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Quantum State Tomography

Q: What is it?

Q: Why is it so difficult?

Reconstructing a classical description of a quantum state from 
single-copy measurements and classical post-processing.

 the dimension d=2n is exponentially large, so one must measure an 
exponential number of observables....

which determine exponentially small parameters, so you need to 
make exponentially many measurements...

and once you have all the data, finding a compatible density 
operator takes an exponential amount of classical computing! 



n>100n<10

# of qubits needed to do something “interesting”

Why do we care about tomography?

Short answer: we don’t. What we really care about is certifying 
state preparations...

...but full tomography could still be useful to characterize noise 
processes (see also quantum process tomography).



Pure State Tomography

The most interesting quantum states are pure; can we do 
tomography of pure states with fewer measurement settings? [1]

This result is quite robust and similar performance holds even if...

Yes! For states of rank r, O(r d log2(d)) measurements suffice.

[1] Kaznady & James, PRA 2009

...the measurements are corrupted by stochastic, deterministic, or 
adversarial noise.

...the state is full rank, but has large purity.

...the efficiency of the classical post-processing is O(poly(d)).

Moreover, the scheme requires just Pauli measurements.

The result is heralded, so no a priori promise of large purity or low 
entropy is necessary.
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Pioneered by: Candès, Tao, Donoho, ...

Shoot, 
then 

compress

Take only as many samples as 
you need, then post-process 

to reconstruct the image! 
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What is Compressed Sensing?

Problem:
Finding the sparsest 

vector consistent with 
the sampling is NP-hard

Solution:
Use a convex relaxation!

Problem:
Unlike classical info., 
quantum information 

contains a basis.

Solution:
Use rank minimization 
instead (and its convex 
relaxation, of course.)



Tomography of low-rank states

Measure observables Ak to get expectations bk, and collect 
them each into vectors of length m, with m=O(r d log2(d)).

Now we can solve the convex optimization

Theorem 1: If the Ak are randomly chosen Paulis, 
then this convex optimization has a unique solution 
as δ vanishes, with overwhelming probability.

min Tr(X) : ‖A(X)− b‖2 ≤ δ , X ≥ 0

This is essentially optimal, since m=Ω(rd) 
follows from simple parameter counting.



Robustness to noise

Suppose instead that we measure a different state, but still 
pretty close (as measured by the 2-norm),

Solving the same optimization as before,

min Tr(X) : ‖A(X)− b‖2 ≤ δ , X ≥ 0

‖ρopt − ρ‖2 = δ O

(
d

log d

)

‖ρ− σ‖2 < δ

we obtain Theorem 2, a result about robustness

As we will see from the numerics, there is 
probably room for improvement in this bound.



Heralding the success of the protocol

Theorem 1 holds under the promise of low rank, and 
theorem 2 says that it is robust under small perturbations.
Can this be improved to a heralded scheme?

Yes!

Using the Pauli measurements, we 
can estimate the purity of the state.  

If the purity is large enough, then theorems 
1 and 2 apply.  Otherwise, we can abort, or 
do e.g. maximum likelihood estimation.



Testing the algorithm

Matlab interlude

Choose a random pure state from a d x r 
system and trace out the r-dimensional ancilla.

Add statistical noise and 
additional depolarizing noise.  

Solve the convex program to get the estimate 
of the state. (ask me about the details!)



Testing the algorithm

Fidelity

Trace Dist.

Hybrid Random

0.05 0.1 0.15 0.2
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.

3 4 5 6 7 8 9 10

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.

Sparsity: m!d2

Fi
de

lit
y

Oversampling Ratio: m!"2dr!r2#

Tr
ac

e
D

ist
an

ce



Matrix Product State Tomography

Many interesting quantum states can be well approximated by a 
matrix product state with a small bond dimension.  Can we use 
this to our advantage?

Yes, we can do certified tomography of certain n-
qubit quantum states in time poly(n)

The idea is to produce efficient classical descriptions of large 
quantum states by doing tomography of the MPS description 
directly, rather than the exponentially large description as a vector 
in Hilbert space.
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State certification for non-degenerate MPS

ρj
For each local density operator,

we do complete local tomography.
‖ρj − σj‖1 ≤ ε0

(Prob : 1− δ0)

H =
∑

j

ΠjΠj = null(σj)

Build a “fake” parent 
Hamiltonian from the 

local estimates Ground state of H should 
be close to the true state

...but how can we find it?
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State tomography for non-degenerate MPS

Use DMRG!

Vidal: “I don’t know a single instance in 1d where DMRG fails.”

DMRG does fail on some instances:
Schuch, Cirac, Verstaete PRL 2008,

...but these have 1/poly(n) gaps

STF, T Osborne 2009: Parent Hamiltonians can be 
solved in polynomial time
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Non-degenerate MPS

‖ρj − σj‖1 ≤ ε0

(Prob : 1− δ0)

local estimates

H =
∑

j

Πj

Πj = null(σj)

fake parent

|φ〉

candidate ground 
state in MPS form

Now build the parent of 
the global estimate:

G =
∑

j

Qj

Qj = null(Trj |φ〉〈φ|)

We can bound the 
fidelity now by first 
introducing a new 
error parameter 

ξ = max
j

Tr(Qjσj)



Non-degenerate MPS

Tr(Gρ) ≤
∑

j

[Tr(Qjσj) + ε] ≤
∑

j

[ξ + ε] ≤ n(ξ + ε)

∆(1− 〈φ|ρ|φ〉) ≤
∑

j

λj〈gj |ρ|gj〉 = Tr(Gρ)

Thus, we have a fidelity bound with an 
extensive error in terms of the truncation error 
and the statistical error of the local estimates

1− 〈φ|ρ|φ〉 ≤ n(ε + ξ)/∆



Conclusions

Tomography of arbitrary states with high purity can be done with 
roughly O(d) measurements, and the scheme is fully certified and 
heralded, is robust to errors, and works very well in practice.

States that are well-approximated by a matrix product state can 
be learned exponentially faster.

Lots of open questions.  Channels, better error bounds, better 
code, other types of measurements...


