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Quantum State Tomography

% Reconstructing a classical description of a quantum state from
single-copy measurements and classical post-processing.

%* the dimension d=2" is exponentially large, so one must measure an
exponential number of observables....

*which determine exponentially small parameters, so you need to
make exponentially many measurements...

*and once you have all the data, finding a compatible density
operator takes an exponential amount of classical computing!




Why do we care about tomography?

#Short answer: we don’t. What we really care about is certifying
state preparations...

%...but full tomography could still be useful to characterize noise
processes (see also quantum process tomography).

# of qubits needed to do something “interesting”




Pure State Tomography

= The most interesting quantum states are pure; can we do
tomography of pure states with fewer measurement settings? [1]

LYes! For states of rank r, O(r d log?(d)) measurements suffice. J

2 This result is quite robust and similar performance holds even if...

= ...the measurements are corrupted by stochastic, deterministic, or
adversarial noise.

= ...the state is full rank, but has large purity.

...the efficiency of the classical post-processing is O(poly(d)).

s« Moreover, the scheme requires just Pauli measurements.

% The result is heralded, so no a priori promise of large purity or low
entropy is necessary.

[1] Kaznady & James, PRA 2009
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What is Compressed Sensing?

Take only as many samples as
you need, then post-process
to reconstruct the image!

Pioneered by: Candes, Tao, Donoho, ...
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What is Compressed Sensing?

Problem: Solution:

Finding the sparsest Use a convex relaxation!
vector consistent with

the sampling is NP-hard

Problem: Solution:

Unlike classical info., Use rank minimization

guantum information instead (and its convex
contains a basis. relaxation, of course.)




Tomography of low-rank states

Measure observables Ak to get expectations bk, and collect
them each into vectors of length m, with m=0O(r d log?(d)).

Now we can solve the convex optimization

min Tr(X) : [|A(X)—=0b|2 <, X >0

Theorem 1: If the Ax are randomly chosen Paulis,
then this convex optimization has a unigque solution
as 0 vanishes, with overwhelming probability.

This is essentially optimal, since m=8Q(rd)
follows from simple parameter counting.




Robustness to noise

Suppose instead that we measure a different state, but still
oretty close (as measured by the 2-norm), ||p — oll2 <9

Solving the same optimization as before,

min Tr(X) : [|A(X)—=0bl2 <, X >0

we obtain Theorem 2, a result about robustness
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Heralding the success of the protocol

Theorem 1 holds under the promise of low rank, and
theorem 2 says that it is robust under small perturbations.
Can this be improved to a heralded scheme”?

Usi

ng the

car

Pal

Yes!
| measureme

estimate t

ne purity of t

Nts, we

Ne state.

f the purity Is large enough, then theorems
1 and 2 apply. Otherwise, we can abort, or
do e.g. maximum likelihood estimation.




Testing the algorithm
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Testing the algorithm
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Matrix Product State Tomography

=Many interesting quantum states can be well approximated by a
matrix product state with a small bond dimension. Can we use
this to our advantage?

-

Yes, we can do certified tomography of certain n-
qubit guantum states in time poly(n)

U

“*The idea Is to produce efficient classical descriptions of large
quantum states by doing tomography of the MPS description
directly, rather than the exponentially large description as a vector
iIn Hilbert space.
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State certification for non-degenerate M

For each local density operato
we do complete local tomograp

Sulld a “fake” parent
Hamiltonian from the
ocal estimates Ground state of H should
o Z I, be close to the true state

lpj — ol < €0
(Prob 1 — 5())

11, = = null( O']

..but how can we find it”?
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Right Block

L(1) + o + R(5)

L(5) + o 4+ R(4)

L(G)+ e+ R(3)

Vidal: “I don’t know a single instance in 1d where DMRG fails.”

DMRG does fail on some instances:
Schuch, Cirac, Verstaete PRL 2008,
...but these have 1/poly(n) gaps

STF, T Osborne 2009:; Parent Hamiltonians can be
solved in polynomial time
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Non-degenerate MPS

local estimates  fake parent

lpj —ojlli < €o [1; = null(o;)
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Non-degenerate MPS
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Non-degenerate MPS

A(1 — (¢|plo)) < Z Ai(gjlplg;) = Tr(Gp)

Tr(Gp) < Z[Tr(QjOj) +e€] < Z[S +e] <n(¢ + e

p n(e

Thus, we have a fidelity bound with an
extensive error in terms of the truncation error
and the statistical error of the local estimates




Conclusions

= Tomography of arbitrary states with high purity can be done with
roughly O(d) measurements, and the scheme is fully certified and
heralded, is robust to errors, and works very well in practice.

% States that are well-approximated by a matrix product state can
be learned exponentially faster.

% Lots of open questions. Channels, better error bounds, better
code, other types of measurements...




