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Why Study Gene Expression?
Proteins are the product of 
gene expression through 

the intermediary of mRNA.

Each protein type comes 

from a unique mRNA.

mRNA is much easier to 

identify and quantify than 
proteins.
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Why Study Gene Expression?
Proteins are the product of 
gene expression through 

the intermediary of mRNA.

Each protein type comes 

from a unique mRNA.

mRNA is much easier to 

identify and quantify than 
proteins.

BUT ...

The correspondence 

among genes, mRNA and 
proteins is more complex 

than we imagined only a 

few years ago.

New technologies for measuring 
mRNA can improve on microarrays 

in providing measurements that are 

closer to quantifying protein 
expression.
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Vocabulary

•transcription - gene creates mRNA

•transcript – an mRNA transcribed from a gene

•translation - mRNA creates protein

•exon - pieces of gene which may be transcribed

•intron - pieces of gene which are not transcribed

•poly-A tail - a string of "A" bases at the end of an RNA marking 

it as mRNA



Biology of Protein 

Expression

Gene

5'
mRNA before splicing                    poly-A tail

AAAAA       3'

AAAAA       3'

AAAAA       3'

AAAAA       3'

splice variants 
may produce protein

isoforms

regulatory region

exon

intron

• Protein expression

• Massively parallel sequencing 

• DGE and RNA-seq

• Statistics

• Example

• Simulation

• Closing comments



Biology of Protein Expression

http://www.ncbi.nlm.nih.gov/IEB/Research/Acembly/av.cgi?exdb=AceView&db=mouse&term=mm.155896&submit=Go

Some splice Variants for Hnrpa2b1 from Aceview

Note the complexity:  alternative poly-A sites 

•possible inclusion of intronic regions

•alternative exon size
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Our Objective

Quantify the relative expression levels of each isoform in a sample 
of mRNA.

How can we identify and quantify the expression level?

Microarrays - allow mRNA to bind to complement on substrate
- need to know what to place on the substrate

Sequencing - read the genetic sequence of the mRNA

- expensive to obtain "full-length" sequences
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Massively Parallel 

Sequencing Technologies

New sequencing technologies can sequence 1 - 20 million 
short fragments of RNA per sample.

Some common brand names - SOLiD 17 - 35   bases
Illumina (Solexa)    17 - 100 bases

454                  200 - 500  bases

Between methods - short is cheaper (?)(per base) than long
Within method      - short is cheaper (per mRNA) than long
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Massively Parallel 

Sequencing Technologies

extract 
RNA from 
tissue

enrich for 
mRNA using 
primers that 
bind to poly-
A tail

fragment mRNA 
into pieces small 
enough to 
sequence

select 
fragments for 
sequencing

biological 

conclusion

sequence 
reads 
including 
quality 
score 

identify 
reads by 
matching to 
database for 
organism

reduce reads 
to counts for 
entity of 
interest (gene, 
isoform, exon, 
tag)

statistical 
analysis
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RNA-seq - random breaks, random selection

DGE - digest with restriction enzyme
poly-A selection
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RNA-seq and DGE

AAAAA 

RNA-seq - random breaks, random selection

DGE - digest with restriction enzyme, poly-A 
selection

AAAAA 

AAAAA 

AAAAA 

AAAAA 

AAAAA 

Full length transcripts

Full length transcripts

Random fragmentation Fragment selection
and sequencing

Fragment selection
and sequencing

Fragmentation at 
restriction sites

restriction site

sequenced read
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The Statistical Problem:

Inferring Isoform Expression

from DGE data

exons in each 
isoform

isoform annotation

exon boundariesexon annotation

tag locationsgenome sequence 
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The Statistical Problem:

Inferring Isoform Expression

from DGE data

less accurateexons in each 
isoform

isoform annotation

somewhat accurateexon boundariesexon annotation

reasonably accuratetag locationsgenome sequence 
info

unambiguouscounts/tagobserve

We want to infer counts/isoform
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A model for tag retrieval

AAAAA 

AAAAA An mRNA fragment is captured if it contains 
the poly-A tail.

The tag is the short sequence that includes 
the restriction sequence (e.g. CGAT for the 

example) + a set number of bases (often 17 
or 35) starting from the restriction site and 

going in the direction of the poly-A tail.

An mRNA may be fragmented at several sites, but a tag is 
observed only if no site closer to the poly-A tail is cut.

Gilchrist, Qin, & Zaretzki, (2007) postulate that the probability 
of cleavage is the same at every restriction site in the sample.
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A model for tag retrieval

Let p be the cleavage probability.
We obtain a truncated geometric 

probability of observing the tag in 
position si relative to the poly-A tail 

of the isoform.  
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Let p be the cleavage probability.
We obtain a truncated geometric 
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If the mRNA is not cut, 
no tag is observed.  If 

isoform i has ri sites, the 

probability that no tag is 
observed is 

1-(1-p)ri =1-Σ|i



Estimating tag retrieval

AAAAA       3'

isoform 1

If an exon has 2 or more tags, the relative frequency of 
adjacent tags is 1-p.  We use the median of this statistic to 

estimate p.

We prefer this robust estimator, because we have to rely on 
the exon annotation to determine which tags are in the exon.  

We have already seen that exon boundaries are not fully 
known.
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Inferring Isoform Expression

from DGE data

0

No 
tag

::

NTK+...T5+T4+T3+T2+T1+tag total

n+IisoI

n+2iso2

n+1iso1

isoform 
count

tag K...tag 5tag 4tag 3tag 2tag 1isoform

tag k is in isoform i

We observe T and we want to infer n+i.
If the transcript is not fragmented by the 

enzyme, it cannot be observed.  We need to 

account for this, as isoforms with more tags 
are more likely to be fragmented.
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Inferring Isoform Expression

from DGE data

1-Σ|+

1-Σ|I

1-Σ|i

1-Σ|2

1-Σ|1

No 
tag

:πK|iπk|iπ5|iπ4|iπ3|iπ2|iπ1|i:

1ππππK+...ππππ5+ππππ4+ππππ3+ππππ2+ππππ1+tag 
percent

ππππ+IπK|Iπk|I0π4|Iπ3|Iπ2|I0isoI

ππππ+20πk|20π4|2π3|20π1|2iso2

ππππ+1πΚ|1πk|1π5|1π4|10π2|1π1|1iso1

isoform 
percent

tag K...tag 5tag 4tag 3tag 2tag 1isoform

Note that πk+=Σπk|iπ+i

From Bayes' rule, the row margins can be computed from the 

conditional probabilities and column margins.

Slavkovic, 2004: If the matrix of conditional probabilities has full 
row rank, the row margins are unique.
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Inferring Isoform Expression

from DGE data

From Bayes' rule, we can compute the row margins from the 
conditional probabilities and column margins.

Slavkovic, 2004: If the matrix of conditional probabilities has full 

row rank, the row margins are unique.

The uniqueness condition can fail if there are more isoforms 
than tags, if there are isoforms that differ only in exons that 

have no tags, or (in practice) if there are isoforms that differ only 

in tags that have very low probability of being observed.

πk|i is a function of p, the cutting probability which is determined
by protocols for restriction enzyme digestion and can be 

manipulated by the investigator.  For exon detection, it is 
preferable to have low p, so that there is a high probability of

observing tags far from the poly-A tail.  
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Inferring Isoform Expression

from DGE data

0

1-Σ|I

1-Σ|i

1-Σ|2

1-Σ|1

No 
tag

:πK|iπk|iπ5|iπ4|iπ3|iπ2|iπ1|i:

NTK+...T5+T4+T3+T2+T1+tag count

n+IπK|Iπk|I0π4|Iπ3|Iπ2|I0isoI

n+20πk|20π4|2π3|20π1|2iso2

n+1πΚ|1πk|1π5|1π4|10π2|1π1|1iso1

isoform 
count

tag K...tag 5tag 4tag 3tag 2tag 1isoform

We observe T with E(Tk+)=Nπk+ but not the number of transcripts 
that did not produce a tag.  We note that E(n+i)=Nπ+i so

E(Σπk|in+i)=Nπ+i=E(Tk+).

We use the least squares estimator to estimate n+i from the T's.   
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Inferring Isoform Expression

from DGE data

We note that E(Pn+i)=E(T+k).

We use the least squares estimator to estimate n+i from the T's.  

I.e. 

This also suggests the use of the estimated sandwich estimator of 

variance

NTk+

n+iP Let P be the matrix of conditional probabilities.

+
−
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Inferring Isoform Expression

from DGE data

We note that E(Pn+i)=E(T+k).

We use the least squares estimator to estimate n+i from the T's.  

I.e. 

This also suggests the use of the estimated sandwich estimator of 

variance but this needs improvement.

NTk+

n+iP Let P be the matrix of conditional probabilities.

+
−

+ = ki TPPPn ')'(ˆ 1

11
)'()(ˆ')'()ˆ(ˆ −

+
−

+ = PPPTarVPPPnarV ki
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The 't Hoen Mouse Data

't Hoen et al, 2008 collected RNA from mouse brain tissue for 
wild-type and transgenic mice.  mRNA was extracted and 

processed for DGE analysis.

1

0.1

0.3

M3

1221217121510max reads/tag

(thousands)

0.90.20.61.10.91.10.7total matched 

reads (millions)

3.10.62.43.53.23.52.7total reads

(millions)

M4W4W3M2W2M1W1Sample

We did not use M3 or W4.
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The 't Hoen Mouse Data
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Step 0: The initial step in the analysis is to map the tags to the 
genes and exons. 

Illumina@ kindly provided us with the tag database used in the 

original study, which greatly reduced the work by matching the 
tags to the genes.



The 't Hoen Mouse Data

Step 1: Estimate p for each 
sample. 

For each exon with a 3' tag with 
more than 500 reads and at 

least 2 tags, we took the ratio of 
the 3' tag count to the adjacent 

tag count.  
The median of the ratios is an 

estimate of 1-p which is robust 

with respect to exon and tag 
annotation.

p=.996 for all 6 samples
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The 't Hoen Mouse Data

p=.996 for all 6 
samples
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This is bad news 
for our estimation 

procedure.

Only the tag at 

closest to the ¶ has 
substantial 

probability of being 
observed.

http://www.ncbi.nlm.nih.gov/IEB/Research/Acembly/av.cgi?exdb=AceView&db=mouse&term=mm.155896&submit=Go



The 't Hoen Mouse Data

Step 2: For each gene of interest create the matrix of conditional 
probabilities
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Tag Tag Tag

Nrgn Calm1                     Hnrpa2b1



The 't Hoen Mouse Data

Step 2: For each 
gene of interest 

create the matrix of 

conditional 
probabilities.
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The 't Hoen Mouse Data

Step 2: For each gene of interest create the matrix of conditional 
probabilities.

The high value of p makes it very difficult to distinguish among
isoforms with the same first tag.  We assumed that every tag with 

more than 5 reads in a sample was a 3' tag, and that the 3 nearest 
tags were in the same isoform.
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more than 5 reads in a sample was a 3' tag, and that the 3 nearest 
tags were in the same isoform.
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At this point, the data become a demo rather than a real data 
analysis - more on this later! 



The 't Hoen Mouse Data

Step 3: Estimate the isoform counts.  
e.g. Hnrpa2b1 (counts per 10 thousand reads, rounded) 

• Protein expression

• Massively parallel sequencing 

• DGE and RNA-seq

• Statistics

• Example

• Simulation

• Closing comments

.17.28.29.09.13.13discordant

65591113most abundant

141414161922total

M3M2M1W3W2W1

Note that by any rank based test, the gene and isoform 
expression is a significantly different as possible.  But at least 

one isoform is discordant.
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When in doubt, simulate

Since the p in the 't Hoen study was too high for isoform 
resolution, we simulated data from a gene with 4 exons with 2 

tags/exon.

For each tag, we simulated a cutting probability 

pi~ Beta(700,700*28/72) which has mean .7

isoe2e3

isoe1e2

isoe1

87654321tag
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When in doubt, simulate

50.07

10.42

12.48

499.92

3.27

7.49

499.87

14.26

23.12

999.99

14.84

23.39

49.13

32.02

40.74

500.73

28.36

43.31

499.47

135.16

90.18

1000.79

126.07

84.14

505005001000true n

XXX     mean estimated count
XXX     SD of simulated estimates

XXX     Sandwich estimator SD
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DGE and Isoform Expression

Gilchrist et al suggested that investigators should use lower p 
in gene expression studies.
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DGE and Isoform Expression

Gilchrist et al suggested that investigators should use lower p 
in gene expression studies.

Their reason was non-uniqueness of tags.  If a tag occurs in 
multiple locations in the genome, it cannot be attributed to the

gene.
So, for p close to 1.0, the expression of genes with non-

unique 3’ tags cannot be estimated.
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DGE and Isoform Expression

Gilchrist et al suggested that investigators should use lower p 
in gene expression studies.

Their reason was non-uniqueness of tags.  If a tag occurs in 
multiple locations in the genome, it cannot be attributed to the

gene.
So, for p close to 1.0, the expression of genes with non-

unique 3’ tags cannot be estimated.

However, they considered all locations in the genome – really 

they only need to consider uniqueness among 3’ tags.
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DGE and Isoform Expression

There is little incentive for investigators to induce lower values 
of p if they are interested in overall gene expression.

Even for p=.7 the probability of observing any but the first few
3’ tags is vanishingly small.

If p is too small, there is a high probability that transcripts with 

few tags will not be cut.
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DGE and Isoform Expression

There is little incentive for investigators to induce lower values 
of p.

Even for p=.7 the probability of observing any but the first few
3’ tags is vanishingly small.

Our study started in an attempt to verify the Gilchrist et al 

model.  

If the model is correct, DGE is not as powerful as RNA-seq for 

estimating isoform expression.
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DGE and Isoform Expression

There is little incentive for investigators to induce lower values 
of p.

Even for p=.7 the probability of observing any but the first few
3’ tags is vanishingly small.

Our study started in an attempt to verify the Gilchrist et al 

model.  

If the model is correct, DGE is not are powerful as RNA-seq

for estimating isoform expression.
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Searching for a Solution
to the Isoform Expression Problem

DGE data are much easier to work with than RNA-seq data. 

But RNA-seq data have more relevant information about isoform 

expression.

We no longer have tags.  Each read maps to the genome.  
We can replace tags by exon segments.

http://answers.oreilly.com/uploads/monthly_03_2010/post-9-126945692927_thumb.png
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Searching for a Solution
to the Isoform Expression Problem

We no longer have tags.  Each read maps to the genome.  
We can replace tags by exon segments.  

Lets call these extags.  

We need a model for detecting extags.

http://answers.oreilly.com/uploads/monthly_03_2010/post-9-126945692927_thumb.png



• Protein expression

• Massively parallel sequencing 
• DGE and RNA-seq
• Statistics
• Example
• Simulation

• Closing comments

Searching for a Solution
to the Isoform Expression Problem

We no longer have tags.  Each read maps to the genome.  
We can replace tags by exon segments.  

Lets call these extags.  

We need a model for detecting extags.

e.g. We may assume that the probability of detecting a read in 
extag j is proportional to some feature of the extag.  (e.g. length 

of uniquely mappable section; CG content ...)
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Searching for a Solution
to the Isoform Expression Problem

Let Si be the set of extags in isoform i.

Then if extag j is in isoform i,the conditional detection probability 

is

∑
∈

=

iSk

k

j

ij
x

x
|π
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Searching for a Solution
to the Isoform Expression Problem

∑
∈

=

iSk

k

j

ij
x

x
|

π

:πK|iπk|iπ5|iπ4|iπ3|iπ2|iπ1|i:

NTK+...T5+T4+T3+T2+T1+tag count

n+IπK|Iπk|I0π4|Iπ3|Iπ2|I0isoI

n+20πk|20π4|2π3|20π1|2iso2

n+1πΚ|1πk|1π5|1π4|10π2|1π1|1iso1

isoform 
count

tag K...tag 5tag 4tag 3tag 2tag 1isoform

We are back to the previous situation (except 

every extag has non-zero detection probability).

The covariate x will depend on the sample 

preparation protocol.
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