More Games and the Quality of Outcomes

Éva Tardos Cornell University

Last two talks:

- Bounds on Quality of Nash (Price of Anarchy or Stability) via potential function or smoothness.
- Learning outcomes and smoothness bounds.
- Bounds via smoothness are tight even for pure Nash
- "Natural learning" (via Hedge algorithm) results almost always in pure Nash.

Today: Quality of Nash in other context: AdWords

Games considered are often congestion games

- Routing:
- routers choose path for packets though the Internet

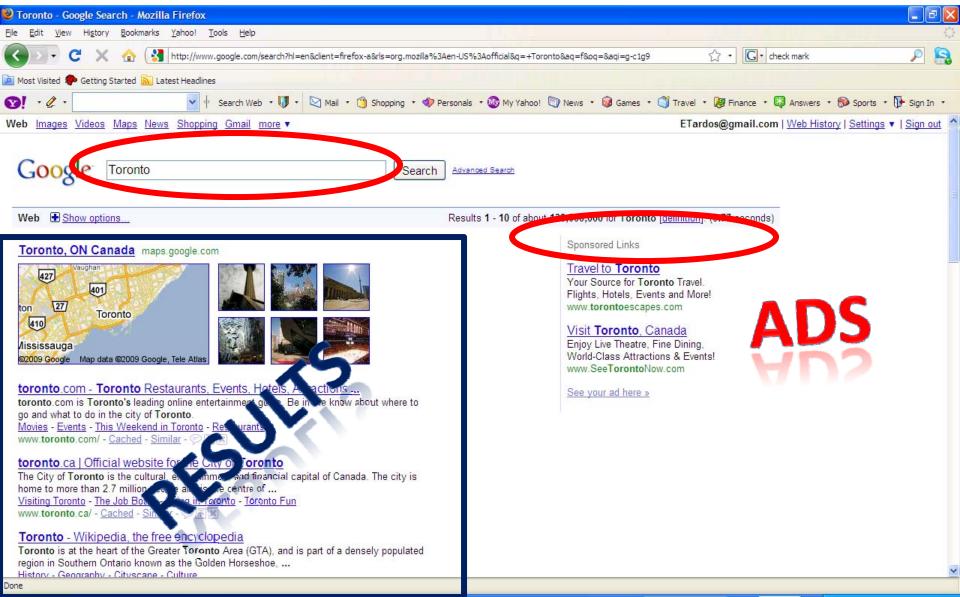
- Bandwidth Sharing:
- routers share limited bandwidth between processes

- Facility Location:
- Decide where to host certain Web applications

- Load Balancing
- Balancing load on servers (e.g. Web servers)

- Network Design:
- Independent service providers building the Internet

Sponsored Search



Model of Sponsored Search

Focus on ads on the side

Ordered slots, higher is better

Advertisers:

Hilton, RailEurope, CentralBudapestHotels, DestinationBudapest, RacationRentals.com, Travelzoo.com, TravelYahhoo.com, BudgetPlace.com

Hilton Hotel Budapest

Our best rates guaranteed online. Book at the official Hilton site. Hilton.com

Sponsored Links

Discover Budapest

And The Many Hungarian Cities. Find Places Trains Can Take You. www.RailEurope.com

Budapest Central Hotel

Central Location, Great Rates Fantastic B&B, Book Online! www.centralbudapesthotels.com

Budapest Hotel Apartments

Hotels, apartments, pension, hostel Book & stay **Budapest** room from 25â,¬! www.destination**budapest**.hu/

Budapest Vacation Listings

Thousands of **Vacation** Home Choices Book Directly from Owners & Save! **Vacation**Rentals.com

Vacations to Budapest

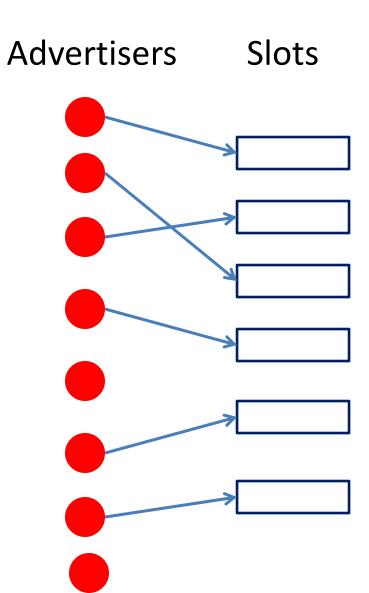
Browse the Best Travel Deals to **Budapest** & more. Use Travelzoo!

Model of Sponsored Search

Questions:

 which advertiser to assign to each slots, and

how much to charge each



Value of Assignment

Value of a click for adv. i is v_i

At per-click price of p, value to advertiser is

 $(v_i - p) \cdot click-rate$

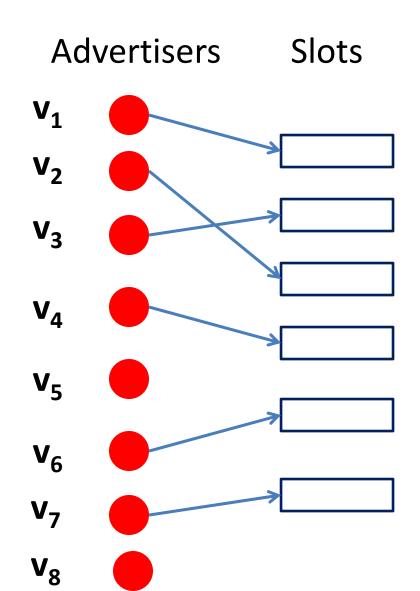
Value of search engine

p · click-rate

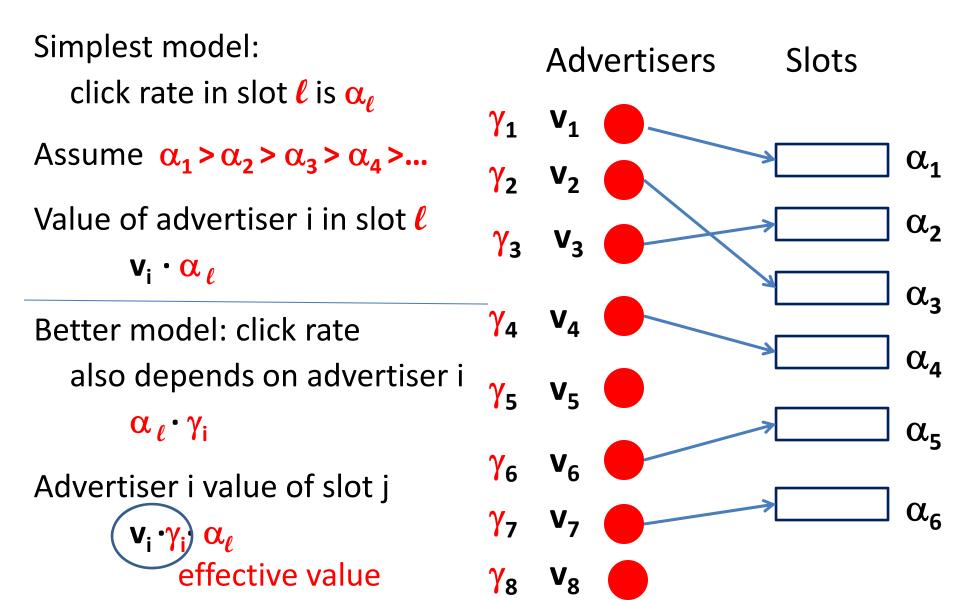
Total of

v_i · click-rate

But what is the click rate?



Click rate models



Social welfare

Talk: simplest model:

$$\alpha_1 > \alpha_2 > \alpha_3 > \alpha_4 > \dots$$

Value of advertiser i in slot j

$$v_i \cdot \alpha_\ell$$

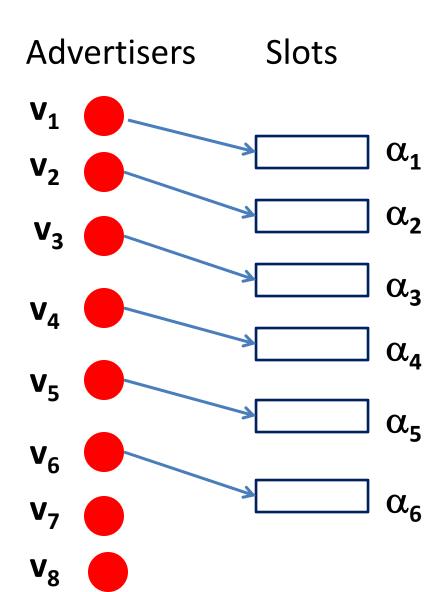
Social welfare = total value

$$\Sigma_{i \to \ell} v_i \alpha_{\ell}$$

Maximize social welfare:

Sort
$$v_1 > v_2 > v_3 > v_4 > ...$$

Welfare $\Sigma_i \mathbf{v_i} \alpha_i$



Can we elicit values?

Trouble: Value $\mathbf{v_i}$ is private, only known to user i.

Single slot: Vickrey auction (second price)

- Winner highest value argmax_i v_i → say 1
- price max_{j≠1} v_j

Result: truthful:

Players will bid their

true values $\mathbf{b}_{i} = \mathbf{v}_{i}$

Generalized Second Prize (GSP)

Sort by bid value

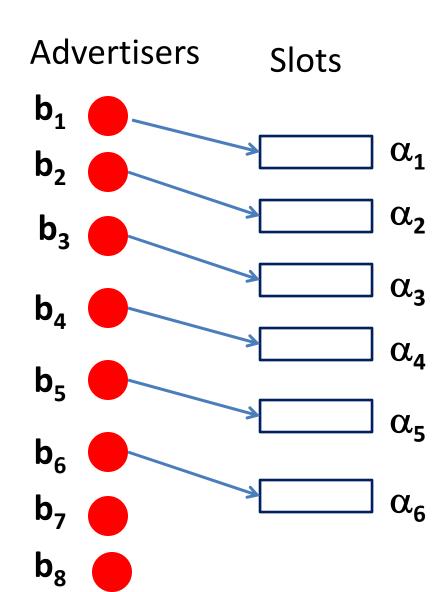
$$b_1 > b_2 > b_3 > b_4 > ...$$

Assign bidder i to slot i

Charge next price p=b_{i+1}

Value to bidder i

$$(v_i-b_{i+1})\cdot\alpha_i$$



Is GSP truthful?

Is bidding **b**_i = **v**_i Nash equilibrium for the bidders?

Example:

Bidder 1's value if telling the truth

$$(9-8) \cdot 1 = 1$$

If bidding $b_1 = 7$

$$(9-1) \cdot \frac{1}{2} = 4$$



Sort by bid value

$$b_1 > b_2 > b_3 > b_4 > ...$$

Charge next price p=b_{i+1}

Value to bidder i

$$(v_i - b_{i+1}) \cdot \alpha_i$$

How good/bad are Nash equilibria?

Theorem: [Edelman & Ostrovsky & Schwarz, Varian]

There exists a Nash equilibrium set of bids that result in socially optimal assignment

bids are sorted the same order as values

Note: There is also Vickrey-Clark-Groves (VCG) mechanisms, that is always truthful. This is not VCG

∃ Optimal Nash

Maximum social welfare:

Sort $v_1 > v_2 > v_3 > v_4 > ...$

Welfare $\Sigma_i \mathbf{v_i} \alpha_i$

Corresponding Nash?

user i to slot ℓ value: $\mathbf{v_i} \ \alpha_{\ell}$

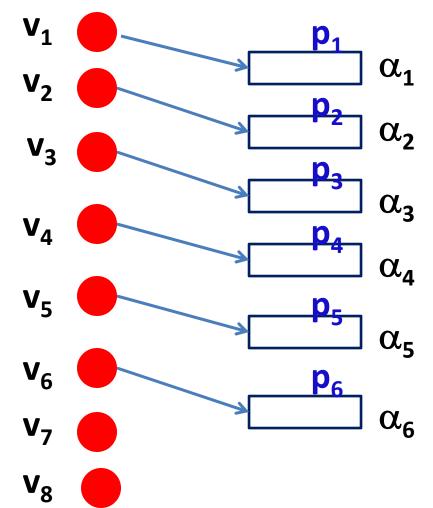
LP dual: ∃ prices p_ℓ such that user i prefers slot i

 $i=argmax_{\ell} v_{i} \alpha_{\ell} - p_{\ell}$

Nash bids $b_i = p_{i-1} / \alpha_i$

Why? Will pay exactly p_i

Advertisers



How bad can Nash equilibria be?

But also: There exists Nash equilibrium of very bad social value

$$b_1 = 0$$
 $v_1 = 1$ is Nash: Why? $b_2 = 1$ $v_2 = 0$ Player 1 current value: $(1-0) \cdot 0 = 0$ alternate option: bid b>1 and pay p=1 for a value of $(1-p) \cdot 1 = 0$

Social welfare 0

Optimum social welfare 1

Note: this is Vickrey auction...

Is bad Nash realistic?

Notice: $b_2=1$ extremely dangerous... $b_2 >> v_2$

- if a new bidder shows up between b_i > b > v_i
 can be forced to pay above value
- bidding ... $b_2 = v_2$ is just as good and not dangerous

Assumption: Conservative bidders

 $b_i \le v_i$ for all bidders i

How good are Nash equilibria with conservative bidders?

 $\max_{i \neq 1} v_i$

Theorem: [Renato Paes Leme & Tardos'09]

All Nash equilibria with conservative bids has social welfare at least 1.618 fraction of the maximum possible

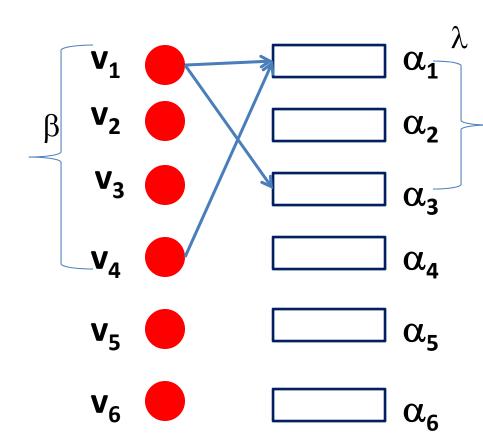
Vickrey: Nash equilibria with conservative bids has optimal social welfare

Proof: induction on number of slots

If top value assigned to top slot: use induction

Else let β and λ be the ratio in values as shown

Lemma $1/\beta+1/\lambda \geq 1$



Worst case for two slots

Else let β and λ be the ratio in values as shown

Lemma $1/\beta+1/\lambda \geq 1$

Worst case for two slots

 $\begin{array}{c}
\mathbf{v_1} = \mathbf{1} \\
\beta \\
\mathbf{v_2} = \frac{1}{2}
\end{array}$ $\begin{array}{c}
\alpha_1 = \mathbf{1} \\
\alpha_2 = \frac{1}{2}
\end{array}$

Optimal value: 1+1/4

Conservative Nash solution bids $b_1 = 0$ and $b_2 = \frac{1}{2}$

total value: 1

Value for bidders: $(v_1 - 0)\alpha_2 = 1/2$ and: $(v_2 - 0)\alpha_1 = 1/2$

Alternative for bidder 1: $b_1 > 1/2$ for value $(v_1 - 1/2)\alpha_1 = 1/2$

Optimum 1+ $1/\beta\lambda$ Nash value $1/\beta+1/\lambda$

Proof: simple bound of 2

induction on number of slots

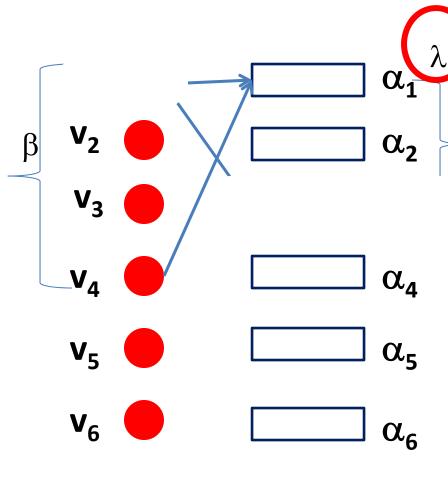
If top value assigned to top slot: use induction

Else let β and λ be the ratio in values as shown

Lemma $1/\beta+1/\lambda \ge 1$ hence either β or $\lambda \le 2$

We get total value at least ½ $\mathbf{v_1} \cdot \mathbf{\alpha_1}$ (as $\lambda \leq 2$)

+ ½ rest by induction



Proof: Improved bound: $\gamma = (1 + \sqrt{5})/2 \approx 1.618$

If top value → to top slot: use induction

Else β and λ : gap as shown

Lemma
$$1/\beta+1/\lambda \geq 1$$

We get total value at least

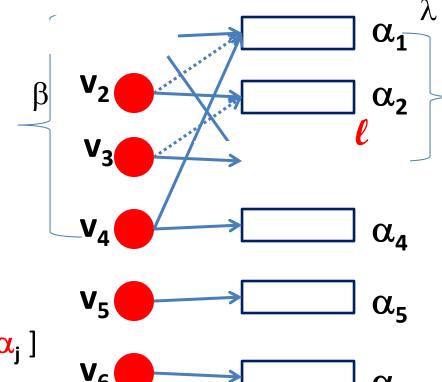
$$1/\lambda \mathbf{v_1} \cdot \alpha_1 + \gamma \text{ rest}$$

$$\geq 1/\lambda \mathbf{v_1} \cdot \mathbf{\alpha_1} + \gamma [(\mathbf{\alpha_1} - \mathbf{\alpha_\ell}) \mathbf{v_\ell} + \Sigma_{j \geq 2} \mathbf{v_j} \mathbf{\alpha_j}]$$

$$\geq \ 1/\lambda \ v_1 \cdot {\color{red}\alpha_1} + \gamma (1/\beta) \ ({\color{red}\alpha_1} - {\color{red}\alpha_\ell}) \ v_1 + {\color{blue}\Sigma_{j \geq 2}} v_j \, {\color{red}\alpha_j}$$

$$\geq 1/\lambda v_1 \cdot \alpha_1 + \gamma(1/\beta)(1 - 1/\lambda)\alpha_1 v_1 + \sum_{j \geq 2} v_j \alpha_j$$

$$\geq (1/\lambda + \gamma(1-1/\lambda)^2) \alpha_1 v_1 + \gamma \sum_{j\geq 2} v_j \alpha_j$$



Main Lemma

Lemma $1/\beta+1/\lambda \geq 1$

Proof: bidder 1 is happy

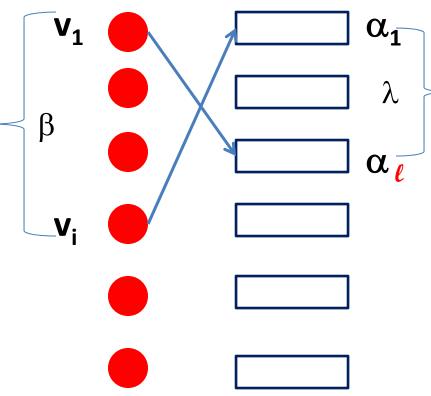
Current value

$$(v_1-b_{\ell+1})\cdot\alpha_{\ell} \leq v_1\cdot\alpha_{\ell}$$

Alternate option: $> b_i$

$$(\mathbf{v_1} - \mathbf{b_i}) \cdot \mathbf{\alpha_1} \ge (\mathbf{v_1} - \mathbf{v_i}) \cdot \mathbf{\alpha_1}$$
 conservative

Nash
$$\Rightarrow \mathbf{v_1} \cdot \mathbf{\alpha_\ell} \geq (\mathbf{v_1} - \mathbf{v_i}) \cdot \mathbf{\alpha_1}$$



Conclusion

On line advertisement: fun assignment problem

Mechanism used GSP (generalized second price). Simple, but not always good.

- There exists Nash with optimal value
- Resulting social value not too bad (assuming conservative bidders)

Questions: which Nash is realistic?

Learning in context with many identical bid options Other models of click-rate? (externalities?)

Summary

Network Games and Quality of Nash

- Examples routing and cost-sharing
- Outcome: Nash & Price of Anarchy /Stability
- Smoothness: a common and powerful proof technique

Learning in Network Games

- No-regret learning
- (coarse) correlated equilibrium & Total Price of Anarchy
- Smoothness bounds also valid
- Natural learning leads to good outcome

Quality in other games: Ad-Auctions

Many natural questions:

– Other classes of games and other learning methods?