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For when I don’t finish -22

Physics problems are hard.

As is not usual – you really don’t want the raw data.

The scientific null hypothesis is a point null.

But the data analytic null is more nuanced.

Particle detection can be mixture of GOF with more
traditional tests.

Non-parametric priors lead to Neyman Pearson tests.

Gaussian priors lead to quadratic tests.

Sensible prior: decision won’t be obvious a priori – sample
size dependence.

The real problems are strikingly hard – and the physicists
want and expect smart solutions.
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The Higgs particle -21

Elementary particle; one of 5 elementary bosons.

Existence predicted by Standard Model of particle physics.

Not yet observed.

Major target of experiments at Large Hadron Collider at
CERN.
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LHC -20

Large

27 km circumference ring carrying two proton beams.

High Energy

Beams to collide at up to 14 Trillion Electron Volts.

Collider

Many collisions. Each collision measured on complex detector.
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A Marked Poisson Process Model -19

Model data as Poisson Process of events in time.

At each event measure a response X – the marks.

The event space is huge, huge, huge.

Given times of events, marks are nearly iid.

Collapse data over time to get sample of N values of Xi .

Poisson process on the mark space.
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Hypotheses -18

Null hypothesis is

There is no such thing as a Higgs particle

More general null hypothesis is standard physics “The
Standard Model”.

Alternative hypothesis is some other model of physics.

or perhaps

The standard model is wrong

or perhaps

The Higg’s particle is not produced at LHC
energies.
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Statistical Translation of No Higgs -17

Null hypothesis is N has Poisson(Λ) distribution and given
N the Xi are iid with some density f .

Alternative is N has Poisson(Λ + M) distribution and
given N the Xi are iid with some density g given by

g =
Λ

Λ + M
f +

M

Λ + M
f ∗

with f ∗ 6= f .

The density f ∗ is the density of the marks in events which
produce Higgs particles.
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Neyman Pearson -16

With f ∗, g and M known use Neyman Pearson:

` ≡ N log(1 + M/Λ) +
∑
i

log

(
g(Xi )

f (Xi )

)
.

Not much to discuss but none of the things you “know” is
known exactly.

And there is too much data.
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One Data Point -15
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LHC -14

The LHC experiments represent about 150 million sensors
delivering data 40 million times per second. After filtering there
will be about 100 collisions of interest per second.

For a year’s worth of data

Λ ≈ 1015

and
M ≈ 103

So N provides no information?

No information at all unless f ∗ is nothing like f .

So what do we really do?
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Triggering -13

In fact f ∗ is known or expected to be concentrated on
‘small’ region of mark space.

As events are registered ‘triggering” algorithms determine
whether or not the event is conceivably ‘interesting’.

Triggering lowers event rate from 40M per second to
roughly 100 per second.

Now apply same model to reduced part of the mark space.

Still have
Λ ≈ 109

and
M ≈ 103

or a bit less.
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Cuts -12

When serious analysis begins make further cuts.

This amounts to trimming the mark space further to
reduce Λ a lot and M hopefully only a bit.

So now I imagine my problem as posed above:

Ho : M = 0

versus
H1 : M = M0, density is g .
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Composite alternative -11

Treat f ∗ (so too alternative g) as imprecisely known.

Test combination of two hypotheses:

H0,count : M = 0 and H0,shape : g = f

Second part is goodness-of-fit.

GOF is somewhat disreputable.

No really, it is.

Ad hoc, ad hoc, ad hoc.
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A Bayesian trapped in frequentist world -10

Must carry out fixed level α test.

Must publish a protocol.

Wants to reject Ho .

Uses prior on alternative to design Neyman-Pearson test.

Maximizes expected power.

A frequentist can use the idea to design tests.
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Priors on Densities -9

Stochastic Process Prior

Think of unknown density g as a random function (=
stochastic process) which happens to be positive and integrate
to 1.

If g is random then the joint density of X ≡ (X1, . . . ,Xn) at
the point x ≡ (x1, . . . , xm) is

Ψ(x) ≡ E {g(x1) · · · g(xn)}

where it is g not the xi s that are being averaged over!
So NP Likelihood ratio test statistic is

(1 + M/Λ)Ne−ΛΨ(X).

Now I need computable examples.
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Gaussian Priors on log Densities -8

Idea: εZ (x) Gaussian process approximating (up to
location and scale) log likelihood ratio.

Problem: ∫
exp{εZ (x)}f (x)dx 6= 1

so define our random density by

g(x) = exp{εZ (x)}f (x)/

∫
exp{εZ (x)}f (x)dx .

Additive invariance: wlog take
∫
Z (x)f (x)dx = 0.

Problem: denominator. Solution: choose ε depending on
sample size.
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Principles used here -7

1 Statistical tests are useful when 0.05 < power < 1:
alternatives of interest are neither indetectably nor grossly
different from the null hypothesis.

2 Good tests are designed to be sensitive to alternatives
likely to arise in practice.

3 The purpose of computing large sample limits is
approximation.

4 Data structure and model at hand can be embedded in
any convenient sequence to get approximation.

5 Pick sequence to get quick convergence to computable
limit!
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I believe the problem will be interesting -6

Principle: design tests for good properties when alternative
detectably but not obviously different from null.

Precise large sample version: take ε = a/
√
M.

Log-likelihood ratio given Z is approximately∑
log{g(xi )/f (xi )} ≈W ≡ a

∑
Z (xi )√
M

−a2

∫
Z 2(u)f (u)du/2.

Now: compute marginal joint density of

X1, . . . ,Xn

by averaging density over Z .
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Unexplained result of computation -5

Test rejects for large values of

e−M(1 + M/Λ)N exp{GOF Statistic(N,M)}

where “GOF statistic” is generalization of EDF type tests.

Actual formula is a secret.
Because it is hideous.
But I do have a formula in terms of eigenvalues,
eigenfunctions, non-centrality parameters and data.
Large sample approximate P-values are computable.
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Composite Null: One Example -4

Specify alternative in two pieces.

Alternative g(x) = f (x , θ) exp{εZ (x , θ)}.
Apply prior π1 to θ.

Prior on alternative decomposed into conditional
alternative given θ averaged over θ.

Null: apply prior π0.
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Structure of Likelihood Ratio -3

Neyman-Pearson likelihood ratio is product of two terms.
Conditional joint density of X1, . . . ,Xn given θ is

Ψ(x, θ)

computed as before for Z (x , θ).
First term in likelihood ratio is posterior expectation

Ψ(x) ≡
∫

Ψ (x, θ)π1(dθ|x).

where π1(dθ|x) is posterior computed under null for prior
π1.
Second is ratio of marginals under null:∫ ∏

f (xi , θ)π1(θ)dθ∫ ∏
f (xi , θ)π0(θ)dθ

.

Adjust π0 to get level α.
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Simulation Results -2

“Not today, sir.”
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Simulation Results -2
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Data Analysis -1

Are you kidding?
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The Real(er) Problem 0

The density f ∗ is computed by measurement,
approximation, and simulation.

The density g is computed by measurement,
approximation, and simulation – from extreme tails.

The intensity M is an unknown parameter of interest.

In fact M is product of parameter of interest
cross-section and other things — prior information
available for the other things.

But Bayes on cross-section not tolerable to physicists.

Null intensity Λ is computed by approximation and
simulation.

The analysis will be carried out over several energy ranges;
multiple comparisons.
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Summary, questions, extensions 1

An experimenter wanting to provide evidence convincing
to others should use prior on alternative and publish a
data analysis protocol.

A fairly natural prior leads to pooling quadratic GOF tests
with a test based on N.

I need to find more priors.

The data analysis null hypothesis is uncertain; is Bayes
avoidable?

What is the foundational status of “systematics”?

Blind analysis?
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An experimenter wanting to provide evidence convincing
to others should use prior on alternative and publish a
data analysis protocol.

A fairly natural prior leads to pooling quadratic GOF tests
with a test based on N.

I need to find more priors.

The data analysis null hypothesis is uncertain; is Bayes
avoidable?

What is the foundational status of “systematics”?

Blind analysis?
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