2n−1/2 dz

(
∑n

i=1(zi − z̄n)2)(n+p−2)/2

such that µn(A) = µn+1(A×R).
Projection: Z [n] ∼ PP(µn) in Rn.

Observation: test set A plus Z [n] ∩ A = z
For z ∈ z the subsequent trajectory zn+1, . . . is distributed as

µn+k (z1, . . . , zn, zn+1, . . . , zn+k )/µn(z)

exchangeable Student t on n + p − 2 d.f.
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Nonparametric version II

Y [2] ⊂ R2 is Poisson with mean measure

dy1 dy2/|y1 − y2|p

Extend each y ∈ Y [2] by the Gosset rule

yn+1 = ȳn + snεn

√
(n2 − 1)/(n(n + p − 2))

where εn ∼ tn+p−2 indep.

Then Y ⊂ R∞ is the same point process as Z
Y ∼ Z ∼ PP(µ) in R∞.
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Bernoulli sequences

Y1, . . . , Yn, . . . iid Bernoulli(θ)
Take S0 = {0, 1}n as observation space

ν(dθ) = dθ/(θ(1− θ)).

Product measure µ(y , dθ) = dθ θn1(y)−1(1− θ)n0(y)−1

Marginal measure on {0, 1}n

µ0(y) =

{
Γ(n0(y))Γ(n1(y))/Γ(n) n0(y), n1(y) > 0
∞ y = 0n or 1n

Test set A ⊂ {0, 1}n excludes 0n, 1n, so n ≥ 2

Pν(θ |Y ∩ A = y, y ∈ y) = Betan1(y),n0(y)(θ)
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Marginalization paradox revisited

Exponential ratio model:
Y ∼ φe−φy , X ∼ θφe−θφx indep Prior: π(θ)dθ dφ

Joint measure φ2θe−φ(y+θx)π(θ) on R2 ×Θ
Bivariate marginal measure has a density in R2

λ(x , y) = 2
∫ ∞

0

θπ(θ) dθ

(θx + y)3

Locally finite, so observable on small test sets A ⊂ R2

Bayes’s PP theorem gives

p(θ |Y ∩ A = y, (x , y) ∈ y) ∝ θ π(θ)

(θ + z)3

where z = y/x .
Correct standard conclusion derived from the Bayes calculus.
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Marginalization paradox contd.

Conclusion depends on z = y/x alone
Induced marginal measure on R+ for the ratios z = y/x

ΛZ (A) =

{
0 Leb(A) = 0
∞ Leb(A) > 0

No test set such that 0 < Λ(A) < ∞
Bayes PP theorem does not support the formal Bayes calculus

Could adjust the mixture measure: π(θ) dθ dφ/φ
Two versions of Bayes calculus give θπ(θ)/(z + θ)2

But there is no PP theorem to support version II
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Conclusions

(i) Is there a version of Bayes’s theorem for improper mixtures?
— Yes.

(ii) Is it the same theorem?
— No. Sampling scheme is different
— Conclusions are of a different structure

(iii) Are the conclusions compatible with the formal Bayes
calculus?

— To a certain extent, yes.

(iv) How do the conclusions differ from proper Bayes?
— Nature of the sampling schemes:

proper Bayes: sample {1, 2, . . . , n}, observation Y ∈ Rn

improper Bayes: sample A ⊂ Rn, observation Y ∩ A
— Finiteness condition on sampling region A:
— usually A ⊂ Rn does not exist unless n ≥ k

(v) Admissibility of estimates?
Peter McCullagh Improper mixtures
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