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Outline

Optically active biomolecules are complex systems
at the quantum-classical boundary

An effective Hamiltonian for quantum decoherence
of optically excited states

Spectral density for chromophore-environment
interaction is well characterised and can be
described by dielectric continuum models.

The “collapse” of the wavefunction occurs in tens
of fsec

Ref: J. Gilmore and RHM, J. Phys. Chem. A

112, 2162 (2008) [Review article]

Quantum control of processes in large
molecules in condensed phases

* What are the relevant length and time scales for
coherence?

10-100's fsec

* What is the main physical source of
decoherence?

dielectric relaxation of the environment

» Can we learn something about biomolecular
processes and function?
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Quantum biology at amazon.com?
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Penrose-Hameroff orchestrated objective-reduction proposal for human consciousng

is not biologically feasible
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A complex quantum system:
Photo-active yellow protein

Quantum system =
Ground + electronic
excited state of
chromophore

Environment =
Protein +
Water bound to
Protein +

Bulk water

Seeking a minimal model for this quantum
system and its environment

#

» Must capture and give insights into
essential physics.

* Tells us which physical parameters
lead to qualitative changes in
quantum dynamics.

» Model chromophore as a
two level system (TLS)
» Use Pauli matrix o, to
describe the two states,
ground state and excited £
State
* The Hamilto?ian is
Hrps = €0z

Independent boson model Hamiltonian
1
H = 0= + ngagag + 0. ZCg(ag + a;g
B B
» Chromophore is two level system (TLS).
* Environment is modelled as an infinite
bath of harmonic oscillators.

« Effect of environment on quantum dynamics
of TLS is completely determined by the
spectral densitv :

Am
J(w) = - ZC’%(S(w — wg
3

Key ideas from Leggett

* We don’t need to know all the microscopic
details of the environment, nor its interaction
with the system. Only need J(w).

» Spectral density can be determined from
measurements of the classical dynamics.

» Many spectral densities are “ohmic”, i.e.,

Jw)= aw forw<llr
T is relaxation time of the bath.

e For a > 1 quantum dynamics is incoherent.

Caldeira and Leggett, Ann. Phys. (1983);
Leggett, J. Phys.: Cond. Matt. (2002).

Quantum dynamics of two-level system

Suppose qubit is initially in a coherent
superposition state  |\W=> = q|1= + 52>
uncoupled from the bath.

Reduced density matrix can be evaluated
exactly (no Markovian or Born approximation)

pr1(t) = p11(0) = |af®
p2a(t) = p22(0) = [b* = 1 — p11(0)
p12(t) = p3(t) = a™bexp(—iet +i0(t) = T'(t,T))

gives decoherence and spectral diffusion in
terms of Jo)




Quantum dynamics of two-level system
determined by J(w)

p5,(F) = a*b exp(—iet + 16(r) — (1, 1))
Decav of coherence

I'(t.T) =/ dwJ (W) (:oth<
0

Spectral diffusion

do(t) —e— Ep— ‘ de cos(wt)
dt 0 W

w \ (1= coswt)
Q}fBT W2

w

v(t) =¢e—

“Collapse” of the wave function

Zurek (°82), Joos and Zeh (*85), Unruh (89)
Environment causes decay of the off-diagonal
density matrix elements (decoherence)

“Collapse” occurs due to continuous
“measurement” of the state of the system by
the environment.

What is the relevant time scale for these
biomolecules?

~ 100 fsec

Timescale for decoherence

i
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Observing the collapse of the wave
function with photo-echo spectroscopy

1449057 Photon echo spectroscopy of porphyrins and heme protein:

Peak shift vs. ]

time ]

S0 =—£ ()
fy=—— f %

’\/; 812

J. Chem. Phys. 5

124, 144905 (2006’ .

Complementary methods to extract
the spectral density

« Femtosecond laser spectroscopy

« Molecular dynamics simulations

e Continuum dielectric models
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Spectral density can be extracted from
femtosecond laser spectroscopy

» Measure the time dependence of the
frequency of maximum fluorescence
(dynamic Stokes shift)

_v() —v(o) [ J(w)
Clt) = L e = f ) cos(wt)do

» Data can be fit to multiple exponentials.
« Fourier transform gives spectral density!




Energy

Huctear Coordinate
Solvation Coordinate (X) ———————=

Pal and Zewail, Chem. Rev. (2004)

An example

« ANSis
chromophore

Pal, Peon, Zewail,
PNAS (2002)
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Time-dependent spectral shift of a chromophore in a
solvated protein

B Increasing pH
unfolds
08 (denatures)
o-Chymotrypsin Protein protein and
exposes

=
[=2]

chromophore to
more solvent.
Presence of
protein reduces
psec relaxation
and adds ~50
psec relaxation.
Pal, Peon, Zewail
100 PNAS (2002)

Hydration Correlation Function, C(1)
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Measured spectral densities

L apw apw 5w
1+ (wrp)? 1+ (wT)? 1+ (wTy)?

Three contributions of ohmic form
*Bulk water (solvent)
o, O01-10 T, ~ 0.3-3 psec
*Water bound to the protein, esp. at surface
o, ~ 10-100 T, ~ 10-100 psec
*Protein

apD100—1000 T ~ 1-100 nsec

Spectral density for diverse range of
biomolecules & solvents

Clromophore Protein Solvent Ref. [ Eg (em™) A1, 71 ATy 43,73
Tip none water ] 0.65, 160 fsee | 0.35, 1.1 psec
Trp none water [5] 2193 0.55, 340 fsec | 0.45, 1.6 psec
Trp SC buffer [83] 1440 0.6, 800 fsec | 0.4, 38 psec
Trp Monellin Buffer 137 960 0.46,1.3 psec | 0.54, 16 psec
Trp SNase-WT Buffer E] 850 0.46, 5 psee | 0.54, 153 psec
Trp SNase-K110A Buffer 3 876 0.77, 3 psec | 0.23, 96 psec
Trp HSA water, pH7 | [4] 1156 0.3, 5 psec | 0.61, 133 psec
Trp HSA water, pH 9 | [4] 1015 0.3, 16 psec | 0.7, 46 psec
Dansyl SC water 83) 1180 0.94, 1.5 psec | 0.06, 40 psec
DCM HSA Tris buffer [84] 515 0.25, 600 psec | 0.75, 10 nsec
Prodan none buffer 85 2313 047, 130 fsec | 0.53, 770 fsec
Prodan HSA buffer 85 916 0.19, 780 fsec | 0.56, 2.6 psec | 0.25, 32 psec
Acrylodan HSA buffer [85] 1680 0.23, 710 fsec | 0.41, 3.7 psec .36, 57 psec
Acrylodan HSA 0.2M Gdn.HCI | [85] 0.16, 280 fsec | 0.36, 5.4 psec | 0.48, 61 psec
Acrylodan HSA 0.6M Gdn.HCI | [85] 0.2, 120 fsec 0.53, 2 psec 0.25, 13.5 psec
MPTS none buffer 86] 2007 0.8,20 fsec | 0.2, 340 fec
MPTS Ab6CS buffer 80] 1910 0.85, 33 fsec 0.1, 2 psec 0.05, 67 psec
bis-ANS GInRS (native) water 38] 750 0.45, 170 psec | 0.55, 2.4 nsec
bis-ANS GInRS (molten) urea 38] 500 0.63, 60 psec | 0.37, 0.96 nsec
4-AP GInRS (native) water 38 1330 0.85, 40 psec | 0.15, 530 psec
4-AP GRS (molten) urea 3 700 077,50 psec | 0.23, 0.9 nsec
Zn-porphyrin | Cytochrome-c water 9] 170 04,250 psec | 0.6, 1.5 nsec




Classical molecular dynamics
simulations
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C(t) for Trp (green) and Trp-3in
monellin (black) in aqueous solution at 300 K
Nilsson and Halle, PNAS (2005).

Modelling interaction of chromophore with
environment

* The solvent forms a
polarised cage around the
solute (chromophore) dipole

» The resulting electric field
(the reaction field R)
interacts with the solute
dipole pu

« This lowers the total energy,
and makes solvation
favourable.

AE=—ji-R

Based on the Onsager model
of solvation (1936)

Our continuum dielectric models for environment

Model 1 Model 2

o) %2 - \We have calculated «j

for 5 models for
Model 3

environment

was © O Key feature is separatio
3 of time and distance
scales:

Protein much larger
than chromophore

» Relaxation time of
Protein >> Bound
water >> Bulk soIvenF

>

Key physics behind decoherence

Most chromophores have a large difference

between electric dipole moment of ground and

excited states.

Water is a very polar solvent (static dielectric

constant g, = 80)

— Water molecules have a net electric dipole moment

— Dipole direction fluctuates due to thermal fluctuationg
(typical relaxation time at 300K is ~1 psec)

Chromophore experiences fluctuating electric fie

Surrounding protein does not completely shield
chromophore from solvent.

Spectral density determined by
dielectric relaxation of environment

Ay (efw) =€)
= Im
2Jteoa3 2e(w) + €,

J(w)

¢(w) = frequency-dependent dielectric function
Ay = difference between dipole moment of
ground and exctied states

a = cavity radius

Criteria for guantum coherence

00 2.0

““Observation of Quantum et 2 "gf,l el
Coherence for Recurrence € 04 ~ Qﬁ 1

Motion of Exciton in s %%%

Anthracene Dimers in

Solution” el P I mDA‘E
I. Yamazaki et al., J. Am. o .
Chem. Soc. 125, 7192 (2003) =0 \J/\ .
02 an
However, for relevant e oo ]
parameters we find quantum ~ °°[ ) (5%?5
coherence is impossible! goar /\ ﬁ

Gilmore & RHM, Chem. 02 %
Phys. Lett. 421, 266 (2006).




Conclusions

» Biomolecules function in a hot wet
environment

» Spectral density characterises quantum
system-environment (protein+ water)
interaction for biomolecular chromophores.

» These spectral densities quantify electronic
coherences and give decoherence timescales
of order 100 fsec.

J. Gilmore and RHM, J. Phys. Chem. A
112, 2162 (2008)
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Some key questions concerning
biomolecular functionality

* Which details matter?
* What role does water play?

* Do biomolecules have the optimum
structure to exploit dynamics for their
functionality?

e When is quantum dynamics (e.g.,
tunneling, coherence, entanglement)
necessary for functionality?
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Specificity vs. universality
For complex molecular materials when do the
details matter?

 Physicists say the details don't matter. They
think cows are spherical!

» Chemists say details do matter.

* Biologists say the details are a matter of life
and death!
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Kauzmann’s maxim

« Walter Kauzmann (1916-2009) was first to
understand the hydrophobic interaction

« “people will tend to believe what they
want to believe rather than what the
evidence before them suggests they
should believe”

Reminiscences of a life in protein physical
chemistry, Protein Science 2, 671 (1992)
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The environment matters!
Fluorescence from different
sites within proteina ,, ,fege’a
Cohen et al.,
Science
296, 1700 (2002)
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