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Quantum computing with a cluster state
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[0 Quantum computing can
proceed through measurements
rather than unitary evolution

[0 Measurements are strong and
iIncoherent: easier?

Uses a cluster state:
[0 a universal circuit board

[0 a 2-d lattice of spins in a specific
entangled state

information flow

A One-Way Quantum Computer
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We present a scheme of quantum computation that consists entirely of one-qubit measurements on a
particular class of entangled states, the cluster states. The measurem
logic circuit on the state, thereby destroying its entanglement at the same time. Cluster states are thus
one-way quantum computers and the measurements form the program.

ents are used to imprint a quantum
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Q: What resource states allow for measurement-based QC?

Q: What physical systems are ‘natural’ for creating such states?

Q: How robust are these states to the relevant errors in these systems?



Resource states & Hamiltonians

[0 Resource states can be:
[0 constructed with unitary gates

[0 the ground state of a coupled
gquantum many-body system

O Approach: cluster state is ground
state of a model Hamiltonian H . ster

ITP Innsbruck ' ] ] ]
www.uibk.ac.at/th- [0 Error model: What if our Hamiltonian

physikigqo/research/ was only “close” to the desired cluster
Hamiltonian?
4
Houster=— Y Z-X-Z H = Hauster + 3 local terms

sites é

[0 Is the system fragile or robust to local
perturbations, or finite temperature?



Summary of results

Cluster Hamiltonian and a local X field:
B there exists a cluster phase in 1-D and 2-D at T=0

B quantum gates, as correlation functions, can serve as order
parameters to identify universal phases

Cluster Hamiltonian and a local Z field:
B there is no phase transition

B Dbut local filtering in 3-D at finite temperature, there exists a
transition between a universal region, and a reglon WhICh IS
classically simulatable Gr-f -t €y (B e
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Spin-1 Hamiltonians in the Haldane phase: -« - - &8 ]
B |ocal filtering can renormalize the state, removing defects

i idddiddddd



ldentifying phases, part 1

H = Hcluster + B Z

81tes



Duality transformations to known models

[0 Cluster Hamiltonian with local X field is unitarily related to
some known models

L

1-D:

H = Hcluster + B ZX

L

2-D:

H = Hcluster + B ZX
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Transverse field Ising model

* phase transition at B=1
e correlation functions B<1

Pt e

Anisotropic quantum
compass model

* phase transition at B=1
* Ising-like + more
correlation functions B<1



Correlation functions and guantum gates

[0 Anisotropic quantum compass model has long-ranged Ising
order parameters in the ordered B<1 phase
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String-like order parameter Interacting strings order
Quantifies fidelity as of parameter
“Quantum wire” Quantifies CNOT gate fidelity

(Teleportation + 1 qubit gates)



Conclusions 1.0

[0 Quantum gates — correlation functions — order parameters
to identify universal phases for MBQC

0 MBQC is a new type of long range “string” order



ldentifying phases, part 2

H = Hyster + B Zsites Z

[0 No phase transitions in T, no quantum phase transitions in B
[0 Investigate ground and thermal states for MBQC



In (1 +KT/A)
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Example: Cubic lattice (3-D)
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Conclusions 2.0

O

Quantum gates — correlation functions — order parameters
to identify universal phases for MBQC

MBQC is a new type of long range “string” order

No phase transitions — is MBQC order destroyed?
Local filtering reveals paths for “strings” to retain order



ldentifying phases, part 3
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H =) .cosf(S; - Sii1) +sind(S; - S;1q)
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Spin-1 chains in Haldane gap phase
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H =).cos 9(5’; : §i+1) + sin 9(§z ° §i+1)2

O AKLT state: “quantum wire” for measurement-based QC _
Brennen and Miyake

tanOaxrr = 1/3 PRL 101, 010502 (2008)

[0 Any state in Haldane phase: “quantum wire” but 1-qubit gates have errors

Agin g

“Buffering” measurements remove errors probabilistically
Renormalization! AKLT is fixed point

Removes short-ranged “errors”, leaves long-ranged order

Romero-Isart, Eckert, Sanpera
PRA 75, 050303(R) (2007)



Conclusions 3.0

O
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Quantum gates — correlation functions — order parameters
to identify universal phases for MBQC

MBQC is a new type of long range “string” order

No phase transitions — is MBQC order destroyed?
Local filtering reveals paths for “strings” to retain order

Local filtering can renormalize the system
Short-ranged “errors” removed (probabilistically?)
Long-ranged MBQC order retained



