A photonic cluster state

Netanel Lindner

Click to edit Master subtitle style <u>Terry Rudolph</u>Technion- Israel Institute of Technology

> Imperial College London

arXiv: 0810.2587

Weizmann, March 2009

Proposal for conversion of single photon sources into devices which emit large strings of photonic cluster states in a controlled and pulsedon-demand manner

Imperial College London

arXiv: 0810.2587

Weizmann, March 2009

Outline

- Cluster states and quantum computation
- Photonic cluster states
- Optical transitions in quantum dots
- · The idealized "machine gun"
- Decoherence processes
- Outlook

Quantum Computation

A one way quantum computer

- Start from a many body entangled state
- · Evolve by performing single particle measurements

R. Raussendorf & H. Breigel PRL 86, 5188 (2001)

A one way quantum computer

- Start from a many body entangled state
- · Evolve by performing single particle measurements

R. Raussendorf & H. Breigel PRL 86, 5188 (2001)

So how do we build a photonic cluster state?

Click to edit Master subtitle style

So how do we build a photonic cluster state?

No easy way to get photons to interact

Starting from single photons

Use interference and measurement to make effective interaction

(lesson from KLM)

4 single photons

One Bell pair

Probability = 1/4

D. E. Browne and T. Rudolph PRL **95**, 010501 (2005).

Q. Zhang et. al., PRA 77, 062316 (2008)

010501 (2005).

0 - 0 - 0 - 0 - 0

Efficient but still resource intensive, requiring lots of quantum memory etc

- Bell pairs produced directly from quantum dots via biexciton cascade?
- Problems:
 (i) Exciton dephasing
 (ii) Removes only the inefficiency of the first step

- · Bell pairs produced directly from quantum dots via biexciton cascade?
- · Problems:
- (i) Exciton dephasing
- (ii) Removes only the inefficiency of the first step
- Solution: Design a source which uses only single exciton recombination, but which can fire out optical cluster state:

Optical transitions in a quantum dot

Optical transitions in a quantum dot

Optical transitions in a quantum dot

GHZ state machine gun

"Schrodinger's cat" state:

GHZ state machine gun

A cluster state machine gun

Add in-plane (xy) static Magnetic field

Ideal machine gun

Decoherence (1)

Finite lifetime of the excited state Zeeman splitting spectral "which path" information

	$\Gamma_{decay} > g \mu B$
	$\tau_{\rm decay} < \hbar/g\mu B$

Decoherence (2)

- Interaction of spin with its environment:
 - Dephasing (T2 time) (nuclear spins)
 - Spin relaxation (T1 time) (phonons)

$$\tau_{1} \rightarrow \tau_{2} \rightarrow \tau_{decay}$$

0.1sec 1μ sec 100psec

M. Kroutvar et. al., Nature 432, 81 (2004) A. Greilich et al, Science 313, 341 (2006)

Limitation on the full process?

- Does the state degrade with number of photons (time)?
- Is the process limited by the T2/1 time?
- Errors <u>localize</u>: constant, independent probability of error on each photon.
 Process can continue irrespective of *T2/1*

Localization of errors (2)

Error optimization

Constructing 2D cluster states

e spin

 π /2,

Constructing 2D cluster states

 $\pi / 2, \qquad \pi / 2, \pi, \pi, \pi / 2, \pi, \pi, \pi$

Constructing 2D cluster states

Eventual architecture?

Summary and outlook

- Single quantum dots can emit large strings of 1D cluster states \longrightarrow 2D clusters.
- · Errors localize
- Process can proceed for times >> T2, T1

Summary and outlook

- Single quantum dots can emit large strings of 1D cluster states \longrightarrow 2D clusters.
- · Errors localize
- Process can proceed for times >> T2, T1
- · Outlook:
 - Coupling a number of quantum dots
 - Other single photon sources
 - Better bounds for non markovian environments.

Parralel machine gun

Spin-bath Hamiltonian

 $H = H_e + H_{eN} + H_N + H_{NN}$

$$H_e = \boldsymbol{B} \cdot \boldsymbol{S}_e$$
 Zeeman

B

Spin-bath Hamiltonian

 $H = H_e + H_N + H_{eN} + H_{NN}$

Energy scales

H _{eN}	α_{n} : 10 ⁶ sec ⁻¹
H _{NN}	β_{n} : 10 ² sec ⁻¹
H _e	$\mu_{\rm B}$: $10^{11} {\rm sec}^{-1} {\rm T}^{-1}$

Spin-bath Hamiltonian

 $H = H_e + H_N + H_{eN} + H_{NN}$

Effective Interaction Hamiltonian

Spin wave-packet entanglement

$$\begin{aligned} |\uparrow\rangle &\to \sum_{t} A_{t} |\Omega(t)\rangle |t\rangle \\ \rho(t_{n} + \tau) &= U(\tau) \Big(G^{\dagger} \rho(t_{n}) G + F^{\dagger} \rho(t_{n}) F \Big) U^{\dagger}(\tau) \end{aligned}$$

G= good mode function | F= bad mode function

$$g(k) = \frac{k - Z}{(k - Z)^2 - B^2}$$

Fuse larger clusters

• Two Bell pairs >> 3 photon C-state

D. E. Browne and T. Rudolph PRL 95, 010501 (2005).

Interference and measurement of <u>one</u> photon Probability = 1/2

3 photon C-state + Bell pair ...

Two spins

Two spins

$$|\psi\rangle = (\sigma_x)^m (\cos(\alpha)|\uparrow\rangle + \sin(\alpha)|\downarrow\rangle)$$

= $(\sigma_x)^m HZ_{\alpha} |\rightarrow\rangle$

 $Z_{\alpha} = \exp(i\alpha \sigma_{z}) \qquad H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$

Three spins

$$|\psi_{2}\rangle = \sigma HZ_{\beta} HZ_{\alpha} | \rightarrow \rangle$$

$$X_{\beta} = \exp(i\beta \sigma_{x})$$

Cluster states

1D chains

1D chains

<u>Note</u>: Later angles depend on earlier measurement outcomes

1D chains

Unitary time evolution

Strain induced self-assembled quantum dots

This scanning tunneling microscope image shows quantum dots made of indium arsenide and galium arsenide. They are the type researchers used to observe electrons trapped inside.

Source: University of Nottingham

STM (Nottingham)

Cross-sectional TEM of an uncapped QD

PL spectra (Technion, UCSB)

N. Akopian *et. al.*, PRL **90**, 130501 (2006)
Stevenson *et. al.*, Nature **439**, 179 (2006)
M. Bayer *et. al.* PRB **65** 195315 (2002)
Stefan Strauf *et. al*, Nature Photonics **1**, 704 - 708 (2007)

Quantum dots

electron - hole recombination

Localization of errors (1)

ideally:
$$\tilde{\rho}_{n+1} = U^{\dagger} \rho_n U$$

$$\sum_{k} A_{k}^{\dagger} A_{k} = \mathbf{I}$$

decoherence:

dephasing: $\rho_{n+1} = (1 - p)\tilde{\rho}_{n+1} + p\sigma_Y^{\text{spin}}\tilde{\rho}_{n+1}\sigma_Y^{\text{spin}}$

