Backward SDEs, Lecture II

Existence, Stability,and Numerical Methods

Coxeter Lectures, Fields Institute, Toronto

Nicole EL KAROUI

Paris VI University, Ecole Polytechnique, nicole.elkaroui@cmap.polytechnique.fr (with the financial support of the Fondation du risque,)

(1) Existence Results

(2) Reflected BSDEs

(3) Numerical methods
(4) Computations of the conditional expectations

Backward Stochastic Differential Equation

- Standard filtred probability space $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right), 0 \leq t \leq T, \mathbb{P}\right)$, supporting a standard $B M W \in \mathbb{R}^{n}$.
- A non anticipating coefficient $f(t, \omega, y, z)$ defined on $\left(\Omega \times \mathbb{R}^{+}, \mathbb{R}^{d} \times \mathbb{R}^{d \times n}\right)$, a terminal condition $\xi_{T} \in \mathcal{F}_{T}$

Definition of BSDE solution

A solution of $\operatorname{BSDE}\left(\mathrm{f}, \xi_{T}\right)$, is a par of non anticipating processes $(Y, Z) \in \mathbb{R}^{d} \times \mathbb{R}^{d \times n}$ such that

- $Y_{t}=\xi_{T}+\int_{t}^{T} f\left(s, Y_{s}, Z_{s}\right) d s-\int_{t}^{T} Z_{s} d W_{s}$,
- or equivalently $-d Y_{t}=f\left(t, Y_{t}, Z_{t}\right) d s-Z_{t} d W_{t}, \quad Y_{T}=\xi_{T}$
- with minimal integrability condition, $\int_{0}^{T}\left(\left|f\left(t, Y_{t}, Z_{t}\right)\right|+\left|Z_{t}\right|^{2}\right) d t<\infty$ a.s.
- Existence, Uniqueness? : in which spaces of processes,...
- Properties? : Stability, Comparison Theorem.....

Doob Inequalities

Notation for the running maximum : $\max |M|_{T}=\sup _{0, T}|M|_{S}$
Continuous Martingale : a priori estimates

- Doob inequalities:
$\mathbb{E}\left[\max |M|_{T}^{2}\right] \leq c \mathbb{E}\left[\left|M_{T}\right|^{2}\right] \leq C \mathbb{E}\left[\max |M|_{T}^{2}\right]$
Should be read in both directions ($A \leq B \leq C$)
- $B \Longrightarrow A$ is a Backward inequality
- $C \Longrightarrow B$ is a Forward inequality
- Burkholder, Davis Gundy inequalities Let $\langle M\rangle$ be the a quadratic variation of M, then for any $p>0$ $\mathbb{E}\left[\max |M|_{T}^{p}\right] \leq c_{p} \mathbb{E}\left[\left|M_{T}\right|^{p} / 2\right] \leq C_{p} \mathbb{E}\left[\max |M|_{T}^{p}\right]$

Representation Theorem

A priori Forward or Backward Estimates

Weighted \mathbb{H}_{T}^{2} space

- Forward \mathbb{H}_{c}^{2}, defined as \mathbb{H}_{T}^{2} with the semi-norm

$$
\|X\|_{c}^{2}=\max \left(e^{-2 c t} \mathbb{E}\left[\max |X|_{t}^{2}\right]\right)_{T}
$$

- Backward \mathbb{H}_{c}^{2}, defined as \mathbb{H}_{T}^{2} with the semi-norm

$$
\|X\|_{\beta}^{2}=\max \left(e^{2 \beta t} \mathbb{E}\left[\max |X|_{t}^{2}\right]\right)_{T}
$$

Estimates of $F_{t}^{T}=\int_{t}^{T} f_{s} d s$ a finite variation process.

- Forward

$$
\left|F_{t}^{T}\right|^{2}=\left|\int_{t}^{T} e^{s c / 2}\left(e^{-s c / 2} f_{s}\right) d s\right|^{2} \leq e^{c T} \frac{1}{c} \int_{t}^{T} e^{-c s}\left|f_{s}\right|^{2} d s
$$

- Backward

$$
\left|F_{t}^{T}\right|^{2}=\left|\int_{t}^{T} e^{-s \beta / 2}\left(e^{s \beta / 2} f_{s}\right) d s\right|^{2} \leq e^{-\beta t} \frac{1}{\beta} \int_{t}^{T} e^{s \beta}\left|f_{s}\right|^{2} d s
$$

Semimartingale Estimates

Let $x_{T}=x_{t}-\int_{t}^{T} f_{s} d s-\int_{t}^{T} \eta_{s} d W_{s}$ a ltô's semimartingale

- Forward

Since $x_{t}=x_{0}-\int_{0}^{t} f_{s} d s-\int_{0}^{t} \eta_{s} d W_{s}$, then

$$
\begin{aligned}
& \left|x_{t}\right| \leq\left|y_{0}\right|+\left|F_{0}^{t}\right|+\max |\eta . W| t \text {. By the Doob inequality, } \\
& e^{-c t} \mathbb{E}\left[\max |x|_{t}^{2}\right] \leq \mathbb{E}\left[e^{-c t}\left|x_{0}\right|^{2}+\frac{1}{c} \int_{0}^{t} e^{-c s}\left(\left|f_{s}\right|^{2}+\left|\eta_{s}\right|^{2}\right) d s\right] \\
& \|x\|_{c}^{2} \leq 2 \mathbb{E}\left[e^{-c T}\left|x_{0}\right|^{2}+\frac{1}{c} \int_{0}^{T} e^{-s c}\left(\left|f_{s}\right|^{2}+\left|\eta_{s}\right|^{2}\right) d s\right]
\end{aligned}
$$

- Backward

By Doob inequality, since $\left|x_{t}\right| \leq \mathbb{E}\left[\left|x_{T}\right|+\left|F_{t}\right| \mid \mathcal{F}_{t}\right]$, $e^{t \beta /}\left|x_{t}\right| \leq \mathbb{E}\left[\left.\left(e^{T \beta / 2}\left|x_{T}\right|+\frac{1}{\beta} \int_{t}^{T} e^{s \beta}\left|f_{s}\right|^{2} d s\right)^{1 / 2} \right\rvert\, \mathcal{F}_{t}\right]$

$$
\left\{\begin{aligned}
\|x\|_{\beta}^{2} & \leq 4 \mathbb{E}\left[e^{T \beta}\left|x_{T}\right|^{2}+\frac{1}{\beta} \int_{0}^{T} e^{s \beta}\left|f_{s}\right|^{2} d s\right] \\
\|\eta \cdot W\|_{\beta}^{2} & \leq K\left[\mathbb{E}\left[e^{T \beta}\left|x_{T}\right|^{2}+\frac{1}{\beta} \int_{0}^{T} e^{s \beta}\left|f_{s}\right|^{2} d s\right]\right.
\end{aligned}\right.
$$

Lipschitz Assumptions

Forward Assumptions

- $F\left(t,[x]_{t}\right)$, and $G\left(t,[x]_{t}\right)$ (path dependency) in \mathbb{L}^{2}
- Uniformly Lipschitz i.e, there exists $K>0$ s.t a.s

$$
\left|F\left(t,\left[x^{1}\right]_{t}\right)-F\left(t,\left[x^{2}\right]_{t}\right)\right|+\left|G\left(t,\left[x^{1}\right]_{t}\right)-G\left(t,\left[x^{2}\right]_{t}\right)\right| \leq K\left|\left[x_{1}-x_{2}\right]\right|
$$

Backward Assumptions

- Standard data (f, ξ) : $\int_{0}^{T}|f(t, 0,0)|^{2} d s, \xi \in \mathbb{L}^{2}$
- f is uniformly lipschitz, i.e., there exists $C>0$ s.t a.s

$$
\left|f\left(t, y_{1}, z_{1}\right)-f\left(t, y_{2}, z_{2}\right)\right| \leq C\left(\left|y_{1}-y_{2}\right|+\left|z_{1}-z_{2}\right|\right)
$$

Notations : given two coefficients f^{1}, f^{2},

- $\delta Y_{t}=Y_{t}^{1}-Y_{t}^{2}, \delta Z_{t}=Z_{t}^{1}-Z_{t}^{2}$
- $\delta_{2} f_{t}=f^{1}\left(t, y_{2}, z_{2}\right)-f^{2}\left(t, y_{2}, z_{2}\right), \delta_{2} F_{t}=\delta_{2} f_{t}\left(Y_{t}^{2}, Z_{t}^{2}\right)$

Solutions via Picard Approximations

- Forward Lipschitz SDE

$$
d X_{t}=
$$

$$
F\left(t,[X]_{t}\right) d t,+G\left(t,[X]_{t}\right) d W_{t}
$$

- General filtration
- Standard \mathbb{L}^{2} multi-dim data (X_{0}, F, G), uniformly Lipschitz.
- Existence and Uniqueness
- \exists a unique solution in \mathbb{H}_{T}^{2}
- Backward Lipschitz SDE $-d Y_{t}=f\left(t, Y_{t}, Z_{t}\right) d t,-Z_{t} \cdot d W_{t}$, $Y_{T}=\xi_{T}$
- Brownian Filtration
- Standard \mathbb{L}^{2} multi-dim data uniformly Lipschitz.
- Existence and Uniqueness
- \exists a unique pair $(Y, Z) \in \mathbb{H}^{2}$

In the both cases, the Picard sequence converges uniformly in the right \mathbb{H}_{T}^{2} space to the solution with an exponential speed. The estimates are uniform in the boundary conditions.

General Markovian Setting

Let X be a diffusion process on a general filtered probability space, and \mathcal{B}_{e} be the σ - field on \mathbb{R}^{n} generated by $\mathbb{E} \int_{t}^{T} \phi\left(s, X_{s}^{t, x}\right) d s$ where ϕ is a continuous bounded. Let $(f, \Psi) \in \mathcal{B}_{e}$ be squared integrable $\left(\mathbb{E} \int_{0}^{T} f^{2}\left(s, X_{s}^{t, x}\right) d s<+\infty ; \mathbb{E}\left[\Psi^{2}\left(X_{T}^{t, x}\right)\right]<+\infty,\right)$

- Markovian representation of the solution[CJPS]

The semimartingale $Y_{s}^{t, x}=\mathbb{E}\left[\Psi\left(X_{T}^{t, x}\right)+\int_{s}^{T} f\left(r, X_{r}^{t, x}\right) d r \mid \mathcal{F}_{s}\right]$ admits a continuous version given by $u\left(s, X_{s}^{t, x}\right)$ with $u(t, x)=Y_{t}^{t, x} \in \mathcal{B}_{e}$

- Markovian representation of the martingale Moreover, $u(t, x)+\int_{t}^{s} f\left(r, X_{r}^{t, x}\right) d r+Y_{s}^{t, x}=U_{s}^{t, x}$ is an additive martingale with the following representation depending on $d(t, x) \in \mathcal{B}_{e}$,

$$
U_{s}^{t, x}=\int_{t}^{s} \underbrace{d\left(r, X_{r}^{t, x}\right)^{*} \sigma\left(r, X_{r}^{t, x}\right)}_{Z_{r}^{t, x_{*}}} d W_{r} ; t \leq s
$$

Markovian BSDEs

Let X be a diffusion process and the associated BSDE:
$-d Y_{s}=f\left(s, X_{s}^{t, x}, Y_{s}, Z_{s}\right) d s-Z_{s}^{*} d W_{s}, \quad Y_{T}=\Psi\left(X_{T}^{t, x}\right)$

- General setting : Thanks to Picard approximates, there exists $u(t, x), d(t, x) \in \mathcal{B}_{e}$ such that $Y_{s}=u\left(s, X_{s}^{t, x}\right), Z_{s}=d\left(s, X_{s}^{t, x}\right)^{*} \sigma\left(s, X_{s}^{t, x}\right)$.
- PDE solution in one dimensional case

Let \mathcal{L}^{X} the elliptic operator associated with the diffusion X.
Then, under mild regularity assumptions, u is a viscosity solution of the HJB Type PDE
$\left\{\begin{aligned} \partial_{t} u(t, x) & +\mathcal{L} v(t, x)+f\left(t, x, u(t, x), \partial_{x} u(t, x) \sigma(t, x)\right)=0 \\ u(T, x) & =\Psi(x) .\end{aligned}\right.$
Then, $d(t, x)$ plays the role of $\partial_{x} u$ the gradiant of u. proof is provided by the strict comparison theorem.

Linear growth assumption, $d=1$

For simplicity, we assume that $f(t, 0,0)=0$ Linear growth : $|f(t, y, z)| \leq g_{\mu}(y, z)=a|y|+\mu|z| S$ Let \bar{Y}^{μ} the solution of the Lipschitz BSDE with coefficient g_{μ} and \underline{Y}^{μ} the process $-\bar{Y}^{\mu}\left(-\xi_{T}\right)$. Uniform bounds

Then any square integrable solution (Y, Z) of $\operatorname{BSDE}(f)$ with linear growth satisfies

$$
\underline{Y}^{\mu} \leq Y \leq \bar{Y}^{\mu}
$$

Lepeltier,San Martin,'97
There exists a minimal (a maximal)solution to the BSDE with GL continuous coefficient.

General methodology

The different steps of the proof are the following

- Use a monotone Lipschitz regularisation f^{n} of f, with same linear growth
- Show that the solutions $\left(Y^{n}, Z^{n}\right)$ are bounded in L^{2}, $\mathbb{E}\left[\int_{0}^{T}\left|Z_{s}\right|^{2} d s\right] \leq C$
- Show the control of $\mathbb{E}\left[\int_{0}^{T}\left|\delta^{i, j} Z_{s}\right|^{2} d s\right]$ by $\left(\mathbb{E}\left[\int_{0}^{T}\left|\delta^{i, j} Y_{s}\right|^{2} d s\right]\right)^{1 / 2}$
- Use the motonocity of the sequence Y^{n} and the previuos estimates to show that Z^{n} converges strongly in \mathbb{H}^{2} to Z, and so Y^{n} converges uniformly to Y
- The last step uses the property of the approximating seauence to show that $f^{n}\left(t, Y^{n}, Z^{n}\right)$ also converges to $f(t, Y, Z)$

Sketch of the proof

Regularisation by inf convolution
$f^{n}(x)=\inf _{y \in \mathbb{R}^{p}}\{f(y)+n|x-y|\}$ is well defined for
$n \geq \sup (a, \mu)=K$
Key inequality Denote by $Y^{i, j}=\delta^{i, j} Y$ the difference between Y^{i} and Y^{j}.

By Itos formula

$$
\left|Y^{i, j}\right|_{t}^{2}+\int_{t}^{T}\left|Z^{i, j}\right|_{s}^{2} d s \mathbb{E}_{t}\left[\int_{t}^{T}\left|Z_{s}\right|^{2} d s\right]
$$

Reflected BSDEs around a regular obstacle

How to maintain a BSDE solution above a given regular obstacle?
Assume $d O_{t}=U_{t} d t+V_{t} d W_{t}$
. Let (Y, Z) a solution of $\operatorname{BSDE}\left(f, \xi_{T}\right)$
By comparison theorem, if $\xi_{T} \geq O_{T}$, and $f\left(t, O_{t}, V_{t}\right)+U_{t} \geq 0$, then $Y_{t} \geq O_{t} \forall t$

The idea is to push the solution above O_{t} by adding some "cash", when you need, $f\left(t, O_{t}, V_{t}\right)+U_{t} \leq 0$, in a minimal way. Working with $Y_{t}-O_{t}$, the problem may be rewritten as to push a solution of BSDE above 0 .

Definition of Reflected BSDE Above 0

$$
\left\{\begin{array}{l}
Y_{t}=\Phi+\int_{t}^{T} f\left(s, Y_{s}, Z_{s}\right) d s+\mathrm{K}_{\mathrm{T}}-\mathrm{K}_{\mathbf{t}}-\int_{t}^{T} Z_{s} d W_{s} \\
\mathrm{Y}_{\mathbf{t}} \geq \mathrm{O}_{\mathbf{t}} \\
K \text { is continuous, increasing, } K_{0}=0 \text { and } \int_{0}^{T} Y_{t} d K_{t}=0
\end{array}\right.
$$

The above observation suggests to be looking for a process K absolutely continuous w.r. to $f(t, 0,0)^{-} d t$,

$$
d K_{t}=\alpha_{t} \mathbf{1}_{\left\{Y_{t}=0\right\}} f(t, 0,0)^{-} d t, \alpha_{t} \in[0,1]
$$

Transformation of the problem

The problem is now expressed in terms of α_{t}.

Regularization

Let ϕ^{n} a Lipschitz regularization of $\mathbf{1}_{\{y=0\}}$, bounded by 1 , and decreasing.

- By the same method that above, one show the same properties holds true, for the BSDEs with $f^{n}=f+\phi^{n}(y) \bullet$ to show that the sequence Y^{n} converges uniformly, and Z^{n} strongly in L^{2} to a pair (Y, Z), with $Y \geq 0$.
- The only small difficulty is to show that $d K_{t}^{n}$ converges to a solution with support $\left\{Y_{t}=0\right\}$

Applications to optimal stopping problems

General obstacle Lower bound. For any stopping time $\tau \in \mathcal{T}_{t, T}$, one has

$$
\begin{aligned}
Y_{t} & =\mathbb{E}\left(Y_{t}+\int_{t}^{T} f\left(s, Y_{s}, Z_{s}\right) d s+K_{\tau}-K_{t}-\int_{t}^{T} Z_{s} d W_{s} \mid \mathcal{F}_{t}\right) \\
& \geq \mathbb{E}\left(O_{t} \mathbf{1}_{\tau<T}+\Phi \mathbf{1}_{\tau=T}+\int_{t}^{\tau} f\left(s, Y_{s}, Z_{s}\right) d s \mid \mathcal{F}_{t}\right)
\end{aligned}
$$

which implies

$$
\mathbf{Y}_{\mathbf{t}} \geq \underset{\tau \in \mathcal{T}_{\mathbf{t}, \boldsymbol{T}}}{\operatorname{ess}} \sup \mathbb{E}\left(\mathbf{O}_{\tau} \mathbf{1}_{\tau<\mathbf{T}}+{ }^{-} \mathbf{1}_{\tau=\mathbf{T}}+\int_{\mathbf{t}}^{\tau} \mathbf{f}\left(\mathbf{s}, \mathbf{Y}_{\mathbf{s}}, \mathbf{Z}_{\mathbf{s}}\right) \mathrm{ds} \mid \mathcal{F}_{\mathbf{t}}\right) .
$$

Equality. The equality holds for $\tau^{*}=\inf \left\{u \in[t, T]: Y_{u}=O_{u}\right\} \wedge T$.

Numerical Point of view

New interest for these kind with the swing options, the real options.
\Longrightarrow The regular obstacle method is very interesting for numerical methods since

- it gives an upper approximation (the penalisation app. gives a lower bound).
- the bounds on the approximated driver depends less on n than for the penalisation scheme.
- No available estimates on the rate of convergence w.r.t. n.
- Thanks to Emmanuel Gobet to allows me to use its beautiful presentation of the numerical aspect of BSDEs
- The complete presentation may be find on the following site :
- http ://www.cmap.polytechnique.fr ?euroschoolmathfi09

Then, go to minicours
Find the slides of E.Gobet and J.Ma on BSDEs

Our aim :

- to simulate Y and Z
- to estimate the error, in order to tune finely the convergence parameters.

Quite intricate and demanding since

- it is a non-linear problem (the current process dynamics depen on the future evolution of the solution).
- it involves various deterministic and probabilistic tools (also from statistics).
- the estimation of the convergence rate is not easy because of the non-linearity, of the loss of independance (mixing of independent simulations).

Strong approximation.

$\left(X_{t}^{N}\right)_{0 \leq t \leq T}$ is a strong approximation of $\left(X_{t}\right)_{0 \leq t \leq T}$ if

$$
\sup _{t<T}\left\|X_{t}^{N}-X_{t}\right\|_{\mathbb{L}_{p}} \rightarrow 0\left(\text { or }\left\|\sup _{t<T}\left|X_{t}^{N}-X_{t}\right|\right\|_{\mathbb{L}_{p}} \rightarrow 0\right) \text { as } N \text { goes to } \infty .
$$

Weak approximation. For any test function (smooth or non smooth), one has

$$
\mathbb{E}\left[f\left(X_{T}^{N}\right)\right]-\mathbb{E}\left[f\left(X_{T}\right)\right] \rightarrow 0 \text { as } N \text { goes to } \infty
$$

Examples.

Approximation of SDE : $X_{t}=x+\int_{0}^{t} b\left(s, X_{s}\right) d s+\int_{0}^{t} \sigma\left(s, X_{s}\right) d W_{s}$.

Time discretization using Euler scheme. Define $t_{k}=k \frac{T}{N}=k h$.

$$
X_{0}^{N}=x, X_{t_{k+1}}^{N}=X_{t_{k}}^{N}+b\left(t_{k}, X_{t_{k}}^{N}\right) h+\sigma\left(t_{k}, X_{t_{k}}^{N}\right)\left(W_{t_{k+1}}-W_{t_{k}}\right) .
$$

The simplest scheme to use. Converges at rate $\frac{1}{2}$ for strong approximation and 1 for weak approximation.

Milshtein scheme (not available for arbitrary σ) : rate 1 for both strong and weak approximations.

The BSDE case

We focus mainly on Markovian BSDE :

$$
Y_{t}=\Phi\left(X_{T}\right)+\int_{t}^{T} f\left(s, X_{s}, Y_{s}, Z_{s}\right) d s-\int_{t}^{T} Z_{s} d W_{s} \text {, where } X \text { is a }
$$ forward SDE. We know that $Y_{t}=u\left(t, X_{t}\right)$ and $Z_{t}=\nabla_{x} u\left(t, X_{t}\right) \sigma\left(t, X_{t}\right)$, where u solves a semi-linear PDE \Longrightarrow to approximate Y, Z, we need to approximate the function $u(\cdot)$, the gradiant of u and the process X

- $Y_{t}^{N}=u^{N}\left(t, X_{t}^{N}\right)$,
- in practice, X^{N} is always random,
- although u is deterministic, u^{N} may be random (e.g. Monte Carlo approximations) : the randomness may come from two different objects.

Formal error analysis

$$
\begin{aligned}
\mathbb{E}\left|Y_{t}^{N}-Y_{t}\right| & \leq \mathbb{E}\left|u^{N}\left(t, X_{t}^{N}\right)-u\left(t, X_{t}^{N}\right)\right|+\mathbb{E}\left|u\left(t, X_{t}^{N}\right)-u\left(t, X_{t}\right)\right| \\
& \leq\left|u^{N}(t, \cdot)-u(t, \cdot)\right|_{\mathbb{L}_{\infty}}+\|\nabla u\|_{\mathbb{L}_{\infty}} \mathbb{E}\left|X_{t}^{N}-X_{t}\right| .
\end{aligned}
$$

Two source of error :

- strong error related to $\mathbb{E}\left|X_{t}^{N}-X_{t}\right|$.

For the Euler scheme $\mathbb{E}\left|X_{t}^{N}-X_{t}\right|=O\left(N^{-1 / 2}\right)$.

- weak error related to $\left|u^{N}(t, \cdot)-u(t, \cdot)\right|_{\mathbb{L}_{\infty}}$. Indeed, to see that this is a weak-type error, take $f \equiv 0$, $u(t, x)=\mathbb{E}\left[\Phi\left(X_{T}\right) \mid X_{t}=x\right]$, and the Euler scheme to approximate the conditional law of X_{T} : from [BT96], one knows

The grid

Time grid :

$$
\pi=\left\{0=t_{0}<\cdots<t_{i}<\cdots<t_{N}=T\right\}
$$

with non uniform time step : $|\pi|=\max _{i}\left(t_{i+1}-t_{i}\right)$.
We write $\Delta t_{i}=t_{i+1}-t_{i}$ and $\Delta W_{t_{i}}=W_{t_{i+1}}-W_{t_{i}}$.

Heuristic derivation

From $Y_{t_{i}}=Y_{t_{i+1}}+\int_{t_{i}}^{t_{i+1}} f\left(s, X_{s}, Y_{s}, Z_{s}\right) d s-\int_{t_{i}}^{t_{i+1}} Z_{s} d W_{s}$, we derive

$$
\begin{aligned}
Y_{t_{i}} & =\mathbb{E}\left[Y_{t_{i+1}}+\int_{t_{i}}^{t_{i+1}} f\left(s, X_{s}, Y_{s}, Z_{s}\right) d s \mid \mathcal{F}_{t_{i}}\right], \\
\mathbb{E}\left[\int_{t_{i}}^{t_{i+1}} Z_{s} d s \mid \mathcal{F}_{t_{i}}\right] & =\mathbb{E}\left[\left(Y_{t_{i+1}}+\int_{t_{i}}^{t_{i+1}} f\left(s, X_{s}, Y_{s}, Z_{s}\right) d s\right) \Delta W_{t_{i}}^{*} \mid \mathcal{F}_{t_{i}}\right]
\end{aligned}
$$

Discrete backward iteration.

The scheme is of explicit type.

Implicit scheme

More closely related to the idea of discret BSDE.

$$
\left(Y_{t_{\mathrm{i}}}^{N}, Z_{\mathrm{t}_{\mathrm{i}}}^{N}\right)=\arg \min _{(Y, Z) \in \mathbb{L}_{2}\left(\mathcal{F}_{\mathrm{t}_{\mathrm{i}}}\right)} \mathbb{E}\left[\mathrm{Y}_{\mathrm{t}_{\mathrm{i}+1}}^{N}+{ }^{\prime} \mathrm{t}_{\mathrm{i}} \mathrm{f}\left(\mathrm{t}_{\mathrm{i}}, X_{\mathrm{t}_{\mathrm{i}}}^{N}, \mathrm{Y}, \mathrm{Z}\right)-\mathrm{Y}-\mathrm{Z}^{\prime} \mathrm{W}_{\mathrm{t}_{\mathrm{i}}}\right]^{2},
$$

with $Y_{t_{N}}^{N}=\Phi\left(X_{t_{N}}^{N}\right)$.

$$
\rightarrow\left\{\begin{array}{l}
Z_{\mathbf{t}_{\mathbf{i}}}^{N}=\frac{1}{\mathbf{t}_{\mathbf{i}}} \mathbb{E}\left[\mathbf{Y}_{\mathbf{t}_{\mathrm{i}+1}}^{N} \mathbf{W}_{\mathbf{t}_{\mathbf{i}}}^{*} \mid \mathcal{F}_{t_{i}}\right], \\
\mathbf{Y}_{\mathbf{t}_{\mathbf{i}}}^{N}=\mathbb{E}\left[\mathbf{Y}_{\mathbf{t}_{\mathbf{i}+1}}^{N} \mid \mathcal{F}_{t_{i}}\right]+{ }^{\prime} \mathbf{t}_{\mathbf{i}} \mathbf{f}\left(\mathbf{t}_{\mathbf{i}}, \mathbf{X}_{\mathbf{t}_{\mathbf{i}}}^{N}, \mathbf{Y}_{\mathbf{t}_{\mathbf{i}}}^{N}, \mathbf{Z}_{\mathbf{t}_{\mathbf{i}}}^{N}\right)
\end{array}\right.
$$

Needs a Picard iteration procedure to compute $Y_{t_{i}}^{N}$.
Well defined for $|\pi|$ small enough (f Lipschitz).

Define the measure of the squared error

$$
\mathcal{E}\left(Y^{N}-Y, Z^{N}-Z\right)=\max _{0 \leq \leq \leq} \mathbb{E}\left|Y_{t_{i}}^{N}-Y_{t_{i}}\right|^{2}+\sum_{i=0}^{N-1} \int_{t_{i}}^{t_{i+1}} \mathbb{E}\left|Z_{t_{i}}^{N}-Z_{t}\right|^{2} d t .
$$

Theorem. For a Lipschitz driver w.r.t. (x, y, z) and $\frac{1}{2}$-Holder w.r.t. t, one has

$$
\begin{array}{r}
\mathcal{E}\left(Y^{N}-Y, Z^{N}-Z\right) \leq C\left(\mathbb{E}\left|\Phi\left(X_{T}^{N}\right)-\Phi\left(X_{T}\right)\right|^{2}+\sup _{i \leq N} \mathbb{E}\left|X_{t_{i}}^{N}-X_{t_{i}}\right|^{2}\right. \\
\left.+|\pi|+\sum_{i=0}^{N-1} \int_{t_{i}}^{t_{i+1}} \mathbb{E}\left|Z_{t}-\bar{Z}_{t_{i}}\right|^{2} d t\right) .
\end{array}
$$

where ${\overline{Z_{t}}}=\frac{1}{\Delta t_{i}} \mathbb{E}\left(\int_{t_{i}}^{t_{i+1}} Z_{s} d s \mid \mathcal{F}_{t_{i}}\right)$

Error Analysis

\rightarrow Different error contributions :

- Strong approximation of the forward SDE (depends on the forward scheme and not on the BSDE-problem)
- Strong approximation of the terminal conditions (depends on the forward scheme and on the BSDE-data Φ)
- L^{2}-regularity of Z (intrinsic to the BSDE-problem).

Diffusion approximation

The easy part : using the Euler scheme

- $\sup _{i \leq N}\left|X_{t_{i}}^{N}-X_{t_{i}}\right|_{\mathbb{L}_{2}}=O\left(N^{-1 / 2}\right)$.
- If σ does not depend on x, rate $O\left(N^{-1}\right)$.
- Overwise, Milshtein scheme to get N^{-1}-rate.

Strong approximation of the terminal condition

- If Φ Lipschitz, then $\mathbb{E}\left|\Phi\left(X_{T}^{N}\right)-\Phi\left(X_{T}\right)\right|^{2} \leq L_{\Phi}^{2} \mathbb{E}\left|X_{T}^{N}-X_{T}\right|^{2}$.
- New result if Φ is irregular, using the approximation theory Some results of Avikainen [Avi09] for discontinuous function $\Phi(x)=1_{x \leq a}$.
- Possible generalization to functions with bounded variation [Avikainen '09]
- For intermediare regularity functions, open questions.
$\mathcal{E}^{Z}(\pi)=\sum_{i=0}^{N-1} \int_{t_{i}}^{t_{i+1}} \mathbb{E}\left|Z_{t_{i}}^{N}-Z_{t}\right|^{2} d t$. Theorem. [Convergence to 0]
Theorem. [Ma, Zhang '02 '04]
Assume a Lipschitz driver f and a Lipschitz terminal condition Φ.
Then Z is a continous process and $\mathcal{E}^{Z}(\pi)=O(|\pi|)$ for any time-grid π.

No ellipticity assumption.
Key fact : Z can be represented via a linear BSDE!! It is proved using the Malliavin calculus representation of Z component.

The basics of Malliavin calculus :

Sensitivity of Wiener functionals w.r.t. the BM
For $\xi=\xi\left(W_{t}: t \geq 0\right)$, its Malliavin derivative $\left(\mathcal{D}_{t} \xi\right)_{t \geq 0}$
$\in \mathbb{L}_{2}\left(\mathbb{R}^{+} \times \Omega, d t \otimes d \mathbb{P}\right)$ is defined as

$$
" \mathcal{D}_{\mathbf{t}} \xi=\partial_{\mathrm{dw}} \xi\left(\mathbf{W}_{\mathbf{t}}: \mathbf{t} \geq 0\right) . "
$$

Basic rules.

- If $\xi=\int_{0}^{T} h_{t} d W_{t}$ with $h \in \mathbb{L}_{2}\left(\mathbb{R}^{+}\right), \mathcal{D}_{t} \xi=h_{t} \mathbf{1}_{t \leq T}$.
- For smooth random variables $X=g\left(\int_{0}^{T} h_{t}^{1} d W_{t}, \ldots, \int_{0}^{T} h_{t}^{n} d W_{t}\right)$,

$$
\mathcal{D}_{t} X=\sum_{i=1}^{n} \partial_{i} g(\ldots) h_{t}^{i} \mathbf{1}_{t \leq T} .
$$

- Duality relation with adjoint operator \mathcal{D}^{*} :

Malliavin derivatives of (Y, Z) for smooth data

Theorem.
If $Y_{t}=\Phi\left(X_{T}\right)+\int_{t}^{T} f\left(s, X_{s}, Y_{s}, Z_{s}\right) d s-\int_{t}^{T} Z_{s} d W_{s}$, then for $\theta \leq t \leq T$
$\mathcal{D}_{\theta} Y_{t}=\Phi^{\prime}\left(X_{T}\right) \mathcal{D}_{\theta} X_{T}+\int_{t}^{T}\left[f_{x}^{\prime}\left(s, X_{s}, Y_{s}, Z_{s}\right) \mathcal{D}_{\theta} X_{s}\right.$
$\left.+f_{y}^{\prime}\left(s, X_{s}, Y_{s}, Z_{s}\right) \mathcal{D}_{\theta} Y_{s}+f_{z}^{\prime}\left(s, X_{s}, Y_{s}, Z_{s}\right) \mathcal{D}_{\theta} Z_{s}\right] d s-\int_{t}^{T} \mathcal{D}_{\theta} Z_{s} d W_{s}$
$\Longrightarrow\left(\mathcal{D}_{\theta} Y_{t}, \mathcal{D}_{\theta} Z_{t}\right)_{t \in[0, T]}$ solves a linear BSDE (for fixed θ).

In addition :

- Viewing the BSDE as FSDE, one has $Z_{t}=\mathcal{D}_{\mathrm{t}} \mathrm{Y}_{\mathrm{t}}$.
- Due to $\mathcal{D}_{\theta} \mathbf{X}_{\mathrm{t}}=\nabla \mathbf{X}_{\mathrm{t}}\left[\nabla \mathbf{X}_{\theta}\right]^{-1} \sigma\left(\theta, \mathbf{X}_{\theta}\right)$, we get

$$
\left(\mathcal{D}_{\theta} \mathbf{Y}_{\mathbf{t}}, \mathcal{D}_{\theta} \mathbf{Z}_{\mathbf{t}}\right)=\left(\nabla \mathbf{Y}_{\mathbf{t}}\left[\nabla \mathbf{X}_{\theta}\right]^{-1} \sigma\left(\theta, \mathbf{X}_{\theta}\right), \nabla \mathbf{Z}_{\mathbf{t}}\left[\nabla \mathbf{X}_{\theta}\right]^{-1} \sigma\left(\theta, \mathbf{X}_{\theta}\right)\right),
$$

where

$$
\begin{aligned}
& \nabla Y_{t}=\Phi^{\prime}\left(X_{T}\right) \nabla X_{T}+\int_{t}^{T}\left[f_{x}^{\prime}\left(s, X_{s}, Y_{s}, Z_{s}\right) \nabla X_{s}\right. \\
& \left.\quad+f_{y}^{\prime}\left(s, X_{s}, Y_{s}, Z_{s}\right) \nabla Y_{s}+f_{z}^{\prime}\left(s, X_{s}, Y_{s}, Z_{s}\right) \nabla Z_{s}\right] d s-\int_{t}^{T} \nabla Z_{s} d W_{s} .
\end{aligned}
$$

The explicit representation of the LBSDE yields [Ma, Zhang '02]

$$
Z_{t}=\nabla Y_{t}\left[\nabla X_{t}\right]^{-1} \sigma\left(t, X_{t}\right)
$$

Z-regularity

$\sum_{i=0}^{N-1} \int_{t_{i}}^{t_{i+1}} \mathbb{E}\left|Z_{t}-{\overline{t_{t}}}^{2}\right|^{2} d t$
Following from this representation, to Ito-decomposition of Z contains :

- an absolutely continuous part (in $d t$) \rightarrow easy to handle.
- a martingale part M (in $d W_{t}$) :

$$
\sum_{i=0}^{N-1} \int_{t_{i}}^{t_{i+1}} \mathbb{E}\left|M_{t}-\bar{M}_{t_{i}}\right|^{2} d t \leq|\pi| \mathbb{E}\left(M_{T}^{2}-M_{0}^{2}\right)!!
$$

Possible extensions to \mathbb{L}_{∞}-functionals [Zhang '04], to jumps [Bouchard, Elie '08], to RBSDE [Bouchard, Chassagneux '06], to BSDF with random torminal timn [Rourhard NAeldstntitarei t' Qail2010,

Other methods :Gobet and alii

- The case of irregular function $\Phi\left(X_{T}\right)$, with strict ellipticity
- Error expansion for smooth data and uniform grid [G.,Labart '07]
- Resolution by Picard's iteration, as limit of linear BSDE : [Bender, Denk '07]; [G.,Labart '09] with adaptive control variates. Smaller errors propagation compared to the dynamic programming equation.

Computations of the conditional expectations

Our objective : to implement the dynamic programming equation $=$ to compute the conditional expectations \rightarrow the crucial step!!

Different points of view :

- the conditional expectation is a projection operator: if $Y \in \mathbb{L}_{2}$, then

$$
\mathbb{E}(Y \mid X)=\operatorname{Arg} \min _{m \in \mathbb{L}_{2}\left(\mathbb{P}^{X}\right)} \mathbb{E}(Y-m(X))^{2}
$$

\rightarrow this is a least-squares problem. What for?

- To simulate the random variable $m(X)$? one only needs its law.
- To compute the regression function m ? finding a function of dimension $=\operatorname{dim}(X) \rightarrow$ curse of dimensionality.
- How many regression function to compute?

Answer. For the DPE of BSDEs, N regression functions and $N \rightarrow \infty$.
$\left\{\begin{array}{l}v^{N}\left(t_{i}, x\right)=\frac{1}{\Delta t_{i}} \mathbb{E}\left(u^{N}\left(t_{i+1}, X_{t_{i+1}}^{N}\right) \Delta W_{t_{i}}^{N}=x\right), \\ u^{N}\left(t_{i}, x\right)=\mathbb{E}\left(u^{N}\left(t_{i+1}, X_{t_{i+1}}^{N}\right)+\Delta t_{i} f\left(t_{i}, x, u^{N}\left(t_{i+1}, X_{t_{i+1}}^{N}\right), v^{N}\left(t_{i+1}, x\right) \mid X_{t_{i}}^{N}=x\right.\right. \\ u^{N}(T, x)=\Phi(x) .\end{array}\right.$

- In which points $X \in \mathbb{R}^{d}$?

Answer. Potentially, many ...

All is a question of global efficiency $=$ balance between accuracy and computational cost

Markovian setting

Based on $\mathbb{E}\left(g\left(X_{t_{i+1}}\right) \mid X_{t_{i}}\right)=\int g(x) \mathbb{P}_{X_{t_{i+1}} \mid X_{t_{i}}}(d x)=m\left(X_{t_{i}}\right)$.
If $m($.$) are required at only few values of X_{t_{i}}=x_{1}, \ldots, x_{n}$:

- one can simulate M independant paths of $X_{t_{i+1}}$ starting from $X_{t_{i}}=x_{1}, \ldots, x_{n}$ and average them out (usual Monte Carlo procedures).
- but if needed for many i, exponentially growing tree!!

How to put constraints on the complexity?

One possibility for one-dimensional BM (or Geometric BM) : replace the

3.2 Representation of conditional expectation
 using Malliavin calculus

[Fournié, Lasry, Lebuchoux, Lions '01 ; Bouchard, Touzi '04; Bally, Caramellino, Zanette '05 ...]

Theorem. [integration by parts formula] Suppose that for any smooth f, one has

$$
\mathbb{E}\left(f^{k}(F) G\right)=\mathbb{E}\left(f(F) H_{k}(F, G)\right)
$$

for some r.v. $H_{k}(F, G)$, depending on F, G, on the multi-index k but not on f.
Then, one has

$$
\mathbb{E}(G \mid F=x)=\frac{\mathbb{E}\left(\mathbf{1}_{F_{1} \leq x_{1}, \ldots, F_{d} \leq x_{d}} H_{1, \ldots, 1}(F, G)\right)}{\mathbb{E}\left(\mathbf{1}_{F_{1} \leq x_{1}, \ldots, F_{d} \leq x_{d}} H_{1, \ldots, 1}(F, 1)\right)} .
$$

Formal proof $(\mathbf{d}=1)$:

- The H are obtained using Malliavin calculus, or a direct integration by parts when densities are known.
- Actually, we look for $H(F, G)=G \tilde{H}(F, G)$. Representation with factorization not so immediate to obtain (possible for SDE).
- In practice, large variance \rightarrow need some extra localization procedures.
- For non trivial dynamics, the computational time needed to simulate H may be high.
- For BSDEs, available rates of convergence w.r.t. N and M [Bouchard, Touzi '04] using N independent set of simulated paths.

Statistical regression model : $Y=m(X)+\epsilon$, with $\mathbb{E}[\epsilon \mid X]=0$.
X is called the (random) design.
Large literature on statistical tools to approximate $\mathbb{E}[Y \mid X]$.
References [Hardle '92; Bosq, Lecoutre '87; Gyorfi, Kohler, Krzyzak, Walk '02]

Problem : compute $m(\cdot)$ using M independent (?) samples $\left(Y_{i}, X_{i}\right)_{1 \leq i \leq M}$.

Usually estimation errors in the literature are not sufficient for our purpose :

- the law X may not have a density w.r.t. Lebesgue measure.
- the support of the law of the X is never bounded!!

Discussions of non parametric regression tools

from theoretical/practical points of view

3.3.1. Kernel estimators

$$
\mathbb{E}[Y \mid W=x] \approx \frac{\frac{1}{h^{d}} \sum_{i=1}^{M} K\left(\frac{x-X_{i}}{h}\right) Y_{i}}{\frac{1}{h^{d}} \sum_{i=1}^{M} K\left(\frac{x-x_{i}}{h}\right)}=m_{M, h}(x) \text {, where }
$$

- the kernel function is defined on the compact support $[-1,1]$, bounded, even, non-negative, C_{p}^{2} and $\int_{\mathbb{R}^{d}} K(u) d u=1$,
- $h>0$ is the bandwith.

Non-integrated \mathbb{L}_{2}-error estimates available.

3.3.1. Projection on a set of functions

Set of functions : $\left(\phi_{k}\right)_{0 \leq k \leq k}$.
$\mathbb{E}(Y \mid X)=\arg \min _{g} \mathbb{E}(Y-g(X))^{2} \approx \arg \min _{\sum_{k=1}^{K} \alpha_{k} \phi_{k}(\cdot)}\left(Y-\sum_{k=1}^{K} \alpha_{k} \phi_{k}(X)\right)^{2}$.
Computations of the optimal coefficients $\left(\alpha_{k}\right)_{k}$: it solves the normal equation
$A \alpha=\mathbb{E}(Y \phi)$, where $A_{i, j}=\mathbb{E}\left(\phi_{i}(X) \phi_{j}(X)\right),[\mathbb{E}(Y \phi)]_{i}=\mathbb{E}\left(Y \phi_{i}(X)\right)$.

- For simplisity, one should have a system of orthonormal functions (w.r.t the law of X).
- If the system is not orthonormal, one should compute A and invert it. Its dimensions is expected to be very large : $K \rightarrow \infty$ to ensure convergent approximations.

Presumably big instabilities (ill-conditioned matrix) to solve this least-squares problem [Golub, Van Loan '96].

- In practice, A is computed using simulations, as well $\mathbb{E}[Y \phi]$.

Equivalent to solve the empirical least-squares problem :

$$
\left(\alpha_{k}^{M}\right)_{k}=\arg \min _{\alpha} \frac{1}{M} \sum_{m=1}^{M}\left(Y^{m}-\sum_{k=1}^{K} \alpha_{k} \phi_{k}\left(X^{m}\right)\right)^{2}
$$

CLT At fixed K, if A is invertible, one has $\lim _{M \rightarrow \infty} \sqrt{M}\left(\alpha^{M}-\alpha\right)=\mathcal{N}(0, \ldots)$.

The case of polynomial functions

- Popular choice.
- Smooth approximation.
- Global approximation : within few polynomials, a smooth $m($. can be very well approximated.
- But show convergence for non smooth functions (non-linear BSDEs may lead non-smooth functions).
- Do projections on polynomials converge to $m($.$) ?$ $\oplus_{k \geq 0}(P)_{k}(X)=\mathbb{L}_{2}(X)$? If for some $a>0$ one has $\mathbb{E}\left(e^{a|X|}\right)<\infty$, then polynomials are dense in \mathbb{L}_{2}-functions. Proof. Related to the moment problems. Is a r.v. characterized by its polynomial moment? In particular, if X is log-normal, ortonomials of X are not dense in \mathbb{L}_{2} (Feller counter-exemple)!!

The case of local approximation

Piecewise constant approximations $\phi_{k}=1_{\mathcal{C}_{k}}$, where the subsets $\left(\mathcal{C}_{k}\right)_{k}$ forms a tesselation of a part of $\mathbb{R}^{d}: \mathcal{C}_{k} \cap \mathcal{C}_{l}=\emptyset$ for $I \neq k$.

$$
\arg \inf _{g=S_{\alpha, 1} \mathbf{1}_{\mathcal{C}}}^{\mathbb{E}}(Y-g(X))^{2} \text { or } \arg \inf _{g=\sum_{\alpha \alpha 1}} \mathbb{E}^{M}(Y-g(X))^{2} ?
$$

The "matrix"
$A=\left(\mathbb{E}\left(\phi_{i}(X) \phi_{j}(X)\right)\right)_{i, j}$ is diagonal : $\left.A=\operatorname{Diag}\left(\mathbb{P}\left(X \in \mathcal{C}_{i}\right)_{i}\right)\right) \Longrightarrow$

$$
\alpha_{k}= \begin{cases}\frac{\mathbb{E}\left(Y \mathbf{1}_{X \in \mathcal{C}_{k}}\right)}{\mathbb{P}\left(X \in \mathcal{C}_{k}\right)}=\mathbb{E}\left(Y \mid X \in \mathcal{C}_{k}\right) & \text { if } \mathbb{P}\left(X \in \mathcal{C}_{k}\right)>0 \\ 0 & \text { if } \mathbb{P}\left(X \in \mathcal{C}_{k}\right)=0\end{cases}
$$

Rate of approximations of a Lipschitz regression function

 $m($.Size of the tesselation : $|\mathcal{C}| \leq \sup _{/} \sup _{(x, y) \in \mathcal{C}_{1}}|x-y|$.
Given a probability measure $\mu: \mu=\mathbb{P}_{X}$ or $\mu=\frac{1}{M} \sum_{m=1}^{M} \delta_{X m}($.$) .$

$$
\begin{aligned}
\inf _{g=\sum_{k} \alpha_{k} 1_{\mathcal{C}_{k}}} & \int_{\mathbb{R}^{d}}|g(x)-m(x)|^{2} \mu(d x) \\
& \leq \sum_{k} \int_{\mathcal{C}_{k}}\left|m\left(x_{k}\right)-m(x)\right|^{2} \mu(d x)+\int_{\left[\cup_{k} \mathcal{C}_{k}\right]^{c}} m^{2}(x) \mu(d x) \\
& \leq \sum_{k}|\mathcal{C}|^{2} \mu\left(\mathcal{C}_{k}\right)+|m|_{\infty}^{2} \mu\left(\left[\cup_{k} \mathcal{C}_{k}\right]^{c}\right) \leq|\mathcal{C}|^{2}+|m|_{\infty}^{2} \mu\left(\left[\cup_{k} \mathcal{C}_{k}\right]^{c}\right) .
\end{aligned}
$$

- We expect the tesselation size to be small.

Efficient choice of tesselation?

Given $x \in \mathbb{R}^{d}$, how to locate efficiently the \mathcal{C}_{k} such that $x \in \mathcal{C}_{k}$?

- Voronoi tesselations associated to a sample $\left(X^{K}\right)_{1 \leq k \leq K}$ of the underlying r.v. $X: \mathcal{C}_{k}=\left\{z \in \mathbb{R}^{d}:\left|z-X^{k}\right|=\min _{l}\left|z-X^{\prime}\right|\right\}$.
Closed to quantization ideas.
Theorically, there exists searching algorithms with a cost
$\mathcal{O}(\log (K))$.
- Regular grid (hepercubes).
$k=\left(k_{1}, \ldots, k_{d}\right) \in\left\{0, \ldots, K_{1}-1\right\} \times \ldots \times\left\{0, \ldots, K_{d}-1\right\}$ define
$\mathcal{C}_{k}=\left[-x_{1, \min }+\Delta x_{1} k_{1},-x_{1, \min }+\Delta x_{1}\left(k_{1}+1\right)\left[\times \cdots \times\left[-x_{d, \min }+\Delta x_{d} k_{d},-x_{d, \min }+\Delta x_{d}\left(k_{d}+1\right)\right.\right.\right.$
Tesselation size $=\mathcal{O}\left(\max _{i} \Delta x_{i}\right)$
Quick search formula :

3.4 Model-free estimation of the regression error [GKKW02]

In the BSDEs framework, see [Lemor, G., Warin '06].

Working assumptions :

- $Y=m(X)+\epsilon$ with $\mathbb{E}(\epsilon \mid X)=0$.
- Data : sample of independant copies $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$.
- $\sigma^{2}=\sup _{x} \operatorname{Var}(Y \mid X=x)<\infty$
- $F_{n}=\operatorname{Span}\left(f_{1}, \ldots, f_{K_{n}}\right)$ a linear vector space of dimension K_{n}, which may depend on the data!

Notations : $|f|_{n}^{2}=\frac{1}{n} \sum_{i=1}^{n} f^{2}\left(X_{i}\right)$. Write μ^{n} for the empirical measure associated to $\left(X_{1}, \ldots, X_{n}\right)$.

$$
\hat{m}_{n}(.)=\arg \min _{f \in F_{n}} \frac{1}{n} \sum_{i=1}^{n}\left|f\left(X_{i}\right)-Y_{i}\right|^{2}
$$

Proof

W.I.o.g., we can assume that

- $\left(f_{1}, \ldots, f_{K_{n}}\right)$ is orthonormal family in $\mathbb{L}_{2}\left(\mu^{n}\right): \frac{1}{n} \sum_{i} f_{k}\left(X_{i}\right) f_{l}\left(X_{i}\right)=\delta_{k, l}$.
\Longrightarrow The solution of $\arg \min _{f \in F_{n}} \frac{1}{n} \sum_{i=1}^{n}\left|f\left(X_{i}\right)-Y_{i}\right|^{2}$ is given by

$$
\hat{\mathbf{m}}_{\mathbf{n}}(.)=\sum_{\mathbf{j}} \alpha_{\mathbf{j}} \mathbf{f}_{\mathbf{j}}(.) \text { with } \alpha_{\mathbf{j}}=\frac{1}{\mathbf{n}} \sum_{\mathbf{i}} \mathbf{f}_{\mathbf{j}}\left(\mathbf{X}_{\mathbf{i}}\right) \mathbf{Y}_{\mathbf{i}} .
$$

Lemma. Denote $\mathbb{E}^{*}()=.\mathbb{E}\left(. \mid X_{1}, \ldots, X_{n}\right)$. Then $\mathbb{E}^{*}\left(\tilde{m}_{n}().\right)$ is the least-squares solution of $\arg \min _{f \in F_{n}} \frac{1}{n} \sum_{i=1}^{n}\left|f\left(X_{i}\right)-m\left(X_{i}\right)\right|^{2}=\arg \min _{f \in F_{n}}|f-m|_{n}^{2}$.

Proof.

- The above least-squares solution is given by $\sum_{j} \alpha_{j}^{*} f_{j}($.$) with$ $\alpha_{i}^{*}=\frac{1}{\sum_{i}} \cdot f_{i}\left(X_{i}\right) m\left(X_{i}\right)$.

Pythagore theorem : $\left|\tilde{m}_{n}-m\right|^{2}=\left|\tilde{m}_{n}-\mathbb{E}^{*}\left(\tilde{m}_{n}-\mathbb{E}^{*}\left(\tilde{m}_{n}\right)\right)\right|_{n}^{2}+\left|\mathbb{E}^{*}\left(\tilde{m}_{n}\right)-m\right|_{n}^{2}$.
Then, $\mathbb{E}^{*}\left|\tilde{m}_{n}-m\right|_{n}^{2}=\mathbb{E}^{*}\left|\tilde{m}_{n}-\mathbb{E}^{*}\left(\tilde{m}_{n}\right)\right|_{n}^{2}+\left|\mathbb{E}^{*}\left(\tilde{m}_{n}\right)-m\right|_{n}^{2}$

$$
=\mathbb{E}^{*}\left|\tilde{m}_{n}-\mathbb{E}^{*}\left(\tilde{m}_{n}\right)\right|_{n}^{2}+\min _{f \in F_{n}}|f-m|_{n}^{2} .
$$

Since $\left(f_{j}\right)_{j}$ is orthonormal in $\mathbb{L}_{2}\left(\mu_{n}\right)$, we have

$$
\left|\tilde{m}_{n}-\mathbb{E}^{*}\left(\tilde{m}_{n}\right)\right|_{n}^{2}=\sum_{j}\left|\alpha_{j}-\mathbb{E}^{*}\left(\alpha_{j}\right)\right|^{2}
$$

Thus, using $\alpha_{j}-\mathbb{E}^{*}\left(\alpha_{j}\right)=\frac{1}{n} \sum_{i} f_{j}\left(X_{i}\right)\left(Y_{i}-m\left(X_{i}\right)\right)$, we have

$$
\begin{aligned}
\mathbb{E}^{*}\left|\tilde{m}_{n}-\mathbb{E}^{*}\left(\tilde{m}_{n}\right)\right|_{n}^{2} & =\sum_{j} \frac{1}{n^{2}} \mathbb{E}^{*} \sum_{i, l} f_{j}\left(X_{i}\right) f_{j}\left(X_{l}\right)\left(Y_{i}-m\left(X_{i}\right)\right)\left(Y_{l}-m\left(X_{l}\right)\right) \\
& =\sum_{j} \frac{1}{n^{2}} \sum_{i} f_{j}^{2}\left(X_{i}\right) \operatorname{Var}\left(Y_{i} \mid X_{i}\right)
\end{aligned}
$$

since the $\left(\epsilon_{i}\right)_{i}$ conditionnaly on $\left(X_{1}, \ldots, X_{n}\right)$ are centered.

Uniform law of large numbers

$Z_{1: n}=\left(Z_{1}, \ldots, Z_{n}\right)$ a i.i.d. sample of size n.
For $\mathcal{G} \subset\left\{g: \mathbb{R}^{d} \mapsto[0, B]\right\}$, one needs to quantify

$$
\mathbb{P}\left|\forall g \in \mathcal{G}:\left|\frac{1}{n} \sum_{i=1}^{n} g\left(Z_{i}\right)-\mathbb{E} g(Z)\right|>\epsilon\right]
$$

as a function of ϵ and n ?

By Borel-Cantelli lemma, may lead to uniform laws of large numbers:

$$
\sup _{g \in \mathcal{G}}\left|\frac{1}{n} \sum_{i=1}^{n} g\left(Z_{i}\right)-\mathbb{E} g(Z)\right| \rightarrow 0 \text { a.s. }
$$

ϵ-cover of \mathcal{G}

Definition. For a class of functions \mathcal{G} and a given empirical measure μ^{n} associated to n points $Z_{1: n}=\left(Z_{1}, \ldots, Z_{n}\right)$, we define a ϵ-cover of \mathcal{G} w.r.t. $\mathbb{L}_{1}\left(\mu^{n}\right)$ by a collection $\left(g_{1}, \ldots, g_{N}\right)$ in \mathcal{G} such that
for any $g \in \mathcal{G}$, there is a $j \in\{1, \ldots, N\}$ s.t. $\left|g-g_{j}\right|_{\mathbb{H}_{1}\left(\mu^{n}\right)}<\epsilon$.
Set $\mathcal{N}_{1}\left(\epsilon, \mathcal{G}, \mathbb{Z}_{1: n}\right)=$ the simplest size N of ϵ-cover of \mathcal{G} w.r.t. $\mathbb{L}_{1}\left(\mu^{n}\right)$.
Theorem. For $\mathcal{G} \subset\left\{g: \mathbb{R}^{d} \mapsto[-B, B]\right\}$. For any n and any $\epsilon>0$, one has

$$
\mathbb{P}\left(\forall \mathbf{g} \in \mathcal{G}:\left|\frac{1}{\mathbf{n}} \sum_{\mathbf{i}=\mathbf{1}}^{\mathbf{n}} \mathbf{g}\left(\mathbf{Z}_{\mathbf{i}}\right)-\mathbb{E} \mathbf{g}(\mathbf{Z})\right|>\epsilon\right) \leq \mathbf{8} \mathbb{E}\left(\mathcal{N}_{\mathbf{1}}\left(\epsilon / \mathbf{8}, \mathcal{G}, \mathbf{Z}_{1: \mathbf{n}}\right)\right) \exp \left(-\frac{\mathbf{n} \epsilon^{2}}{\mathbf{5 1 2 B ^ { 2 }}}\right) .
$$

Theorem. If $\mathcal{G}=\left\{-B \vee \sum_{k} \alpha_{k} \phi_{k}(.) \wedge B:\left(\alpha_{1}, \ldots, \alpha_{K}\right) \in \mathbb{R}^{K}\right\}$, then

$$
\mathcal{N}_{1}\left(\mathbf{e}, \mathcal{G}, \mathbf{Z}_{1: n}\right) \leq 3\left(\frac{4 \mathrm{eB}}{\text { BSDEs }} \log \left(\frac{4 \mathrm{eB}}{}\right)\right)_{\text {Fields Intitute, } 7 \text { avril 2010, }}^{\mathrm{K}+1}
$$

3.5 Applications to numerical solution of BSDEs using empirical simulations [LGW06]

Regular time grid with time step $h=\frac{T}{N}+$ Lipschitz f, Φ, b and σ.

Towards an approximation of the regression operators

Truncation of the tails using a threshold $R=\left(R_{0}, \ldots, R_{d}\right)$:

$$
\begin{aligned}
{\left[\Delta W_{l, k}\right]_{w} } & =\left(-R_{0} \sqrt{h}\right) \vee \Delta W_{l, k} \wedge\left(R_{0} \sqrt{h}\right), \\
f^{R}(t, x, y, z) & =f\left(t,-R_{1} \vee x_{1} \wedge R_{1}, \ldots,-R_{d} \vee x_{d} \wedge R_{d}, y, z\right), \\
\Phi^{R}(x) & =\Phi\left(-R_{1} \vee x_{1} \wedge R_{1}, \ldots,-R_{d} \vee x_{d} \wedge R_{d}\right) .
\end{aligned}
$$

\rightarrow Localized BSDEs

Define $Y_{T}^{N, R}\left(X_{t_{k}}^{N}\right)=\Phi^{R}\left(X_{t_{k}}^{N}\right)$ and

Proposition. For some Lipschitz functions $y_{k}^{N, R}(\bullet)$ and $z_{k}^{N, R}(\bullet)$, one has:

$$
\begin{cases}Z_{l, t_{k}}^{N, R} & =\frac{1}{\hbar} \mathbb{E}\left(Y_{t_{k+1}}^{N, R}\left[\Delta W_{l, k}\right]_{\omega} \mid \mathcal{F}_{t_{k}}\right)=z_{l, k}^{N, R}\left(X_{t_{k}}^{N}\right) . \\ Y_{t_{k}}^{N, R} & =\mathbb{E}\left(Y_{t_{k+1}}^{N, R}+h f^{R}\left(t_{k}, X_{t_{k}}^{N}, Y_{t_{k+1}}^{N, R}, Z_{t_{k}}^{N, R}\right) \mid \mathcal{F}_{t_{k}}\right)=y_{k}^{N, R}\left(X_{t_{k}}^{N}\right) .\end{cases}
$$

a) The Lipschitz constants of $y_{k}^{N, R}(\bullet)$ and $N^{-1 / 2} z_{k}^{N, R}(\bullet)$ are uniform in N and R.
b) Bounded functions : $\sup _{N}\left(\left\|y_{k}^{N, R}(\bullet)\right\|_{\infty}+N^{-1 / 2}\left\|z_{k}^{N, R}(\bullet)\right\|_{\infty}\right)=C_{\star}<\infty$

Proposition. (Convergence as $|R| \uparrow \infty$) For h small enough, one has

$$
\begin{aligned}
& \max _{0 \leq k \leq N} \mathbb{E}\left|Y_{t_{k}}^{N, R}-Y_{t_{k}}^{N}\right|^{2}+h \mathbb{E} \sum_{k=0}^{N-1}\left|Z_{t_{k}}^{N, R}-Z_{t_{k}}^{N}\right|^{2} \\
& \leq C \mathbb{E}\left|\Phi\left(X_{t_{n}}^{N}\right)-\Phi^{R}\left(X_{t_{N}}^{N}\right)\right|^{2}+C \frac{1+R^{2}}{h} \sum_{k=0}^{N-1} \mathbb{E}\left(\left|\Delta W_{k}\right|^{2} \mathbf{1}_{\left|\Delta W_{k}\right| \geq R_{0} \sqrt{h}}\right) \\
& +C h \mathbb{E} \sum_{k=0}^{N-1}\left|f\left(t_{k}, X_{t_{k}}^{N}, Y_{t_{k+1}}^{N}, Z_{t_{k}}^{N}\right)-f^{R}\left(t_{k}, X_{t_{k}}^{N}, Y_{t_{k+1}}^{N}, Z_{t_{k}}^{N}\right)\right|^{2}
\end{aligned}
$$

Approximation of $y_{k}^{N, R}(\bullet)$ and $z_{k}^{N, R}(\bullet)$

Projection on a finite dimensional space :

$$
\mathbf{y}_{\mathrm{k}}^{\mathrm{N}, \mathbf{R}}(\bullet) \approx \alpha_{0, \mathrm{k}} \cdot \mathbf{p}_{0, \mathrm{k}}(\bullet), \quad \mathrm{z}_{\mathbf{l}, \mathrm{k}}^{\mathrm{N}, \mathbf{R}}(\bullet) \approx \alpha_{\mathbf{l}, \mathrm{k}} \cdot \mathbf{P}_{\mathrm{l}, \mathrm{k}}(\bullet)
$$

(for instance, hypercubes as presented before).
Coefficients will be computed by extra M independent simulations of $\left(X_{t_{k}}^{N}\right)_{k}$ and $\left(\Delta W_{k}\right)_{k} \rightarrow\left\{\left(X_{t_{k}}^{N, m}\right)_{k}\right\}_{m}$ and $\left\{\left(\Delta W_{k}^{m}\right)_{k}\right\}_{m}$ (only one set of simulated paths).

In addition, we impose boundedness properties:

$$
\mathbf{y}_{\mathbf{k}}^{\mathbf{N}, \mathbf{R}, \mathbf{M}}(\bullet)=\left[\alpha_{\mathbf{0}, \mathrm{k}}^{\mathrm{M}} \cdot \mathbf{p}_{\mathbf{0}, \mathbf{k}}(\bullet)\right]_{\mathbf{y}}, \quad \mathrm{z}_{\mathbf{l}, \mathbf{k}}^{\mathrm{N}, \mathrm{R}, \mathrm{M}}(\bullet) \approx\left[\alpha_{\mathbf{l}, \mathrm{k}}^{\mathrm{M}} \cdot \mathbf{P}_{\mathbf{l}, \mathbf{k}}(\bullet)\right]_{\mathbf{z}},
$$

The final algorithm

\rightarrow Initialization: for $k=N$ take $y_{N}^{N, R}(\cdot)=\Phi^{R}(\cdot)$.
\rightarrow Iteration : for $k=N-1, \cdots, 0$, solve the q least-squares problems :

$$
\alpha_{l, k}^{M}=\arg \inf _{\alpha} \frac{1}{M} \sum_{m=1}^{M}\left|y_{k+1}^{N, R, M}\left(X_{t_{k+1}}^{N, m}\right) \frac{\left[\Delta W_{l, k}^{m}\right]_{\omega}}{h}-\alpha \cdot p_{l, k}\left(X_{t_{k}}^{N, m}\right)\right|^{2}
$$

Then compute $\alpha_{0, k}^{M}$ as the minimizer of
$\sum_{m=1}^{M} \mid y_{k+1}^{N, R, M}\left(X_{t_{k+1}}^{N, m}\right)+h f^{R}\left(t_{k}, X_{t_{k}}^{N, m}, y_{k+1}^{N, R, M}\left(X_{t_{k+1}}^{N, m}\right),\left[\alpha_{l, k}^{M} \cdot p_{l, k}\left(X_{t_{k}}^{N, m}\right)\right]_{z}\right)-\alpha \cdot p_{0, k}\left(X_{t_{k}}^{N, r}\right.$
Then define $y_{k}^{N, R, M}(\bullet)=\left[\alpha_{0, k}^{M} \cdot p_{0, k}(\bullet)\right]_{y}, z_{l, k}^{N, R, M}(\bullet)=\left[\alpha_{l, k}^{M} \cdot p_{l, k}(\bullet)\right]_{z}$. Error analysis

Robust error bounds

Theorem. Under Lipschitz conditions (only !), one has
$\max _{0 \leq k \leq N} \mathbb{E}\left|Y_{t_{k}}^{N, R}-y_{k}^{N, R, M}\left(S_{t_{k}}^{N}\right)\right|^{2}+h \sum_{k=0}^{N-1} \mathbb{E}\left|Z_{t_{k}}^{N, R}-z_{k}^{N, R, M}\left(S_{t_{k}}^{N}\right)\right|^{2}$
$\leq C \frac{C_{\star}^{2} \log (M)}{M} \sum_{k=0}^{N-1} \sum_{l=0}^{q} \mathbb{E}\left(K_{l, k}^{M}\right)+C h$
$+C \sum_{k=0}^{N-1}\left\{\inf _{\alpha} \mathbb{E}\left|y_{k}^{N, R}\left(S_{t_{k}}^{N}\right)-\alpha \cdot p_{0, k}\left(S_{t_{k}}^{N}\right)\right|^{2}+\sum_{l=1}^{q}\left\{\inf _{\alpha} \mathbb{E}\left|\sqrt{h} z_{l, k}^{N, R}\left(S_{t_{k}}^{N}\right)-\alpha \cdot p_{l, k}\left(S_{t_{k}}^{N}\right)\right|^{2}\right.\right.$
$+C \frac{C_{\star}^{2}}{h} \sum_{k=0}^{N-1}\left\{\mathbb{E}\left[K_{0, k}^{M} \exp \left(-\frac{M h^{3}}{72 C_{\star}^{2} K_{0, k}^{M}}\right) \exp \left(C K_{0, k+1} \log \frac{C C_{\star}\left(K_{0, k}^{M}\right)^{\frac{1}{2}}}{h^{\frac{3}{2}}}\right)\right]\right.$
$+h \mathbb{E}\left[K_{l, k}^{M} \exp \left(-\frac{M h^{2}}{72 C_{\star}^{2} R_{0}^{2} K_{l, k}^{M}}\right) \exp \left(C K_{0, k+1} \log \frac{C C_{\star} R_{0}\left(K_{l, k}^{M}\right)^{\frac{1}{2}}}{h}\right)\right]$
$\left.+\exp \left(C K_{0, k} \log \frac{C C_{\star}}{h^{\frac{3}{2}}}\right) \exp \left(-\frac{M h^{3}}{72 C_{\star}^{2}}\right)\right\}$.

Convergence of the parameters in the cases of HC functions

For a global squared error of order $\epsilon=\frac{1}{N}$, choose :
(1) Edge of the hypercube: $\delta \sim \frac{C}{N}$.
(2) Number of simulations: $M \sim N^{3+2 d}$.

Available for a large class of models on X, which depend essentially on \mathbb{L}_{2} bounds on the solution (no ellipticity condition, with or without jump...).

Complexity/accuracy

Global complexity : $\mathcal{C} \sim \epsilon^{-\frac{1}{4+2 d}}$.
Techniques of local duplicating of paths: $\mathcal{C} \widetilde{F}^{-\frac{1}{4+d}}$.

3.6 Numerical results (mainly due to J.P. Lemor)

Ex. 1 : bid-ask spread for interest rates

- Black-Scholes model and $\Phi(\mathbf{S})=\left(S_{T}-K_{1}\right)_{+}-2\left(S_{T}-K_{2}\right)_{+}$.
- $f(t, x, y, z)=-\left\{y r+z \theta-\left(y-\frac{z}{\sigma}\right)_{-}(R-r)\right\}, \theta=\frac{\mu-r}{\sigma}$.
- Parameters : | μ | σ | r | R | T | S_{0} | K_{1} | K_{2} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.05 | 0.2 | 0.01 | 0.06 | 0.25 | 100 | 95 | 105 |

	$N=5, \delta=5$ $D=[60,140]$	$N=20, \delta=1$ $D=[60,200]$	$N=50, \delta=0.5$ $D=[60,200]$
128	$3.05(0.27)$	$3.71(0.95)$	$3.69(4.15)$
512	$2.93(0.11)$	$3.14(0.16)$	$3.48(0.54)$
2048	$2.92(0.05)$	$3.00(0.03)$	$3.08(0.12)$
8192	$2.91(0.03)$	$2.96(0.02)$	$2.99(0.02)$

Global polynomials (GP)

Polynomials of d variables with a maximal degree.

	$N=5$ M	$N=20$ $d_{y}=1, d_{z}=0$	$N=50$ $d_{y}=2, d_{z}=1$	$N=50$ $d_{y}=4, d_{z}=2$
$d_{y}=9, d_{z}=$				
128	$2.87(0.39)$	$3.01(0.24)$	$3.02(0.22)$	$3.49(1.57)$
512	$2.82(0.20)$	$2.94(0.12)$	$2.97(0.09)$	$3.02(0.1)$
2048	$2.78(0.07)$	$2.92(0.07)$	$2.92(0.0 .04)$	$2.97(0.03)$
8192	$2.78(0.05)$	$2.92(0.04)$	$2.92(0.02)$	$2.96(0.01)$
32768	$2.79(0.03)$	$2.91(0.02)$	$2.91(0.01)$	$2.95(0.01)$

Table: Results for the calls combination using GP.

Ex. 2 : locally-risk minimizing strategies (FS decomposition)

Heston stochastic volatility models [Heath,Platen,Schweizer '02] :

$$
\frac{d S_{t}}{S_{t}}=\gamma Y_{t}^{2} d t+Y_{t} d W_{t}, \quad d Y_{t}=\left(\frac{c_{0}}{Y_{t}}-c_{1} Y_{t}\right) d t+c_{2} d B_{t}
$$

Functions HC, parameters (N, δ).

American options via RBDSDEs: several approaches

1. Talking the max with obstacle \rightarrow Bermuda options (lower approximation)

$$
\begin{aligned}
Y_{t_{k}}^{n} & =\max \left(\Phi\left(t_{k}, S_{t_{k}}^{N}\right), \mathbb{E}\left(Y_{t_{k+1}}^{N} \mid \mathcal{F}_{t_{k}}\right)+h f\left(t_{k}, S_{t_{k}}^{N}, Y_{t_{k}}^{N}, Z_{t_{k}}^{N}\right)\right) \\
Z_{l, t_{k}}^{N} & =\frac{1}{h} \mathbb{E}\left(Y_{t_{k+1}}^{N} \Delta W_{l, k} \mid \mathcal{F}_{t_{k}}\right)
\end{aligned}
$$

2. Penalization. Obtained as the limit of standard BSDEs with driver $f\left(s, S_{s}, Y_{s}, Z_{s}\right)+\lambda\left(Y_{s}-\Phi\left(s, S_{s}\right)\right)_{-}$with $\lambda \uparrow+\infty$.

Lower approximation.
3. Regularization of the increasing process: when

$$
d \Phi\left(t, S_{t}\right)=U_{t} d t+V_{t} d W_{t}+d A_{t}^{+},
$$

Ex. 3 : American options on tree assets

- Payoff $g(x)=\left(K-\left(\prod_{i=1}^{3} x_{i}\right)^{\frac{1}{3}}\right)^{+}$.
- Black-Scholes parameters : | T | r | σ | K | S_{0}^{i} | d |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.05 | 0.4 ld | 100 | 100 | 1 |
- Reference price 8.93 (PDE method).

Functions HC(1,0) with local polynomials of degree 1 for Y and 0 for Z.

Regularisation : $N=32$,
$\delta=9, \lambda=2$.
Max: $N=44, \delta=7$.
Penalization : $N=60$,
$\delta=2, \lambda=2$.

Ex. 4 : American options on ten assets

- $d=10=2 p$. Multidimensional Black-Scholes model : $\frac{d S_{t}^{\prime}}{S_{t}^{\prime}}=\left(r-\mu_{l}\right) d t+\sigma_{l} d W_{t}^{\prime}$.
- Payoff : max $\left(x_{1} \cdots x_{p}-x_{p+1} \cdots x_{2 p}, 0\right)$.
- $r=0$, dividend rate $\mu_{1}=-0.05, \mu_{I}=0$ for $I \geq 2 . \sigma_{I}=\frac{0.2}{\sqrt{d}}$. $T=0.5 . S_{0}^{i}=40^{\frac{2}{d}}, 1 \leq i \leq p . S_{0}^{i}=36^{\frac{2}{d}}, p+1 \leq i \leq 2 p$.
- Reference price 4.896, obtained with a PDE method [Villeneuve, Zanette 2002].
- Price with quantization algorithm : 4.9945
[Bally-Pages-Printemps 2005].

Functions $\mathrm{HC}(1,0)$.

Max : $N=60, \delta=0.6$.
Computational time :
15 seconds.

References

