Games and Networks and the Quality of Outcomes

Éva Tardos Cornell University

Plan for the talks

Network Games and Quality of Nash

- · Examples of Games in Networks
- · Outcome: Nash
- · Quality = Price of Anarchy

Learning in Network Games

Quality in other games: Ad-Auctions

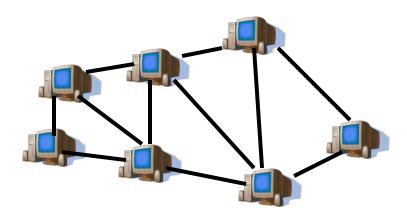
Why care about Games?

Users with a multitude of diverse economic interests sharing a Network (Internet)

- browsers
- routers
- · servers

Selfishness:

Parties deviate from their protocol if it is in their interest



Model Resulting Issues as

Games on Networks

Main question: Quality of Selfish outcome

Well known: Central design can lead to better outcome than selfishness.

e.g.: Prisoner Dilemma

Question: how much better?

	C		D
	2		1
2		99	
	99	9	8
1		98	

Our Games

 Routing and Network formation: Users select paths that connects their terminals to minimize their own delay or cost

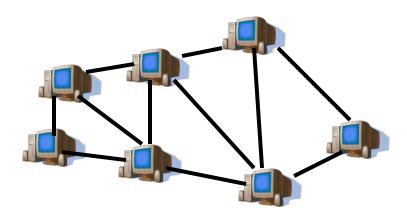
Why care about Games?

Users with a multitude of diverse economic interests sharing a Network (Internet)

- browsers
- routers
- · servers

Selfishness:

Parties deviate from their protocol if it is in their interest



Model Resulting Issues as

Games on Networks

Some Games

- Routing:
- routers choose path for packets though the Internet
- Bandwidth Sharing:
- · routers share limited bandwidth between processes
- Facility Location:
- Decide where to host certain Web applications
- Load Balancing
- Balancing load on servers (e.g. Web servers)
- Network Design:
- Independent service providers building the Internet

Main question: Quality of Selfish outcome

Well known: Central design can lead to better outcome than selfishness.

e.g.: Prisoner Dilemma

Question: how much better?

	C		D
	2		1
2		99	
	99	9	8
1		98	

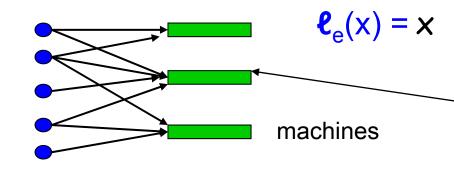
Our Games

 Routing and Network formation: Users select paths that connects their terminals to minimize their own delay or cost

load balancing and routing

Load balancing:

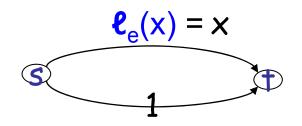
jobs



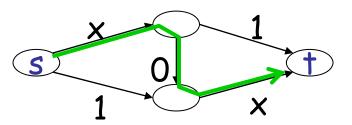
Delay as a function of load:

x unit of load \rightarrow causes delay e(x)

Routing network:



Allow more complex networks



Games: setup

- A set of players (in example: jobs)
- for each player, a set of strategies (which machine to choose)

Game: each player picks a strategy

For each strategy profile (a strategy for each player) → a payoff to each player (load on selected machine)

Nash Equilibrium: stable strategy profile: where no player can improve payoff by changing strategy

Games: setup

Deterministic (pure) or randomized (mixed) strategies?

Pure: each player selects a strategy.

simple, natural, but stable solution may not exists

Mixed: each player chooses a probability distribution of strategies.

- equilibrium exists (Nash),
- but pure strategies often make more sense

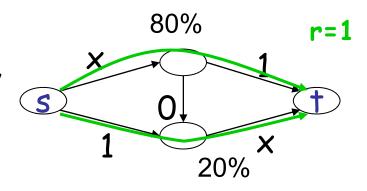
Atomic vs. Non-atomic Game

Atomic Game:

- Each user controls a unit of flow, and
- selects a single path or machine

Non-atomic game:

- Users control an infinitesimally small amount of flow
- equilibrium: all flow path carrying flow are minimum total delay

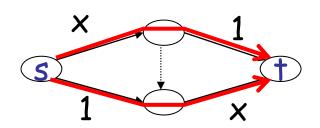


r=1

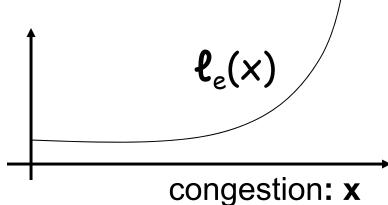
Both congestion games: cost on edge e depends on the congestion (number of users)

Congestion Games: Routing

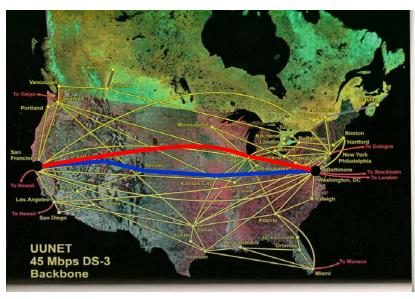
- A directed graph G = (V,E)
- source-sink pairs s_i,t_i for i=1,...,k
- User i selects path P_i for traffic between s_i and t_i for each i=1,...,k



For each edge e a latency function $\ell_e(\cdot)$ Latency increasing with congestion



Example: Routing Game

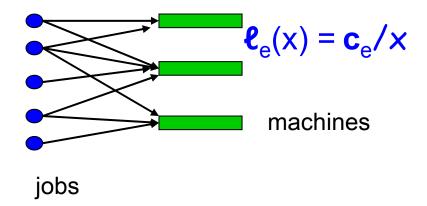


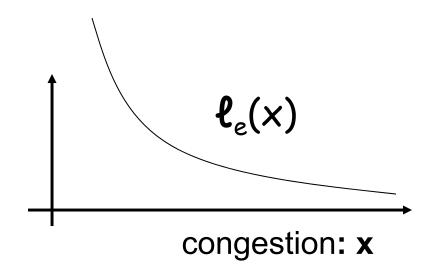
- Traffic subject to congestion delays
- cars and packets follow shortest path Large number of participants!!

Congestion Games: Cost-sharing

- jobs i=1,...,k
- For each machine e a cost function $\ell_e(\cdot)$
 - E.g. cloud computing

$$\ell_e(x) = c_e/x$$





Quality of Outcome:

Personal objective for player i: load L_i or expected load E(L_i)

Overall objective?

Social Welfare: $\Sigma_i L_i$ or expected value $E(\Sigma_i L_i)$

today

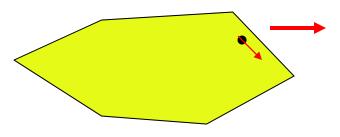
- Alternately: makespan: max_i L_i or 95% or the L_i values, etc
- With randomness: $\max_i E(L_i)$ or expected makespan $E(\max_i L_i)$

Connecting Nash and Opt

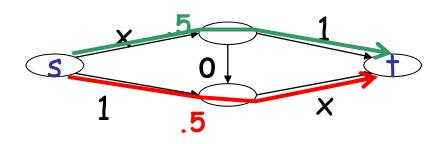
- Min-latency flow
 - for one s-t pair for simplicity
- minimize $C(f) = \Sigma_e f_e \cdot \ell_e(f_e)$
- subject to: f is an s-t flow
- carrying r units
- By summing over edges rather than paths where f_e = amount of flow on edge e

Characterizing the Optimal Flow

Optimality condition: small change doesn't improve cost



For flows: all flow travels along minimum-gradient paths



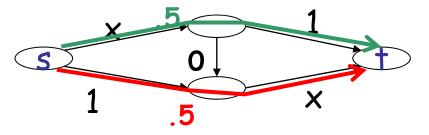
gradient is:
$$(x \ell(x))' = \ell(x) + x \ell'(x)$$

selfish part altruistic term

Optimal versus Nas Flow

Optimality condition: flow f is at minimum cost iff all flow travels along minimum-gradient paths: gradient is $\ell(x)+x$ $\ell'(x)$

selfish part altruistic term



Nash: flow f is at Nash equilibrium iff all flow travels along minimum-latency paths: $\ell(x)$

selfish part only

Nash ↔ Min-Cost

Corollary 1: min cost is "Nash" with "delay" $\ell(x)+x \ell'(x)$

Use of Corollary: If x €'(x) is changed as tax, selfish users follow optimal paths

Nash ↔ Min-Cost

Corollary 2: Nash is "min cost" with "cost"

$$\Phi(f) = \sum_{e} \int_{0}^{f_{e}} \ell_{e}(x) dx$$

Why?

gradient of $\Phi(f)$ is delay:

$$(\int_0^{\mathsf{f_e}} \ell_e(\mathsf{x}) \, \mathsf{d}\mathsf{x})' = \ell(\mathsf{x})$$

Using function 4

Nash is the solution minimizing

Theorem (Beckmann'56)

• In a network latency functions $\ell_e(x)$ that are monotone increasing and continuous,

 a deterministic Nash equilibrium exists, and is essentially unique

$\overline{\parallel}$

Using potential Φ ...

- Nash minimizes the function
- Hence,

$$\Phi(Nash) \leq \Phi(OPT)$$
.

Suppose that we also know for any solution $\Phi \le \text{cost} \le A \Phi$

- → cost(Nash) $\leq A \Phi(Nash) \leq A \Phi(OPT) \leq A$ cost(OPT).
- → the Nash solution has good quality

Example: $\Phi \leq \cos t \leq A \Phi$

- Example: $\ell_e(x) = x^d$ then
 - total delay is $x \cdot \ell_e(x) = x^{d+1}$
 - potential is $\int \ell_e(\xi) d\xi = x^{d+1}/(d+1)$
- More generally: delay $\ell_e(x)$ degree d polynomial:
 - ratio at most d+1
- Sharp bound (see soon): price of anarchy for degree d polynomials is O(d/log d).

Sharper results for non-atomic games

Theorem 1 (Roughgarden-Tardos)

- In a network with linear latency functions
 - i.e., of the form $\ell_e(x) = a_e x + b_e$
- the cost of a Nash flow is at most 4/3 times that of the minimum-latency flow

However, O(d/log d) large as degree d gets large...

Aside: for non-atomic games

Theorem 3 (Roughgarden-Tardos):

 In any network with continuous, nondecreasing latency functions

cost of Nash with rates r_i for all i

<

cost of opt with rates $2r_i$ for all i

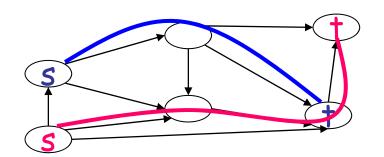
Proof idea:

Opt may cost very little, but marginal cost is as high as latency in Nash

→ Augmenting to double rate costs at least as much as Nash

Atomic (discrete) Analog

- Each user controls one unit of flow, and
- selects a single path



Theorem Change in potential is same as function change perceived by one user

[Rosenthal'73, Monderer Shapley'96,]

$$\Phi(f) = \Sigma_e \left(\ell_e(1) + \dots + \ell_e(f_e) \right) = \Sigma_e \Phi_e$$

Even though moving player ignores all other users

[Recall continuous potential: $\Phi(f) = \sum_{e} \int_{0}^{f_{e}} \ell_{e}(x) dx$]

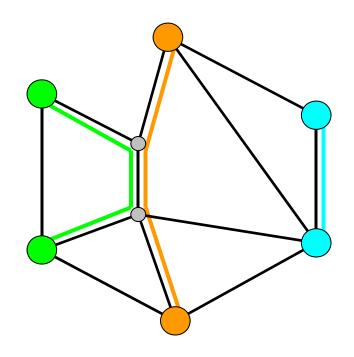
Corollary: Nash equilibria are local min. of $\Phi(f)$

Network Design as Potential Game

Given: G = (V,E), costs $c_e(x)$ for all $e \in E$, k terminal sets (colors) Have a player for each color.

Each player wants to build a network in which his nodes are connected.

Player strategy: select a tree connecting his set.



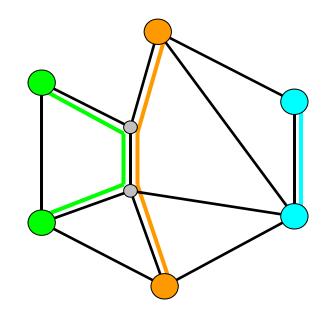
Costs in Connection Game

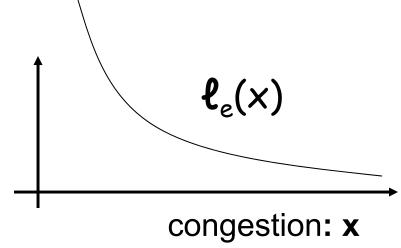
Players pay for their trees, want to minimize payments.

What is the cost of the edges? $c_e(x)$ is cost of edge e for x users.

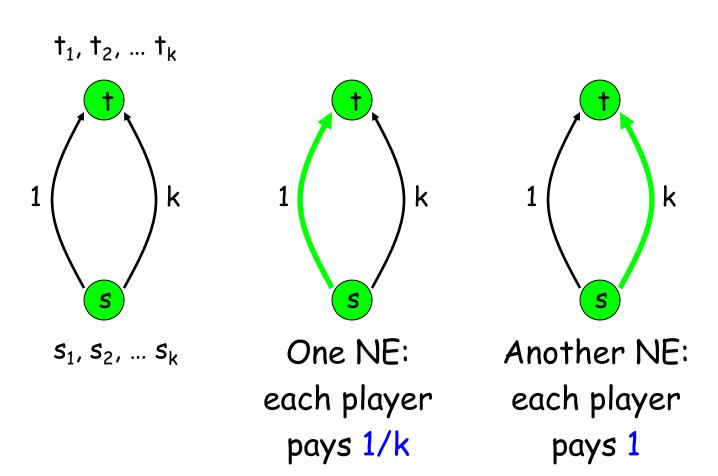
Assume economy of scale and fair sharing:

e.g.:
$$\ell_e(x) = c_e(x) / x$$





A Simple Example



Results for Network Design

```
Theorem [Anshelevich, Dasgupta, Kleinberg, Tardos, Wexler, Roughgarden FOCS'04]
```

There exists equilibrium with $cost \le O(log k)Opt$ for k players (bound sharp)

Proof

```
cost \leq \Phi \leq cost \cdot O(log k)
```

Price of Stability= -

cost of best selfish outcome

"socially optimum" cost

Design with constraint for stability

Stronger proof technique

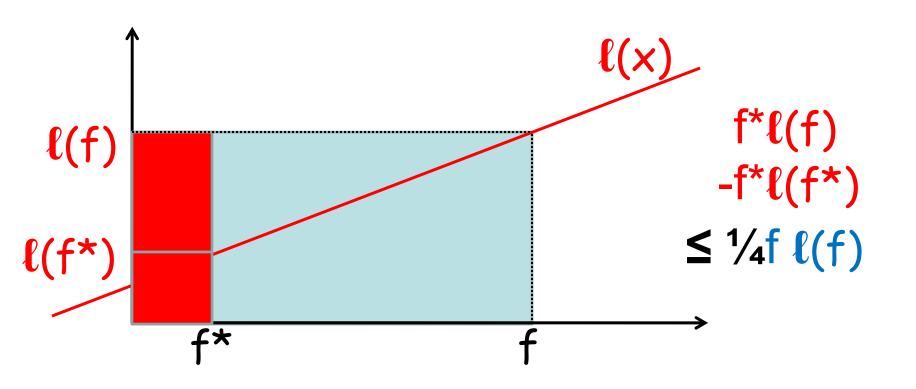
- bounds price of anarchy (not stability)
- Tight bounds in many games

```
A game is (\Lambda,\mu)-smooth if, for every pair f,f* outcomes (\Lambda > 0; \mu < 1):
```

$$\begin{split} & \Sigma_e \, f^*_e \cdot \ell_e(f_e) \, \leq \, \Lambda \Sigma_e \, f^*_e \cdot \ell_e(f^*_e) \, + \, \mu \Sigma_e \, f_e \cdot \ell_e(f_e) \\ & \text{or for all } f, f^* \geq 0 \\ & f^* \cdot \ell(f) \, \leq \, \Lambda \, f^* \cdot \ell(f^*) \, + \, \mu f \cdot \ell(f) \end{split}$$

Linear delay is smooth

```
Claim: f^* \cdot \ell(f) \le f^* \cdot \ell(f^*) + \frac{1}{4} f \cdot \ell(f)
assuming \ell(f) linear: \lambda = 1; \mu = \frac{1}{4}
```



Discrete version

Smooth for flows:

$$\Sigma_e f_e^* \cdot \ell_e(f_e) \leq \Lambda \Sigma_e f_e^* \cdot \ell_e(f_e^*) + \mu \Sigma_e f_e^* \cdot \ell_e(f_e^*)$$

A game is (Λ,μ) -smooth if, for every pair s,s^* outcomes

$$\Sigma_i C_i (s^*_i, s_{-i}) \leq \Lambda \cos t(s^*) + \mu \cos t(s)$$

Where cost(s) =
$$\Sigma_i C_i$$
(s)

- s_i strategy of user i
- s_{-i} strategies of all users

Smooth ⇒ Price of Anarchy [Roughgarden]


```
Use smooth for s = Nash and s^* = opt
\Sigma_i C_i(s^*_i, s_{-i}) \leq \lambda cost(s^*) + \mu cost(s)
cost(s) = \Sigma_i C_i(s_i, s_{-i})
\leq \Sigma_i C_i(s^*_i, s_{-i}) \qquad [s \text{ a Nash eq}]
\leq \lambda cost(s^*) + \mu cost(s) \qquad [smooth]
```

Then: $cost(s) \leq \lambda/(1-\mu) cost(s^*)$

Atomic Smoothness Bound

atomic linear delay smooth

$$\Sigma_i C_i(f^*_i, f_{-i}) \leq \Lambda \operatorname{cost}(f^*) + \mu \operatorname{cost}(f)$$

Consider edge by edge:

(nonatomic version):

$$f^* \cdot \ell(f) \leq \Lambda f^* \cdot \ell(f^*) + \mu f \cdot \ell(f)$$

Atomic version

$$f^* \cdot \ell(f+1) \leq \Lambda f^* \cdot \ell(f^*) + \mu f \cdot \ell(f)$$

basic inequality: $y(z+1) \le (5/3)y^2 + (1/3)z^2$

Implicit Smoothness Bounds

Examples: selfish routing, linear cost fns.

- every nonatomic game is (1,1/4)-smooth
 - follows directly from analysis in [Correa/Schulz/Stier Moses 05]
- every atomic game is (5/3,1/3)-smooth
 - follows directly from analysis in [Awerbuch/Azar/Epstein 05], [Christodoulou/Koutsoupias 05]
 - Implies a 5/2 bound on Price of Anarchy

Theorem [Roughgarden 09] for congestion game the best such bound tight

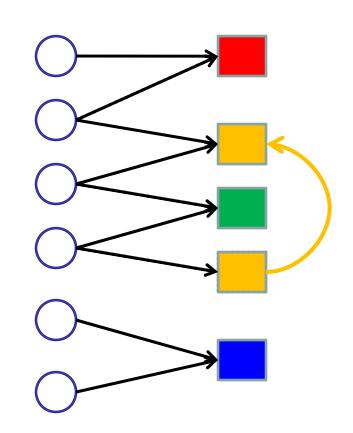
Smoothness for Value Problems

Vetta "competitive societies": value for facility location:

s Nash, s* Optimum

$$Val(s) \ge \Sigma_i Val_i(s^*_i,s_{-i}) \ge Val(s^*) - Val(s)$$

hence $Val(S) \ge \frac{1}{2}Val(s^*)$.



fyi: Also a potential game

Summary

Congestion games are potential games

- ∃ Pure equilibria (min of potential)
- Min of potential has OK quality
- Price of stability (or anarchy when unique)
- Smoothness and stronger Price of anarchy bounds
 - Applies to some other games also

Tomorrow:

- Learning in games (why and how?)
- solutions reached via learning