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Plan for the talks 

Network Games and Quality of Nash
• Examples of Games in Networks
• Outcome :  Nash 
• Quality = Price of Anarchy 

Learning in Network Games

Quality in other games: Ad-Auctions 



Why care about Games?
Users with a multitude 

of diverse economic 
interests sharing a 
Network (Internet)

• browsers
• routers
• servers

Selfishness:
Parties deviate from 

their protocol if it is 
in their interest

Model Resulting Issues as 

Games on Networks



Main question: 
Quality of Selfish outcome

Well known: Central design can lead to 
better outcome than selfishness.

e.g.: Prisoner Dilemma

Question: how much better?

Our Games
– Routing and Network formation: Users 

select paths that connects their terminals 
to minimize their own delay or cost
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Some Games
• Routing:
• routers choose path for packets though the Internet

• Bandwidth Sharing:
• routers share limited bandwidth between processes 

• Facility Location:
• Decide where to host certain Web applications

• Load Balancing
• Balancing load on servers (e.g. Web servers)

• Network Design:
• Independent service providers building the Internet 



Main question: 
Quality of Selfish outcome

Well known: Central design can lead to 
better outcome than selfishness.
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Routing network:

ℓe(x) = x
s t

1

Delay as a function 
of load:

x unit of load →
causes delay ℓe(x) 

load balancing and routing
Load balancing:

jobs

machines

ℓe(x) = x

Allow more complex 
networks

s t
x 1

x1
0



Games: setup
• A set of players (in example: jobs)
• for each player, a set of strategies    

(which machine to choose)
Game:  each player picks a strategy
For each strategy profile (a strategy for each 

player) → a payoff to each player
(load on selected machine)

Nash Equilibrium: stable strategy profile:
where no player can improve payoff by 
changing strategy



Games: setup
Deterministic (pure) or randomized (mixed) 

strategies?

Pure: each player selects a strategy. 
simple, natural, but stable solution may not exists

Mixed: each player chooses a probability distribution of 
strategies.

• equilibrium exists (Nash), 
• but pure strategies often make more sense



Atomic vs. Non-atomic Game

Non-atomic game:
• Users control an infinitesimally 

small amount of flow
• equilibrium: all flow path 

carrying flow are minimum 
total delay

s t
x 1

r=1

x1
0

80%

20%

Both congestion games: cost on edge e depends on the 
congestion (number of users)

Atomic Game:
• Each user controls a unit of flow, and 
• selects a single path or machine

s t
x 1

r=1

x1
0



Congestion Games: Routing
• A directed graph G = (V,E)
• source–sink pairs si,ti for 

i=1,..,k
• User i selects path Pi for  

traffic between si and ti
for each i=1,..,k

s t
x 1

x1

For each edge e a latency function ℓe(•)
Latency increasing with congestion

congestion: x

ℓe(x)



Example: Routing Game

• Traffic subject to congestion delays
• cars and packets follow shortest path

Large number of participants!! 



Congestion Games: Cost-sharing
• jobs i=1,..,k
• For each machine e a 

cost function ℓe(•)
– E.g. cloud computing

• Cost decreasing with 
congestion (decreasing 
marginal cost)

ℓe(x)ℓe(x)= ce/x

jobs

machines

ℓe(x) = ce/x

congestion: x



Quality of Outcome:

Personal objective for player i:
load Li or expected load E(Li)

Overall objective?

• Social Welfare: ∑i Li or 
expected value E(∑i Li )

• Alternately: makespan: maxi Li or 
95% or the Li values, etc

• With randomness: maxi E(Li) or
expected makespan E(maxi Li )



Connecting Nash and Opt

• Min-latency flow 
• for one s-t pair for simplicity

• minimize C(f) = Σe fe• ℓe(fe)
• subject to: f is an s-t flow
• carrying r units

• By summing over edges rather than paths
where fe = amount of flow on edge e



Characterizing the Optimal 
Flow

Optimality condition: small 
change doesn’t improve 
cost

.5

s t
x 1.5

x1
0

gradient is: (x ℓ(x))’ = ℓ(x)+x ℓ’(x)

selfish part altruistic term

For flows: all flow travels 
along minimum-gradient
paths



Optimal versus Nas Flow
Optimality condition: flow f is at minimum 
cost iff all flow travels along minimum-gradient
paths: gradient is ℓ(x)+x ℓ’(x)

.5

s t
x 1.5

x1
0

Nash: flow f is at Nash equilibrium iff all flow 
travels along minimum-latency paths: ℓ(x)

selfish part altruistic term

selfish part only



Nash ↔ Min-Cost

Corollary 1: min cost is “Nash” with “delay” 
ℓ(x)+x ℓ’(x)

Use of Corollary: If  x ℓ’(x) is changed as 
tax, selfish users follow optimal paths



Nash ↔ Min-Cost

Corollary 2: Nash is ‘’min cost’’ with “cost”

Ф(f) = Σe ∫0
feℓe(x) dx 

Why?

gradient of Ф(f) is delay:

(∫0
feℓe(x) dx )’   = ℓ(x)



Using function Ф 
• Nash is the solution minimizing   Ф

Theorem (Beckmann’56)
• In a network latency functions ℓe(x) that 

are monotone increasing and continuous, 

• a deterministic Nash equilibrium exists, 
and is essentially unique

Presenter
Presentation Notes
This is not necessarily the best OPT, but it can be, and we have no other means of getting better Nash.
So, actually, improving response finds this Nash!



Using potential Ф…
• Nash minimizes the function  Ф
• Hence,

Ф(Nash) ≤ Ф(OPT).

Suppose that we also know for any solution
Ф ≤ cost ≤ A Ф

→ cost(Nash) ≤ A Ф(Nash) ≤ A Ф(OPT) ≤ A
cost(OPT).

→ the Nash solution has good quality

Presenter
Presentation Notes
This is not necessarily the best OPT, but it can be, and we have no other means of getting better Nash.
So, actually, improving response finds this Nash!



Example: Ф ≤ cost ≤ A Ф

Example: ℓe(x) =xd then
– total delay is x·ℓe(x)=xd+1

– potential is ∫ ℓe(ξ) dξ = xd+1/(d+1)

More generally: delay ℓe(x) degree d 
polynomial: 
– ratio at most d+1

Sharp bound (see soon): price of anarchy 
for degree d polynomials is O(d/log d).



Sharper results for non-atomic 
games

Theorem 1 (Roughgarden-Tardos)
• In a network with linear latency functions

– i.e., of the form ℓe(x)=aex+be

• the cost of a Nash flow is at most 4/3
times that of the minimum-latency flow

However, O(d/log d) large as degree d 
gets large…



Aside: for non-atomic games
Theorem 3 (Roughgarden-Tardos):
• In any network with continuous, 

nondecreasing latency functions

cost of Nash with 
rates ri for all i

cost of opt with 
rates 2ri for all i≤

Proof idea:
Opt may cost very little, but marginal cost is as 
high as latency in Nash  
→ Augmenting to double rate costs at least as 
much as Nash



Atomic (discrete) Analog 
• Each user controls one

unit of flow, and 
• selects a single path

Theorem Change in potential is same as function 
change perceived by one user 

[Rosenthal’73, Monderer Shapley’96,]
Φ(f) = Σe ( ℓe(1)+…+ ℓe(fe)) = Σe Φe

Even though moving player ignores all other users

[Recall continuous potential: Ф(f) = Σe ∫0
feℓe(x) dx]

Corollary: Nash equilibria are local min. of Φ(f) 

s
t

s

t



Network Design as Potential 
Game

Given: G = (V,E),  
costs ce (x) for all e є E,
k terminal sets (colors)

Have a player for each color.

Each player wants to build a 
network in which his nodes 
are connected.

Player strategy: select a 
tree connecting his set.



Costs in Connection Game
Players pay for their trees,

want to minimize payments.

What is the cost of the edges?
ce (x) is cost of edge e for x users.

Assume economy of scale and fair 
sharing:

ℓe(x)e.g.:    ℓe(x)= ce(x) /x

congestion: x



A Simple Example

t

s

1 k

t1, t2, … tk

s1, s2, … sk

t

s

1 k

One NE:
each player 

pays 1/k

t

s

1 k

Another NE:
each player 

pays 1



Results for Network Design
Theorem [Anshelevich, Dasgupta, Kleinberg, 

Tardos, Wexler, Roughgarden FOCS’04]
There exists equilibrium with cost ≤ O(log k)Opt 

for k players (bound sharp)

Proof
cost ≤ Φ ≤ cost· O(log k)

cost of best selfish outcome
“socially optimum” costPrice of Stability=

Design with constraint for stability



Stronger proof technique

• bounds price of anarchy (not stability)
• Tight bounds in many games

A game is (λ,μ)-smooth if, for every pair 
f,f* outcomes (λ > 0; μ< 1):

Σe f*e•ℓe(fe) ≤ λΣe f*e•ℓe(f*e) + μΣe fe•ℓe(fe)

or for all f,f* ≥ 0
f*•ℓ(f) ≤ λ f*•ℓ(f*) + μf•ℓ(f)



Linear delay is smooth

Claim: f*•ℓ (f) ≤ f*•ℓ (f*) + ¼ f•ℓ (f)
assuming ℓ (f) linear: λ =1; μ=¼

f* f

ℓ(x)

ℓ(f*)

ℓ(f) f*ℓ(f)
-f*ℓ(f*)

≤ ¼f ℓ(f)



Discrete version
Smooth for flows:
Σe f*e•ℓe(fe) ≤ λΣe f*e•ℓe(f*e) + μΣe fe•ℓe(fe)

A game is (λ,μ)-smooth if, for every pair 
s,s* outcomes

Σi Ci (s*i,s-i) ≤ λ cost(s*) + μ cost(s)
Where cost(s) = Σi Ci (s) 

si strategy of user i 
s-i      strategies of all users 



Smooth ⇒ Price of Anarchy 
[Roughgarden]

Use smooth for s = Nash and s* = opt
Σi Ci (s*i,s-i) ≤ λ cost(s*) + μ cost(s)

cost(s)    = Σi Ci (si,s-i) 
≤ Σi Ci (s*i,s-i) [s a Nash eq] 

≤ λ cost(s*) + μ cost(s) [smooth] 

Then: cost(s) ≤ λ/(1-μ) cost(s*) 



Atomic Smoothness Bound
atomic linear delay smooth 
Σi Ci (f*i,f-i) ≤ λ cost(f*) + μ cost(f)
Consider edge by edge: 

(nonatomic version): 
f*•ℓ (f) ≤ λ f*•ℓ (f*) + μ f•ℓ (f)

Atomic version
f*•ℓ (f+1) ≤ λ f*•ℓ (f*) + μ f•ℓ (f)

basic inequality: y(z+1) ≤ (5/3)y2+ (1/3)z2 



Implicit Smoothness Bounds
Examples: selfish routing, linear cost fns.
• every nonatomic game is (1,1/4)-smooth

– follows directly from analysis in 
[Correa/Schulz/Stier Moses 05]

• every atomic game is (5/3,1/3)-smooth
– follows directly from analysis in 

[Awerbuch/Azar/Epstein 05], 
[Christodoulou/Koutsoupias 05]

– Implies a 5/2 bound on Price of Anarchy

Theorem [Roughgarden 09] for congestion 
game the best such bound tight



Smoothness for Value 
Problems

Vetta “competitive 
societies”: value for 
facility location: 

s Nash, s* Optimum
Val(s) ≥ Σi Vali (s*i,s-i) ≥

Val(s*) - Val(s)

hence Val(S) ≥ ½Val(s*).
fyi: Also a potential game



Summary
Congestion games are potential games
• ∃ Pure equilibria (min of potential)
• Min of potential has OK quality
• Price of stability (or anarchy when unique)
• Smoothness and stronger Price of anarchy bounds

– Applies to some other games also

Tomorrow:
– Learning in games (why and how?)
– solutions reached via learning
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