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Abstract. Assume observations X1, X2, … , Xn  from a univariate population 
having unknown continuous cdf  F(x). What can be said about F(b) - F(a), 
for prescribed a and b that may or may not depend on the data?  Standard 
sampling theory provides nonparametric tolerance regions with predictable 
long run properties. Associated long run frequencies may be reinterpreted as 
Dempster-Shafer (DS) posterior probabilities, including familiar p ≥ 0 and q 
≥ 0 “for” and “against” the truth of an assertion about F(b) - F(a), but 
possibly allowing a third probability r ≥ 0 of “don’t know”, so that now p + 
q + r = 1, generalizing the more familiar p + q = 1. Such “fiducial-like” 
probabilities are not typically protected as long run betting probabilities, 
when the counterparty is allowed to choose the side of each bet. DS theory 
provides a menu of weakened models whose resulting DS inferences are 
more conservative, and hence more protected. In my talk I will define and 
begin to explore one such weakened DS analysis. 



Goals of Talk 
 
 •  Introduce (or review) DS modeling and analysis 
 
 •  Illustrate DS methodology via the example of nonparametric 
inference about a continuous univariate population distribution 
 
 •  Introduce the concept of “robustifying” a DS analysis 
through model “weakening”, using the nonparametric example as 
an illustration 



Elements of the DS Calculus 
 
 • Establishing the “state space model” or SSM 
 
 • Establishing a collection of independent “DS probability 
models” or DSPMs over the SSM 
 
 • Implementing the numerical steps required to carry out the 
DS operations leading to desired inferences implied by the 
assumed SSM and DSPMs 



Examples of SSMs 
 
 • Textbook examples for hypothetical statistical situations, 
such as univariate nonparametric or parametric modeling and 
inference, or multiple testing situations, or assessing covariance 
structures in high dimensions 
 
 • In the nonparametric example, the SSM consists of real-
valued sample observables X1, X2, … , Xn together with the 
population distribution of X represented by a continuous  cdf F(x). 



Examples of SSMs (continued) 
 
 • While statisticians traditionally focus on “the data”, and on 
associated sampling distributions, in almost any actual situation the 
underlying reality is much more complex. The SSM should be big 
enough to capture what matters. 
 
 • Topical examples include the climate of planet Earth for the 
past 1000 years, or the world economy for the past 50 years. 
Important complex subsystems are rapidly becoming accessible to 
representation, partial observation, modeling, and analysis 
including forecasting.  



What is a DSPM? 
 
 • Mathematically, it is a probability distribution across subsets 
of the set of possible states of the SSM, referred to as the “mass 
distribution” or “bpa”.  
 
 • Interpretation-wise, it represents “your” allocation of formal 
uncertainty as to which state of the SSM is the “true” state, based 
on the evidence justifying the DSPM. 



Examples of DSPMs 
 
 • Included in a given DS model and analysis, there are typically 
many DSPMs defined over the SSM. 
 
 • In the example of this talk, the SSM can be represented by the 
vector (X1, X2, … , Xn, F(x)). 
 
 • If you observe a specific sample true value, say xi for Xi, this 
is a DSPM that assigns mass one to the subset of possible values of 
the SSM where Xi is limited to xi. And so on for the remaining 
elements of the vector representation of the SSM. 



A More Complex DSPM 
 
 • Functions of the variables defining an SSM are also implicitly 
part of the SSM. So, for example, the variables  
 

U1 = F(Xi) for i = 1, 2, … , n 
 

are regarded as included in the SSM. 
 
 • In DS terms, standard nonparametric statistics assumes that 
the unknowns U1, U2, … , Un have mass distribution determined by 
i.i.d. uniformly distributed variables u1, u2, … , un  on (0, 1). Note: I 
use lower case letters to represent DSPMs. 



Operations with DSPMs : Projection 
 
 • A DSPM can be down-projected to a partition or margin of its 
SSM, yielding the implied DSPM on the marginal SSM. 
 
 • A DSPM defined on a marginal SSM can be up-projected to 
yield the implied DSPM on the full SSM. 
 
 • Definitions and illustrations via the nonparametric sampling 
model are pretty obvious. 



Operations with DSPMs : Combination 
 
 • Two or more DSPMs on the same SSM can be combined to 
pool the evidence underlying each, assuming independence of the 
items of evidence being pooled. 
 
 • In words, the DS combination rule is defined mathematically 
by intersecting the subsets (“focal elements”) that carry the mass of 
each component DSPM, then multiplying masses to find the 
pooled mass, and lastly accumulating and renormalizing as needed. 



Examples of Independent DSPMs 
 
 • DSPMs come in several forms.  In the nonparametric model, 
there is explicit DS independence of successive sample ui, and 
implicit independence assumed when Boolean combination is 
applied to the observed sample xi. More broadly, common 
examples from statistical practice are marginal independence in 
contingency tables, and independence of prior and likelihood in 
Bayesian inference. And of course Boolean combination is all over 
the place. 



A “Standard DS Protocol” 
 

 • Set up the SSM, define a set of independent DSPMs on 
margins of the SSM, up-project to the full SSM, combine at the 
level of the full SSM, and down-project to margins of interest. 
 
 • DS is basically a personalist theory. It is “your” choice to 
adopt a formal uncertainty model and analysis for reporting or 
decision-making. Scientific applications of the formal theory of 
probability typically make many implicit and explicit 
independence assumptions. 



 
From a Mass Distribution to (p, q, r) Inferences 

 
 • Given any subset of the SSM, or equivalently an assertion 
that the true state of the system lies in the subset, the total mass 
that must belong to the subset defines the probability “for” the 
assertion, denoted by p, while the total mass that must belong to 
the complementary set defines the probability “against” the 
assertion, and is denoted by q. The remaining mass straddling the 
subset and its complement is denoted by r, and is called the 
probability of “don’t know”. DS replaces the familiar pair (p, q) 
with p + q = 1 with a triple (p, q, r) with  p+ q + r = 1 . 



Alternative Terminology  
 
 • In my 1960s papers, p was called lower probability, while p + 
r was called upper probability. Shafer’s 1976 monograph called 
these quantities belief and plausibility, respectively. Different 
terms are used interchangeably. 
 
 • I now prefer (p, q, r) because it puts a focus on r, hence points 
to a species of uncertainty that Bayesian inference is unable to 
address (a species identified by economists Knight and Keynes 
long ago).  



Fiducial as a Special Type of DS 
 
 • The DS scheme outlined in preceding slides grew out of R. A. 
Fisher’s fiducial reasoning. In effect, the concept of probabilities 
of “don’t know” created a broad foundation that includes examples 
of fiducial inference as a special DS type restricted to p and q with 
p + q = 1, while providing precise concepts and rules that Fisher 
was never able to formulate. 



 
Back to the Nonparametric Example 

 
 •  Included in his many basic contributions to 20th Century 
inferential statistics, R. A. Fisher invented what later came to be 
called nonparametric statistics. His treatment involved fiducial 
probability, a concept regarded as suspect by most later 
statisticians. When fiducial inference is regarded as a 
specialization of DS inference, however, a clearly articulated 
framework for Fisher’s logic is created.  This in turn may serve to 
rebut some of the criticisms of fiducial reasoning. 



How Fisher Introduced Nonparametric 
 

 • In his 1939 Annals of Eugenic obituary of W. S. Gosset, 
simply entitled ‘Student’, Fisher referred to a 1908 remark by 
Student to the effect that in a sample of size 2 from a continuous 
univariate population, the probabilities are ¼, ½, ¼ that the 
population median lies between the two sample observations. 
Fisher specifically referred to Gosset’s probabilities as “fiducial” 
probabilities. 



Fisher’s Extension of Gosset’s Example 
 
 • Fisher used the obituary article to extend Gosset’s theory 
from n = 2 to general n, in effect introducing the modern 
nonparametric model, where the Ui = F(Xi)  are independently 
uniformly distributed on (0, 1). In fiducial terms, the Ui are called 
pivotal quantities, from which Fisher infers that the F(Xi) are i.i.d. 
uniform on (0, 1) given the observed data. According to Fisher, 
these can be used by scientists to associate inferential probabilities 
with statements about any population quantiles. 



 How DS Extends Fiducial 
 
 • The SSM defined for the nonparametric model includes all 
possible continuous cdfs, not just the values of the cdf at the 
observed Xi.  
 
 • The concept of DSPM can accommodate all values of F(x) 
because it assumes a mass distribution on subsets of the SSM. It 
does this through up-projection from margins, such as from 
individual observed x, and from assumed uniformly distributed ui 
on marginal Ui = F(Xi). 
 
 • The resulting inferences generally involve (p, q, r) with  r > 0, 
as illustrated in two ways in the rest of my talk. 



The First Illustration with r > 0 
 
 • Essentially any assertion about the unknown F(x) that is 
either true or false has an associated (p, q, r). A simple example 
asks questions about F(b) – F(a) where the interval (a, b) is 
specified without regard to the placement of the observations xi on 
the X-axis. 
 
 • I’ll explain this without  explicit formulas with reference to 
the following rough picture that illustrates the class of posterior 
cdfs F(x) that remain possible after the observations xi are in hand, 
and a draw from the probabilistic variables u1, u2, … , un  is fixed. 



 
 

 



Some Details 
 
 • I explain here why upper and lower posteriors are provided 
by beta distributions. 
 
 • A numerical illustration in the case where n = 100, and a is 
between the 25th and 26th data point, while b is between the 75th 

and 76th data point. The resulting (p, q, r) that F(b) – F(a) exceeds 
.58 is ( .0281 , .9354 , .0365 ). The corresponding upper and lower 
posteriors are shown on the next slide. 
 
 



 



The Second Illustration 
 
 • Here I propose to  “weaken” the standard nonparametric 
model in a way that can protect against possible selection effects 
associated with a collection of proffered bets. Suppose I am a 
broker wanting to quote odds for and against F(b) – F(a) exceeding 
any threshold for any choices of an interval (a, b). You might be 
reluctant to accept any particular bet with odds quoted by the 
standard nonparametric DS model, on the grounds that your 
counterparty may be correctly guessing that clustering of 
consecutive ui explains clustering of observed xi rather than large 
F(b) – F(a), allowing the offered bet to be biased in favor of the 
counterparty.   



The Proposed Weakening 
 
 • A sample of n i.i.d. ui determines a set of n + 1 ordered 
intervals on (0, 1). The lengths of these intervals are distributed 
uniformly on the simplex according to a symmetric D(1, 1, … , 1) 
Dirichlet distribution. It follows that a set (u1, u2, … , un) after it is 
ordered can be used to determine any one of n + 1 shifted intervals 
after (0, 1) is mapped onto a circle of unit circumference. Suppose 
that for a given draw of x you “don’t know” which of the n + 1 
choices underlies the observed sample. 



Consequences of the Proposed Weakening 
 
 •  Since conditions “for” and “against” now require that all of 
the n + 1 possible samples associated with a given set of ui satisfy a 
specified condition, it is evident that p and q in standard (p, q, r) 
inferences are reduced sometimes drastically. For example, (p, q, r)  
for the sample interquartile range exceeding .58 becomes ( 0 , 
.3626 , .6374 ). 
 
 •  The upper and lower distributions on the preceding slide 
become much more separated as illustrated on the following slide. 
 



 



More Examples under the Proposed Weakening 
 
 • Fisher (op cit) extended Student’s n = 2 example by giving 
three further examples as follows:  
“Thus, for a sample of 6 the chance that [the population median] 
lies outside the observed range is only 0.03125; while for a sample 
of 9 the fiducial probability of it lying outside the penultimate pair 
is only 0.03906. Similarly, for a sample of 12, the chance is only 
0.0386 of it lying outside the range of the central 8 observations.” 
 
 • Under the proposed weakening scheme these precise fiducial 
probabilities become (p, q, r) triples (0, .25, .75), (0, .89, .11),(0, 
.8432, .1568), (0, .8287, .1713). 



Endnote (1) 
 
 • The most common complaint about fiducial inference is that 
pivotal variables cannot both be independent of the population 
parameters and independent of the observations. In DS-land, this 
criticism has no force. For example, in the nonparametric model, if 
you should acquire prior evidence that specifies F(x), that is one 
DSPM. If you are comfortable with the ui being i.i.d. uniformly 
distributed, this is another representation of evidence. The data 
constitute yet a third piece of evidence. Any pair, or even all three, 
of the evidential inputs, assuming you simultaneously adopt them, 
can be taken to be independent. 



Why Might this be Counterintuitive? 
 
 • An implicit assumption in standard presentations of statistical 
inference is what might be called the random world hypothesis, 
namely, that an agency such as Nature determines a stochastic 
model, which in turn is used to “generate the data” by a “random” 
process. The statistician’s job is to perform uncertain inference 
about properties of the random process. The alleged flaw in 
Fisher’s reasoning is that the pivotal variables are used to obtain 
the data from the model, so it is absurd to regard the data as 
independent of the pivotal variables. The personalist viewpoint 
rejects the random world hypothesis as not being how real 
scientific systems operate. 



Endnote (2) 
 
 • By concentrating on the elementary nonparametric example, I 
did not come back to my argument that DS modeling and analysis 
is suited to the analysis of real world complex systems. The claim 
is based on the separation of the SSM and the DSPMs in the 
process of formal model construction. The former may need to be 
very complex if essential aspects of the real world are to be 
incorporated, while the latter may need to be more circumscribed 
to fit limitations on “your” evidence. In other words, DS 
encourages representation and assessment of a realistic degree of 
“don’t know’. 
 
 
 


