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Backward Stochastic Differential Equation
» Standard filtred probability space (2, F, (F;),0 <t < T,P),
supporting a standard BM W € R”".

» A non anticipating coefficient f(t,w, y, z) defined on
(Q x R, R? x R¥*"), a terminal condition {7 € Fr

Definition of BSDE solution
A solution of BSDE(f, {7), is a par of non anticipating processes
(Y,Z) € RY x R?*" such that

Yi=¢&r+ [ (s, e, Z)ds — [T ZodW,,
» or equivalently —dY; = f(t, Vs, Zi)ds — Z,dW,, Yr=¢&r

> with minimal integrability condition, fOT(|f(t, Ye, Ze)| + | Z:)?)dt < 00 a.s.

v

v

v

Existence, Uniqueness? : in which spaces of processes,... J

Properties ? : Stability, Comparison Theorem.....




Doob Inequalities

Notation for the running maximum : max |M|r = sup, 1 |M|s

Continuous Martingale : a priori estimates

» Doob inequalities :
E[max |M|%] < cE[|M7]?] < CE[max |M|%]
Should be read in both directions (A < B < C)
» B = Ais a Backward inequality
» C = B is a Forward inequality
» Burkholder, Davis Gundy inequalities
Let (M) be the a quadratic variation of M, then for any p > 0
E[max |M|5] < ¢,E[|M7|P/2] < C,E[max |M|7]

Representation Theorem

Fields Intitute, 7 avril 2010, 7‘(1)/



A priori Forward or Backward Estimates

Weighted H?2- space

» Forward H?, defined as H% with the semi-norm
IX[[2 = max(e~2*E[max | X[])r

» Backward H2, defined as H2 with the semi-norm
IX117 = max(e***E[max | X|[7]) 7

Estimates of F,” = f f.ds a finite variation process.

» Forward
|FtT|2:| ftT esc/z(e—sc/zfs)ds|2 < ecT% ftT e_cs|fs|2ds
» Backward
TP J] e (e h)dsf < et [T |6 ds
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Semimartingale Estimates
Let x7 = x; — ftT f.ds — ftT nsdW; a 1td’s semimartingale

» Forward
Since x; = xp — fot f.ds — fot nsdW;, then
Ix¢| < |yo| + |FE| + max |n.W];. By the Doob inequality,
e “*E[max |x|?] < IE[e_Ct|xo|2 +1 fot e (|f]> + |ns|2)ds]
Ix[? < 2E[e~T|xol? + L [ e (|2 + |n.]?)ds]
» Backward
By Doob inequality, since |x;| < E[|x7| + | Fe| | Fe],
1/2
e x| <E[(eT2|xr| + 3 [T €| f2ds) " ?| 7]
X2 < 4E[eTP|xrl? + 3 [ e%|£[2ds]
InWI3 < K[E[e™|xr?+ 5 [, e?|£[2ds]

Fields Intitute, 7 avril 2010, 6 /
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Lipschitz Assumptions
Forward Assumptions

» F(t,[x]:), and G(t,[x]:) (path dependency) in IL?
» Uniformly Lipschitz i.e, there exists K > 0 s.t a.s
F(t [e) = F (8 Il +HIG (8 [x ) = G (¢, []e)] < K [Pa—xl|

Backward Assumptions

» Standard data (f, €) : fo |f(¢t,0,0)?ds, ¢ € L?

» f is uniformly lipschitz, i.e., there exists C > 0 s.t a.s
[f(t,y1,z1) — £(t, 2, 2)| < C(Iy1 — y2| + |21 — 22])

Notations : given two coefficients f!, f2,

> Y, =Y — Y2 62, =27 - 72
> 62)‘; = fl(t,yz,Zg) — f2(t,y2722), 52Ft = 52ﬂ(yt2, Zt2)



Solutions via Picard Approximations

» Forward Lipschitz SDE

dX; = » Backward Lipschitz SDE
=
—dY: = f(t, Yy, Zp)dt, — Zy.dW;
F(t, [X]e)dt, +G(t, [X].)dW, e =1(t,Ye, Zy) . dW,
Yr=¢7

» General filtration

» Standard L? multi-dim data
(Xo, F, G), uniformly
Lipschitz.

» Brownian Filtration
» Standard L2 multi-dim data

uniformly Lipschitz.

» Existence and Uniqueness
» Existence and Uniqueness » 3 a unique pair (Y, Z) € H2
» 3 a unique solution in H2%
In the both cases, the Picard sequence converges uniformly in the
right H2- space to the solution with an exponential speed. The

estimates are uniform in the boundary conditions.



Markovian Setting
General Markovian Setting

Let X be a diffusion process on a general filtered probability space,
and Be be the o— field on R" generated by EftT B(s, Xs™)ds where ¢ is
a continuous bounded. Let (f, V) € 3. be squared integrable
(E [ £2(s, X2¥)ds < 400 ; E[W2(XEY)] < +00,)
» Markovian representation of the solution[CJPS]
The semimartingale Y5~ = E[W(X3¥) + fsT f(r, X dr|Fs] admits

a continuous version given by u(s, X&) with u(t,x) = Y™ € Be

» Markovian representation of the martingale Moreover,
u(t,x)+ [ £(r,X;™)dr + Y& = Ug”™ is an additive martingale with
the following representation depending on d(t, x) € Be,
Us™ = [ d(r, XEP) o(r,X)dW, ; t <s

VvV
t,x
zp
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Markovian BSDEs

Let X be a diffusion process and the associated BSDE :
—dY, = f(s, X2, Ys, Zo)ds — ZXdW,, Y7 = V(X7Y)
» General setting : Thanks to Picard approximates, there exists
u(t,x),d(t,x) € Be such that
Ys = u(s, X)), Zs = d(s, X2¥)*o (s, XIX).
» PDE solution in one dimensional case
Let £ the elliptic operator associated with the diffusion X.
Then, under mild regularity assumptions, u is a viscosity
solution of the HJB Type PDE
Oeu(t,x) + Lv(t,x)+ f(t,x, u(t,x),0u(t,x)o(t,x)) =0
{ u(T,x) = VY(x).
Then, d(t, x) plays the role of 0,u the gradiant of wu.

proof is provided by the strict comparison theorem.



Linear Growth assumption
Linear growth assumption, d=1

For simplicity, we assume that f(t,0,0) =0
Linear growth : |f(t,y, z)| < g.(y,2) = aly| + u|z|S Let Y* the
solution of the Lipschitz BSDE with coefficient g, and Y* the

process —Y" (—&7). Uniform bounds

Then any square integrable solution (Y, Z) of BSDE(f) with linear

growth satisfies
yr<y<v"

Lepeltier,San Martin,'97

There exists a minimal (a maximal )solution to the BSDE with GL

continuous coefficient.

NEK (Paris VI/CMAP) BSDEs Lect Il, Stability
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Existence Results Linear Growth assumption

General methodology

The different steps of the proof are the following

» Use a monotone Lipschitz regularisation " of f, with same
linear growth

» Show that the solutions (Y, Z") are bounded in L2,
Elfy |Z?ds] < €

» Show the control of ]E[fOT |67 Z,|?ds] by (E[foT |67 Ys|2ds])1/2

» Use the motonocity of the sequence Y” and the previuos
estimates to show that Z" converges strongly in H? to Z, and
so Y" converges uniformly to Y

» The last step uses the property of the approximating seauence
to show that f"(¢t, Y", Z") also converges to f(t,Y,Z)

Fields Intitute, 7 avril 2010, 12/



Existence Results Linear Growth assumption

Sketch of the proof

Regularisation by inf convolution

f7(x) = inf,ere{f(y) + n|x — y|} is well defined for
n>sup(a,u) = K

Key inequality Denote by Y'Y = §'JY the difference between Y' and
YJ.

By Itos formula

T T
YR 4 / |29 2dsE | / 1Z,2ds]
t t

Fields Intitute, 7 avril 2010, ]7.36/
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Reflected BSDEs and Americam options
Reflected BSDEs around a regular obstacle

How to maintain a BSDE solution above a given regular obstacle ?
Assume dOt - Utdt —+ thWt
. Let (Y, Z) a solution of BSDE(f,{7)

By comparison theorem, if &+ > O, and f(t, O;, V;) + U, > 0, then
Y: > OVt

The idea is to push the solution above O; by adding some "cash”,
when you need, f(t, O, Vi) + U; <0, in a minimal way. Working
with Y; — O;, the problem may be rewritten as to push a solution of
BSDE above 0.

Fields Intitute, 7 avril 2010, ]7.4(1)/
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Reflected BSDEs Reflected BSDEs and Americam options

Definition of Reflected BSDE Above 0

Y =0+ ftT f(S, Ys, Zs)ds + Ky — K¢ — ftT stWS’
Yt Z Ot7

K is continuous, increasing, Ky = 0 and fOT Y:dK, = 0.

The above observation suggests to be looking for a process K

absolutely continuous w.r. to f(t,0,0) dt,

th - O[t].{yt:o}f(t7 07 0)_dt, (67 € [O, 1]

NEK (Paris VI/CMAP) BSDEs Lect Il, Stability
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OSSN DIS  Reflected BSDEs and Americam options

Transformation of the problem
The problem is now expressed in terms of a;.
Regularization

Let ¢" a Lipschitz regularization of 1;,_gy, bounded by 1, and

decreasing.

e By the same method that above, one show the same properties
holds true, for the BSDEs with " = f + ¢"(y) e to show that the
sequence Y converges uniformly, and Z" strongly in L2 to a pair
(Y,Z), with Y > 0.

e The only small difficulty is to show that dK] converges to a

solution with support {Y; = 0}

Fields Intitute, 7 avril 2010, ]7.((5)/



Reflected BSDEs and Americam options
Applications to optimal stopping problems

General obstacle Lower bound. For any stopping time 7 € 7; 1, one
has

T T
Y, :E(Yt+/ £(s, Vs, Z:)ds + K. — K, _/ Z.dW,| F.)
t t
> E(Otlr<T +é1. 1 +/ f(sa YS7ZS)dS|‘Ft)7
t
which implies

Y. >ess sup E(O,; 1,7+ 71,71 +/ f(s, Ys, Zs)ds| F).
t

TET:,T

Equality. The equality holds for 7* = inf{u € [t, T]: Y, = O,} A T.
Fields Intitute, 7 avril 2010, 17 /
70



OSSN DIS  Reflected BSDEs and Americam options

Numerical Point of view

New interest for these kind with the swing options, the real options.

— The regular obstacle method is very interesting for numerical

methods since

» it gives an upper approximation (the penalisation app. gives a
lower bound).
» the bounds on the approximated driver depends less on n than

for the penalisation scheme.

» No available estimates on the rate of convergence w.r.t. n.

Fields Intitute, 7 avril 2010, ]7.?)/
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Numerical methods

» Thanks to Emmanuel Gobet to allows me to use its beautiful

presentation of the numerical aspect of BSDEs
» The complete presentation may be find on the following site :

» http ://www.cmap.polytechnique.fr 7euroschoolmathfi09
Then, go to minicours
Find the slides of E.Gobet and J.Ma on BSDEs

Fields Intitute, 7 avril 2010, ]7.%/
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Numerical methods

Our aim :

» to simulate Y and Z

» to estimate the error, in order to tune finely the convergence

parameters.
Quite intricate and demanding since

» it is a non-linear problem (the current process dynamics depen
on the future evolution of the solution).

» it involves various deterministic and probabilistic tools (also
from statistics).

» the estimation of the convergence rate is not easy because of
the non-linearity, of the loss of independance (mixing of

independent simulations).

Fields Intitute, 7 avril 2010, %%/



Numerical methods Intricate combination of weak and strong approximations

Strong approximation.

(XN)o<t<T is a strong approximation of (X;)o<;<7 if

sup ||IXN — XtllL, — 0 (or || sup XN — XtlllL, — 0) as N goes to oo.
t<T t<T

Weak approximation. For any test function (smooth or non
smooth), one has

E[f(XM)] — E[f(X7)] — 0 as N goes to co.

Fields Intitute, 7 avril 2010, %]6/
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W IR ISR B Intricate combination of weak and strong approximations

Examples.
Approximation of SDE : X; = x + fot b(s, Xs)ds + fot o(s, Xs)dW.

Time discretization using Euler scheme. Define t, = k% = kh.

X' =x, XN

tegr XtIZ + b(tk7 th,\(l)h + U(tk) XtIZ)(WtkH - Wtk)'
The simplest scheme to use. Converges at rate % for strong

approximation and 1 for weak approximation.

Milshtein scheme (not available for arbitrary o) : rate 1 for both

strong and weak approximations.

NEK (Paris VI/CMAP) BSDEs Lect Il, Stability
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W IR ISR B Intricate combination of weak and strong approximations

The BSDE case

We focus mainly on Markovian BSDE :
Y, = &(X7) —i—f f(s, X, Ys, Zs)ds — f ZsdW,, where X is a
forward SDE. We know that Y; = u(t, X;) and
Zy = Vu(t, X;)o(t, X;), where u solves a semi-linear PDE
—> to approximate Y, Z, we need to approximate the function u(-),
the gradiant of u and the process X
> YtN = UN(tv XtN)'
» in practice, X" is always random,

N may be random (e.g. Monte

» although v is deterministic, u
Carlo approximations) : the randomness may come from
two different objects.

NEK (Paris VI/CMAP) BSDEs Lect Il, Stability
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W IR ISR B Intricate combination of weak and strong approximations

Formal error analysis

E[YY' = Vel <EJu"(t,X]") — u(t, XN)| + Elu(t, X{') — u(t, X:)|
< JuM(t,) = u(t, e + I VUl EIXY = Xel.

Two source of error :

» strong error related to E|XN — X,|.
For the Euler scheme E|XN — X,| = O(N~Y/2).
» weak error related to |uM(t,-) — u(t,")|L..
Indeed, to see that this is a weak-type error, take f = 0,
u(t, x) = E[®(X7)|X; = x], and the Euler scheme to
approximate the conditional law of X7 : from [BT96], one knows

A T s 0 £ /Bl ds\mtute, 7 avril 2010,/ A 1—2a /
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WL RN S EE Resolution by dynamic programming equation

Time grid :
T={0=tr< - <t;<---<ty=T}

with non uniform time step : || = max;(ti11 — t;).

We write At,' =ty — and AWt'. = th.Jrl — Wt..

1

Fields Intitute, 7 avril 2010, %56/
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Resolution by dynamic programming equation
Heuristic derivation

From Yy, = Yy, + ftf"“ (s, Xs, Ys, Zs)ds — tj’“ Z.dW., we derive

tit1
Y = IE:[YtiJr1 +/ f(s, Xs, YS7ZS)ds|‘Fti]7
t

tiv1 tit1
E| / Z,ds|Fy] = E[(Ye,,, + / F(5. Xe, Yo, Z)ds) AW | F ]
t; t;
Discrete backward iteration.

ZN = LE[YN W |7,

ti

YN =E[YN |+ f(t, XY, YN ZN)[F] and YR = 2(XY).

tip1) Tt

The scheme is of explicit type.

Fields Intitute, 7 avril 2010, %g/
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WL RN S EE Resolution by dynamic programming equation

Implicit scheme

More closely related to the idea of discret BSDE.

N Ny _ - N . N . 2
(Ye,Zy) = arg(Y,Z)ngIILrl(J—‘t,.)E[Yt“l + “6f (6, X, Y, Z) = Y — Z"W 5,

with YN = &(X]).

ZN = LEYN Wi R,

tit1

Y =E[YY [Fi]+ tif (4, XYL YN, ZY).

tia

Needs a Picard iteration procedure to compute Y}

Well defined for || small enough (f Lipschitz).

- — - - . 1_Fields Intitute, 7 avril 2040, 27 /
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Numerical methods Error analysis

Define the measure of the squared error
N N N ), = [Ty 2
(YN Y.ZV - 2) = max BV - Y[+ E;/t E|Z) - Z,Pdt.

Theorem. For a Lipschitz driver w.r.t. (x,y, z) and %—Holder
w.r.t. t, one has

(YN —v,ZN - Z) < C(E[O(X}) — o(X7)[> + sup E[XL — X, |2
i<N
N-1 ety _
x|+ Z/ E|Z, — 7, 2dt).
i=0 i
where Z,, = 2L E( [ Z,ds|Fy,)

Fields Intitute, 7 avril 2010, %g/
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Numerical methods Error analysis

Error Analysis

— Different error contributions :

» Strong approximation of the forward SDE (depends on the
forward scheme and not on the BSDE-problem)

» Strong approximation of the terminal conditions (depends on
the forward scheme and on the BSDE-data ®)

» [?-regularity of Z (intrinsic to the BSDE-problem).

Fields Intitute, 7 avril 2010,
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Numerical methods Strong approximation

Diffusion approximation

The easy part : using the Euler scheme

> SupiSN |Xt/’V — Xt,-|]Lz = O(N_1/2).
» If o does not depend on x, rate O(N™1).

» Overwise, Milshtein scheme to get N~!-rate.

Fields Intitute, 7 avril 2010, 37»(())/
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WO ETEIE N S B Strong approximation

Strong approximation of the terminal condition

» If ® Lipschitz, then E|®(XY) — &(X7)]2 < LZEIXY — X2

» New result if ® is irregular, using the approximation theory
Some results of Avikainen [Avi09] for discontinuous function
d(x) = 1y<a.

» Possible generalization to functions with bounded variation
[Avikainen '09]

» For intermediare regularity functions, open questions.

Fields Intitute, 7 avril 2010, 37»]6/
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Numerical methods RRIPSZI-TETS A V4

E¥(m) =S [IE|ZN — Z,2dt. Theorem. [Convergence to 0]
Theorem. [Ma, Zhang '02 '04]
Assume a Lipschitz driver f and a Lipschitz terminal condition ®.

Then Z is a continous process and £4(nr) = O(|r|) for any time-grid 7.

No ellipticity assumption.

Key fact : Z can be represented via a linear BSDE !l It is proved using the

Malliavin calculus representation of Z component.

Fields Intitute, 7 avril 2010, 37%/
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Numerical methods RRIPSZI-TETS A V4

The basics of Malliavin calculus :

Sensitivity of Wiener functionals w.r.t. the BM

For £ = (W, : t > 0), its Malliavin derivative (D;{):>0
€ Ly(R* x Q, dt ® dP) is defined as

”th — @dwtf(Wt . t 2 0).”

Basic rules.

> If € = [ hedW,; with h € Lo(R), D = hlecr.
T T
» For smooth random variables X = g([ hydW, ..., [ hfdW,),
0 0
DX = X0, Oig(.. JhiLecr.

» Duality relation with adjoint operator D* :

Fields Intitute, 7 avril 2010, 37»36/



WO NG S B Lo -regularity of Z

Malliavin derivatives of (Y, Z) for smooth data

Theorem.

T T
If e = ®(X7)+ [ f(s, X, Ys, Zs)ds — [ ZsdWs, then for 6 <t < T
t

t
)
DyY, = &(Xr)DyXr + / [F(5, X, Yo, Z.)DoX.
t
]
+fyl(5a X57 Y57 ZS)D9 Ys + fz/(sa XSa Y57 Zs)Dezs]dS - / Dezdes
t

—> (Dy Y+, Do Zt)ecpo, 1) solves a linear BSDE (for fixed 6).

Fields Intitute, 7 avril 2010, :;4(1)/
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La-regularity of Z
In addition :

» Viewing the BSDE as FSDE, one has Z, = D,Y,.
» Due to DpX, = VX [VXy]to(0, Xy), we get

(DyYe, DoZt) = (VY [VXo] 10 (0, Xs), VZ[VXe] (6, Xp)),

where

T
VY: = cD,(XT)VXT +/ [f;(57X57 Y5, ZS)VXS
t

-
+f}f(s,X5, Ys, Zs)VYs + £)(s, Xs, Ys, Zs)V Zs|ds — / VZsdWs.
t

The explicit representation of the LBSDE yields [Ma, Zhang '02]

Z: = VY{[VX] to(t, X)
;
= E[O'(XT)VXTTh + [ f'x(s, X5, Ys, Z) VXL Zds| IV X:] Lo (

Fields Intitut avril
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La-regularity of Z
Z-regularity
SV [ Z — Z, Pdt

Following from this representation, to Ito-decomposition of Z

contains :

» an absolutely continuous part (in dt) — easy to handle.

» a martingale part M (in dW,) :
— tit1 _
S [ M.~ 1t < [x[E(ME - 1)

Possible extensions to LL..-functionals [Zhang '04], to jumps
[Bouchard, Elie '08], to RBSDE [Bouchard Chassagneux '06], to

. H N e mmeitaei 7 QA1 2010, 36 /
BSDEs Lect I, Stablllty 70
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Numerical methods RRIPSZI-TETS A V4

Other methods :Gobet and alii

» The case of irregular function ®(X7), with strict ellipticity

» Error expansion for smooth data and uniform grid [G.,Labart
'07]

» Resolution by Picard's iteration, as limit of linear BSDE :
[Bender, Denk '07]; [G.,Labart '09] with adaptive control variates.

Smaller errors propagation compared to the dynamic programming

equation.
Fields Intitute, 7 avril 2010, 37/
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Computations of the conditional expectations

Computations of the conditional expectations

Our objective : to implement the dynamic programming equation = to

compute the conditional expectations — the crucial step!!

Different points of view :

» the conditional expectation is a projection operator : if YEL,, then

E(Y|X) = Arg min_ E(Y — m(X))>.
(Y1X) = Arg_min  B(Y = m(X)
— this is a least-squares problem. What for?
- To simulate the random variable m(X) 7 one only needs its law.

- To compute the regression function m? finding a function of

dimension = dim(X) — curse of dimensionality.

Fields Intitute, 7 avril 2010, 38 /
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Computations of the conditional expectations

» How many regression function to compute ?
Answer. For the DPE of BSDEs, N regression functions and
N — oo.

vN(ti, x) =2 E(uM (ti, XL AWE = x),
uMN(ti, x) =E(uN(tip1, X )AL (8, x, uMN (tig1, X
(x

i+1)’VN(ti+17X)|XtI,-V=X
uN(T, x) =0(x).

» In which points X € R9?

Answer. Potentially, many ...

All is a question of global efficiency = balance

between accuracy and computational cost

Fields Intitute, 7 avril 2010, :;%/
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Markovian setting
Based on E(g(X;,.,)1Xe) = [ £()Px, . x;, (d%) = m(Xy).
If m(.) are required at only few values of Xi, = x1,...,xp :

» one can simulate M independant paths of X;, , starting from
Xt; = X1, ..., %, and average them out (usual Monte Carlo

procedures).

» but if needed for many /, exponentially growing tree! !

How to put constraints on the complexity ?

One possibility for one-dimensional BM (or Geometric BM) : replace the

true dynamics by that of a Bernoulli random walk (hinomial tree

Fields Intitute, 7 avr||)2'010, 40 /
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o CompriEion of #io eomfieiel eqpeEEiens calaulus
3.2 Representation of conditional expectation
using Malliavin calculus

[Fournié, Lasry, Lebuchoux, Lions '01; Bouchard, Touzi '04; Bally,
Caramellino, Zanette '05 .. ]

Theorem. [integration by parts formula] Suppose that for any smooth f, one has
E(f“(F)G) = E(f(F)Hk(F, G))
for some r.v. Hi(F, G), depending on F, G, on the multi-index k but not on f.

Then, one has

E(1r <x,....Fy<xyH1,...1(F, G))
E(1f <x,...Fy<xyHi,..1(F, 1))

E(G|F = x) =

Formal proof (d =1) :

m E(Gox (X E(G(1r<x ! E(1p<xHi(F,G)) Fields Intitute, 7 avril 2010, 41 /
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. .. N N D T
Computations of the conditional expectations [£|[<H[IE

» The H are obtained using Malliavin calculus, or a direct

integration by parts when densities are known.
> Actually, we look for H(F, G) = GH(F, G). Representation with
factorization not so immediate to obtain (possible for SDE).

» In practice, large variance — need some extra localization

procedures.

» For non trivial dynamics, the computational time needed to

simulate H may be high.

» For BSDEs, available rates of convergence w.r.t. N and M
[Bouchard, Touzi '04] using N independent set of simulated
paths.

Fields Intitute, 7 avril 2010, %%/
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The approach using projections and regressions
Statistical regression model : Y = m(X) + ¢, with E[¢|X] = 0.

X is called the (random) design.
Large literature on statistical tools to approximate E[Y|X].

References [Hardle '92; Bosq, Lecoutre '87 ; Gyorfi, Kohler, Krzyzak,
Walk '02]

Problem : compute m(-) using M independent ( 7) samples
(Yi, Xi)i<i<m.

Usually estimation errors in the literature are not sufficient for our

purpose :

» the law X may not have a density w.r.t. Lebesgue measure.

» the support of the law of the X is never bounded!!
Fields Intitute, 7 avril 2010, 43 /
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Discussions of non parametric regression tools

from theoretical /practical points of view

3.3.1. Kernel estimators

1 M x=X;
1M e )Y
E[Y|W = x] = pe 2i=1 K7 = mp p(x), where

LM KX

» the kernel function is defined on the compact support [—1, 1],

bounded, even, non-negative, C2 and [ K(u)du =1,

» h > 0 is the bandwith.

Non-integrated ILo-error estimates available.

NEK (Paris VI/CMAP) BSDEs Lect Il, Stability
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3.3.1. Projection on a set of functions

Set of functions : (¢« )o<k<k-

E(Y|X) = argminE(Y—g(X))* ~arg min Zakgbk
& Sy k()

Computations of the optimal coefficients () : it solves the normal

equation

= E(Y¢), where A;j = E(¢;(X)$;(X)), [E(Y®)l; = E(Y¢i(X)).

» For simplisity, one should have a system of orthonormal

funCtlonS w.r.t the IaW Of X . Fields Intitute, 7 avril 2010, 45_/
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> If the system is not orthonormal, one should compute A and invert it.

Its dimensions is expected to be very large : K — oo to ensure

convergent approximations.
Presumably big instabilities (ill-conditioned matrix) to solve this
least-squares problem [Golub, Van Loan '96].

» In practice, A is computed using simulations, as well E[Y¢].

Equivalent to solve the empirical least-squares problem :

| M K
(af )k = arg min - DY ardi(X™)?
m=1 k=1

CLT At fixed K, if A is invertible, one has
im0 VM(a™ — ) = N(0, .. ).

A - - . s 1_Fields Intitutes *7-avril 2010, 46_/
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The case of polynomial functions

» Popular choice.

» Smooth approximation.

» Global approximation : within few polynomials, a smooth m(.)
can be very well approximated.

» But show convergence for non smooth functions (non-linear
BSDEs may lead non-smooth functions).

» Do projections on polynomials converge to m(.) ?
Dr>0(P)k(X) = La(X) 7 If for some a > 0 one has
E(e?X!) < 0o, then polynomials are dense in IL,-functions.
Proof. Related to the moment problems. Is a r.v. characterized
by its polynomial moment? In particular, if X is log-normal,

ortonomials of X are not dense in L, (Feller counter-exemple) ! !
Fields Intitute, 7 avril 2010, 47 /
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The case of local approximation

Piecewise constant approximations ¢, = 1¢,, where the subsets
(Ck)k forms a tesselation of a part of RY : C, N C; = ) for | # k.

arg _inf E(Y —g(X))?or arg _inf EM(Y — g(X))?*?

g:Ek aklck g:Zk aklck

The "matrix"

A = (E(¢i(X)9j(X)))i, is diagonal : A = Diag(P(X € C;);)) =

E(Ylxec,) )
oy — el =B(Y[X €C)  fP(X €C) >0,
0 if P(X € Ci) = 0,
™ Yt L me X C ki 56:0

A o - m
NEK (Paris VI/CMAP) BSDEs Lect Il, Stability
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The approach using projections and regressions
Rate of approximations of a Lipschitz regression function
m(.)
Size of the tesselation : |C| < sup;sup(, ,)ec, IX — yI-
Given a probability measure p: pu=Px or u = % Z,Agzl dxm(.).

ot [ 1860 = m(x) e

g=Zk Otklck

— mO) 2 u(dx m?(x)u(dx
<3 [ Imo) = meoPue) + [ ()

<D IePulCi) + [mPZu([UkCi]®) < [C7 + [mZon([UKCK])-
k

» We expect the tesselation size to be small.

c he cm alkididalilingdi muotican) o, 49/

he comnlemen h o
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Efficient choice of tesselation ?

Given x € RY, how to locate efficiently the Cj such that x € C?

» Voronoi tesselations associated to a sample (X*);<x<x of
the underlying rv. X : Cy = {z € R? : |z — X¥| = minj|z — X'|}.
Closed to quantization ideas.
Theorically, there exists searching algorithms with a cost
O(log(K)).

» Regular grid (hepercubes).
k= (ki,...,kq) €{0,..., K1 — 1} x ... x{0,..., Ky — 1} define
Ci = [=x1, min+Ax1k1,—X1, min+Ax1 (ki +1)[ X - X [=Xd, min+BXd Kd,—Xd, min+OBXq (kg +1)
Tesselation size = O(max; Ax;)

Quick search formula :

Fields Intitute, 7 avril 2010, E;(())/
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3.4 Model-free estimation of the regression error [GKKW02]
In the BSDEs framework, see [Lemor, G., Warin '06].

Working assumptions :

> Y = m(X) + e with E(e|X) = 0.

> Data : sample of independant copies (Xi, Y1),...,(Xn, Ya)

» 02 =sup, Var(Y|X = x) < 00

» F,=Span(fi,...,fk,) a linear vector space of dimension K, which may

depend on the data!

Notations : |f|2 = 13" | f2(X;). Write u” for the empirical measure
associated to (Xi,...,X,).

mp(.) = arg m|n72|f - Y

Fields Intitute, 7 avril 2010, 51 /
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Proof

W.l.o.g., we can assume that
> (f,...,fx,) is orthonormal family in Lo(u") : £ 37, A (X)) (X)) = 0k,.

= The solution of argminseg, 237, [F(X;) — Yi|? is given by
) 1
ma(.) =Y afi(.) with oj = - > H(X)Yi.
j i

Lemma. Denote E*(.) = E(.| Xy, ..., X,). Then E*(/,(.)) is the least-squares
solution of argminser, 2 37 |£(X;) — m(X;)[? = arg min¢er, |f — m[2.

Proof.

> The above least-squares solution is given by >_; aff(.) with
* 1

Q. — — T ALMLAG Fields Intitute, 7 avril 2010, 52 /
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Model-free estimation of the regression error [GKKW02]

Pythagore theorem : |/, — m|? = |, — E*(f, — E*(/M,))|? + [E*(/M,) — m|2.
Then, E*|, — m[% = E*|M, — E*(f,)[2 + [E*(/y)

= By — B () 2 + i [ — .

—ml;

Since (f;); is orthonormal in L(ps), we have
|y — E* (if1p)| 7 = Z |aj — E*(aj)|2'
J

)—%Z fi(Xi)(Yi = m(X;)), we have

Thus, using aj — E*(a
E* |y — B* ()2 = Z E*Zf(x (X)(Y; = m(X)(Y)

_Z Zﬂ )Var(Y;|X;)

, X,) are centered.

— m(X))

since the (¢;); condltlonnaly on (Xi,...
2 Ka

itutep 7 avril 2010,

1
= = 2 2 2 _
— B[, — B ()l < o®>_ 5 >_F00) = ¢
NEK (Paris VI/CMAP) BSDEs Lect Il, Stability
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Uniform law of large numbers

Zy.n=(241,...,2Z,) aiid. sample of size n.

For G C {g : R? — [0, B]}, one needs to quantify

Pivg <G| " &(Z) ~Es(2)| >
i=1

as a function of e and n?

By Borel-Cantelli lemma, may lead to uniform laws of large
numbers :

1 n
sup |~ > g(Z) —Eg(Z)| = 0 as.
g6 N5

NEK (Paris VI/CMAP) BSDEs Lect Il, Stability
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e-cover of G

Definition. For a class of functions G and a given empirical measure u”
associated to n points Zy., = (Zy,...,Z,), we define a e-cover of G w.r.t.

Li(u") by a collection (gi,...,gn) in G such that
forany g € G, thereisaj € {1,...,N} sit. |g — gjlr,(un) < €.

Set Ni(e, G, Z1.,)=the simplest size N of e-cover of G w.r.t. Li(u").
Theorem. For G C {g : RY — [~B, B]}. For any n and any € > 0, one has

2

1< ne
Cl— ) — < IE Z n - .
P € D e(Z) - PE(@)] > ) < BEUNA(/8.0.Z1) 9l g
Theorem. If G = {-BV Y, axdk(.) A B : (a1,...,ax) € RK}, then
K+1
Fields Intitute, 7 avril 2010, 55 /
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R L simulations [Lewoe]
3.5 Applications to numerical solution of BSDEs using
empirical simulations [LGWO06]

Regular time grid with time step h = %—i—Lipschitz f, ®, bando.
Towards an approximation of the regression operators

Truncation of the tails using a threshold R = (R, ..., Ry) :
[AW, ]w = (—RoVh) V AW,k A (RoVh),
fR(t,x,y,z) = f(t,-RIVx1 ARL,...,—RqV x4 A Rq,y,2),
¢R(X) = q)(—R]_ VxiARy,...,—RgVxqg A Rd).

— Localized BSDEs

: N Ry Ny _ pR(xN
Define Y77 (Xy, ) = ®"(X,) and

Fields Intitute, 7 avril 2010, E;g/



Computations of the conditional expectations |mlr.|rat|_6|;s‘[l:(§|‘/v0—6]“— D

Proposition. For some Lipschitz functions yﬁl’R(o) and le’R(o), one has :

ZNR lIE(YN R[AWl,k]w|]:tk) = Z/ ).

/,tk teia Uk
N,R N,R
Y = BV R (e X YA I F) = ).

a) The Lipschitz constants of y, "% (e) and N=/2z)"R(e) are uniform in N and R.
b) Bounded functions : supn(|| yr"5(e) o +N"12 || 2% () [|o) = C. < 00

Proposition. (Convergence as |R| 1 oo) For h small enough, one has

max ]E|Yt'2”R Y’V2+hIEZ 1ZlR - Z]l)?

0<k<N
> N—
< CE|o(X[) — oR (X)) IAWklzlmvmsz)
. k=0
+ ChE Y |F(t, XY, Y ZB) — £R(u, XBL Y 2
k=0

Fields Intitute, 7 avril 2010, E;'(I)/
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Approximation of y,iV‘R(o) and z/(V’R(.)

Projection on a finite dimensional space :

N.R N,R
Y (®) ® agk-Pok(®), 7z (o) = ark-Pik(e).

(for instance, hypercubes as presented before).

Coefficients will be computed by extra M independent simulations of
(th,\(l)k and (AWy)k — {(Xt,,\(”m)k}m and {(AW/")«}m (only one set of
simulated paths).

In addition, we impose boundedness properties :

N,R,M M NRM, \ 1 M
Yo (9) = [ogk-Pok(®)ly, i (®) & [oqk-Pik(e)]z:

a A . A +_Fields ?ﬁ\it&li./ﬂavril 2010, 58 /
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Computations of the conditional expectations SintfETLENIREY7: N

The final algorithm

— Initialization : for k = N take yj, R (-) = ®R(.).

L

— Iteration : for k = N —1,--- ,0, solve the g least-squares problems :
M m
1 NRM( [AW/} ] N,my (2
a,k = argmf Z |yk+1 tk+1)T —Oé'Pl,k(th’m)|

Then compute ag/’k as the minimizer of

NRM N, N, N,R,M /N, N, N,
Z e M XM +hE R (b, X5y M (™), T P (XE ™)) = po s (X4,

NRM(.)_ NRM()

Then define y [aé?k “pok(®)ly. z/}

Error analysis

NEK (Paris VI/CMAP) BSDEs Lect Il, Stability
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Computations of the conditional expectations |mlr.|rat|-t;|;s‘[l:é|‘/\/0—6]‘

Robust error bounds
Theorem. Under Lipschitz conditions (only!), one has

N.RM(
max K| — Y

N,R
Y )
0<k<N e

C2|og ) o=
<c=—=") ZZEK,k+Ch

k=0 I=0

+C Z{igﬂmyﬁﬁ(sg —apox(SMP + Z{mf]E\\/_zN sy

2= Mh3 CC.(KM )3

= E[KM S K, | :
+C kz_; {E[Ky'k exp( 72C3K0Mk)eXp(C 0,k+1 log 3 )]

Mh? CC.Ro(KM)2
M 1,k
+ h]E[KI,k exp(—w) exp( CK07k+1 |Og T)]
3
+ exp(CHo.clog S5 exp(—155)]-
Fields Intitute, 7 avril 2010,
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Convergence of the parameters in the cases of HC functions

For a global squared error of order ¢ = % choose :

© Edge of the hypercube : § ~ %
@ Number of simulations : M ~ N3+29,

Available for a large class of models on X, which depend essentially
on L, bounds on the solution (no ellipticity condition, with or
without jump...).

Complexity/accuracy
Global complexity : C ~ ¢ wm

Techniques of local duplicating of paths : C ~ ¢ #ra

Fields lntitute., 7 avril 2010, 61 /
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Computations of the conditional expectations Numerical results (mainly due to J.P. Lemor)

3.6 Numerical results (mainly due to J.P. Lemor)

Ex.1 : bid-ask spread for interest rates

> Black-Scholes model and ®(S) = (St — K1)+ — 2(ST — K2)+.

> f(t,x,y,z) = —{yf-i-zH— (y— E)_(/‘-\)— I’)}, g =L~

g

o

i o r R T S | K1 | Ka
» Parameters :
0.05 | 0.2 | 0.01 | 0.06 | 0.25 | 100 | 95 | 105
N=56=5|N=20,d=1| N=50,6=0.5
M D = [60, 140] D = [60, 200] D = [60, 200]

128 3.05(0.27) 3.71(0.95) 3.69(4.15)

512 2.93(0.11) 3.14(0.16) 3.48(0.54)

2048 2.92(0.05) 3.00(0.03) 3.08(0.12)

8192 2.91(0.03) 2.96(0.02) 2.99(0.02)
a Fiehls Imxitmte) 7 avri

@)
NEK (Paris VI/CMAP)
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Numerical results (mainly due to J.P. Lemor)
Global polynomials (GP)

Polynomials of d variables with a maximal degree.

NEK (Paris VI/CMAP) BSDEs Lect Il, Stability

N=5 N =20 N =50 N =50

M d=14d,=0|d, =2 d,=1|d,=4,d,=2|d,=9,d, =
128 2.87(0.39) 3.01(0.24) 3.02(0.22) 3.49(1.57)
512 2.82(0.20) 2.94(0.12) 2.97(0.09) 3.02(0.1)
2048 2.78(0.07) 2.92(0.07) 2.92(0.0.04) 2.97(0.03)
8192 2.78(0.05) 2.92(0.04) 2.92(0.02) 2.96(0.01)
32768 2.79(0.03) 2.91(0.02) 2.91(0.01) 2.95(0.01)

Table: Results for the calls combination using GP.
Fields Intitute, 7 avril 2010, 936/
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Ex.2 : locally-risk minimizing strategies (FS decomposition)

Heston stochastic volatility models [Heath,Platen,Schweizer '02] :

dS:
—_— :’}/Ytzdt“‘ Ytth7 dYt ( C1Yt)dt+c2dBt
St Yt
8.5 T T T T T
— (5,10) 7
L (20,5 J
o (d0,25)
4\ - (80,1.25) 1
o — - (160,0.625) J
Ref Price
8 ~— —_— 1
. 3 i ]
Functions HC, 2 I
£ J
o S EE Lt B
parameters (N, ). 25k e -]
7 . . . L L — : . ]
. 0 llieu; Intitute, 7 avril 2010, 64 /
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American options via RBDSDEs : several approaches

1. Talking the max with obstacle — Bermuda options (lower

approximation)
Y = max(®(te, SI1), (YY), 1Fe) + hf (8, Si), Y, Z[1),

zN = l]E(Y’V

IR h tht1
2. Penalization. Obtained as the limit of standard BSDEs with driver
f(s,Ss, Ys, Zs) + M(Ys — ®(s,Ss))— with A 1 +o0.

AW, | Ft,)-

Lower approximation.
3. Regularization of the increasing process : when

d(b(t, St) - Utdt + thWt + dA;’—,

Fields Intitute, 7 avril 2010,
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Ex.3 : American options on tree assets

> Payoff g(x) = (K — (TT7y x)3) ™"

T | r o K J
» Black-Scholes parameters :

1 (0.05 | 0.4ld | 100 | 100

» Reference price 8.93 (PDE method).

NEK (Paris VI/CMAP) BSDEs Lect Il, Stability
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Functions HC(1,0) with
- ’,‘i‘,]n'p { local polynomials of degree
1for Y and O for Z.
Regularisation : N = 32,

Regularization

Price

] 0=9, =2
oF ] Max: N=44,6=1.
o = ]
L B Penalization : N = 60,

“ §=2 \=2.

Fields Intitute, 7 avril 2010, g‘(l)/
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Ex.4 : American options on ten assets

» d = 10 = 2p. Multidimensional Black-Scholes model :
d?st,‘-{ = (r — w)dt + o, dW,.
» Payoff : max(xy - - - X, — Xpt1 - - - X2p, 0).
» r =0, dividend rate u; = —0.05, yy=0for [ > 2. 0, = %.
T=05 5 =404, 1<i<p. Si=36d, p+1<i<2p.
» Reference price 4.896, obtained with a PDE method

[Villeneuve, Zanette 2002].
» Price with quantization algorithm : 4.9945
[Bally-Pages-Printemps 2005].

Fields Intitute, 7 avril 2010, gg/
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———— Max Price ;
8- Reference Price B
75k 3 .
1 i Functions HC(1,0).
g 6.5 —E MaX . N — 60, 6 — 06
¢ 1 Computational time :
551 B
£ 1 15 seconds.
o s. ‘10‘ 1. ‘105 :
number of simulations
Fields Intitute, 7 avril 2010, 69 /
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