TOPOLOGICAL HYPERPLANE ARRANGEMENTS

David Forge, LRI, Université Paris-Sud and

Thomas Zaslavsky, Binghamton University (SUNY)

Conference in Honour of Peter Orlik Fields Institute, Toronto 19 August 2008

Topological hyperplane (topoplane):

 $Y \subset X$ such that $(X,Y) \cong (\mathbb{R}^n, \mathbb{R}^{n-1})$.

 \mathcal{A} : finite set of topoplanes.

Intersection semilattice:

$$\mathcal{L} := \{ \bigcap \mathcal{S} : \mathcal{S} \subseteq \mathcal{A} \text{ and } \bigcap \mathcal{S} \neq \emptyset \},$$

partially ordered (as is customary) by reverse inclusion.

Flat: An intersection (an element of \mathcal{L}).

Main definition:

 \mathcal{A} is an arrangement of topoplanes if:

$$\forall H \in \mathcal{A} \text{ and } \forall Y \in \mathcal{L}, \text{ either }$$

$$Y \subset H$$

or

$$H \cap Y = \emptyset$$

or

 $H \cap Y$ is a topoplane in Y.

Main Examples:

- \bullet Arrangement of real hyperplanes in \mathbb{R}^n (homogeneous or affine). (Winder, Zaslavsky, Las Vergnas)
- Arrangement of affine pseudohyperplanes representing an oriented matroid. (Las Vergnas)
- Intersection of a real hyperplane arrangement with a convex set. (Alexanderson & Wetzel, Zaslavsky)

Induced arrangement in a flat Y:

$$\mathcal{A}^Y := \{ Y \cap H : H \in \mathcal{A} \text{ and } Y \not\subseteq H \text{ and } Y \cap H \neq \emptyset \}.$$

Region: Connected component of complement $X \setminus \bigcup A$.

Face: Region of any \mathcal{A}^Y .

Theorem (Zaslavsky, 1977):

(1)
$$\# \text{ regions of } \mathcal{A} = \sum_{Y \in \mathcal{L}} |\mu(X, Y)|,$$

where μ is the Möbius function of \mathcal{L} , assuming the side condition that every region is a topological cell.

Primary Question:

Is this really new? Can we finagle it out of something 'simpler'? Las Vergnas's theorem for pseudohyperplane arrangements (oriented matroids)?

I.e.: $\exists \mathcal{A}'$ such that $\bigcup \mathcal{A}' = \bigcup \mathcal{A}$ and \mathcal{A}' is a pseudohyperplane arrangement?

Answer:

No!

Intersecting topoplanes may have the topology of two crossing hyperplanes,

(2)
$$(X, H_1, H_2, H_1 \cap H_2) \cong (\mathbb{R}^n, x_1 = 0, x_2 = 0, x_1 = x_2 = 0),$$
 or of two noncrossing 'flat' topoplanes,

(3)
$$(X, H_1, H_2, H_1 \cap H_2) \cong (\mathbb{R}^n, G_+, G_-, x_1 = x_2 = 0).$$

Definition: \mathcal{A} is *transsective* if every intersecting pair of topoplanes crosses.

Fact: An arrangement of (affine) pseudohyperplanes is transsective.

Types of Topoplane Arrangement

Reglueing

This means there is another arrangement, \mathcal{A}' , that has the same faces as \mathcal{A} :

$$\bigcup \mathcal{A}' = \bigcup \mathcal{A}.$$

In the Plane:

Theorem 9. For any arrangement of topolines, there is a transsective reglueing (i.e., every topoline intersection is a crossing).

(Proof by construction.)

Higher Dimensions:

Theorem 10. For a simple topoplane arrangement in which every region is a cell, there is a transsective reglueing.

(Proof by construction.)

Theorem 10'. For a nonsimple such arrangement, there need not be a transsective reglueing.

(Proof by example.)

PROOFS BY PICTURES

Elementary properties

- (1) If \mathcal{A} is an arrangement of topoplanes and Y is a flat, then the induced collection \mathcal{A}^Y is an arrangement of topoplanes.
- (2) For an arrangement of topoplanes, each interval in \mathcal{L} is a geometric lattice with rank given by codimension.
- (3) Suppose every region is a cell. Topoplanes H_1 and H_2 cross if and only if they intersect each other and each of the regions they form has boundary that meets both $H_1 \setminus H_2$ and $H_2 \setminus H_1$.
- (4) In a topoline arrangement every face is a cell.

Lemma 4. Suppose every region is a cell. H_1 and H_2 cross iff they intersect and each region they form has boundary that meets both $H_1 \setminus H_2$ and $H_2 \setminus H_1$.

Proof: Easy.

Lemma 6. Suppose every region is a cell. If H_1 and H_2 , cross, then $Y \cap H_1$ and $Y \cap H_2$ cross in \mathcal{A}^Y for each $Y \in \mathcal{L}$ such that $Y \cap H_1, Y \cap H_2$ are distinct topoplanes in Y.

Proof: Not as easy as you might think.

Reglueing in the Plane

Theorem 9. For any arrangement of topolines, there is an arrangement that has the same faces, and in which every intersection is a crossing.

Proof Sketch. We apply the method of descent to the number of noncrossing pairs of intersecting topolines. Suppose noncrossing topolines H^1 , H^2 have intersection point Z.

 $\mathcal{A}' := \{K^1, K^2, K^3, K^4\}.$

 \mathcal{A}' has the same faces. Must check: \mathcal{A}' is an arrangement of topolines (takes some work), with fewer noncrossing pairs (nearly obvious).

Since there are fewer noncrossing topoline pairs in the new arrangement, by continuing the process we get a transsective arrangement. \Box

Reglueing Fails in Three Dimensions

Proof of Theorem 10' by a counterexample of five topoplanes in \mathbb{R}^3 :

$$H_1 = \{x : x_1 = 0\},\$$

$$H_2 = \{x : x_2 = 0\},\$$

$$H_3 = \{x : x_2 = |x_1|\},\$$

$$H_4 = \{x : x_3 = 0\},\$$

$$H_5 = \{x : x_2 + x_3 = 0\}.$$

Every pair crosses except H_2 and H_3 . The common point of all topoplanes is O, the origin. The 1-dimensional flats are:

$$Z := H_1 \cap H_2 \cap H_3 = \{x : x_1 = x_2 = 0\},\$$

$$H_1 \cap H_4 = \{x : x_1 = x_3 = 0\},\$$

$$H_1 \cap H_5 = \{x : x_1 = 0, x_2 + x_3 = 0\},\$$

$$Y := H_2 \cap H_4 \cap H_5 = \{x : x_2 = x_3 = 0\},\$$

$$H_3 \cap H_4 = \{x : x_2 = |x_1|, x_3 = 0\},\$$

$$H_3 \cap H_5 = \{x : x_2 = |x_1| = -x_3\}.$$

The only two 1-dimensional flats that lie in three topoplanes are Z and Y.

Fact: It is impossible to have a transsective arrangement whose regions are the same as those of this one.

Simple Arrangements Reglue

 \mathcal{A} is simple if every flat is the intersection of the fewest possible topoplanes. Otherwise it is multiple.

Theorem 10. For a simple topoplane arrangement in which every region is a cell, there is an arrangement that has the same faces, and in which every topoplane intersection is a crossing.

Proof Sketch. Similar to the planar proof: the method of descent on the number of noncrossing intersecting pairs of topoplanes. The construction is the same. The complications are greater, but not too bad.

To show that \mathcal{A}' is an arrangement of topoplanes we consider the intersection of a topoplane H and a flat Y of the reglued arrangement \mathcal{A}' . This is the hard part of the proof. There are four cases, depending mostly on whether either H or Y is a topoplane or flat in the original arrangement \mathcal{A} .

Topoplanes vs. pseudohyperplanes

Projective pseudohyperplane arrangement:

A finite set $\mathcal P$ of subspaces in \mathbb{RP}^n such that

- each $(\mathbb{RP}^n, H) \cong (\mathbb{RP}^n, \mathbb{RP}^{n-1}),$
- the intersection Y of any members of \mathcal{P} is a \mathbb{RP}^d , and
- for any other H, either $Y \subseteq H$ or $H \cap Y$ is a pseudohyperplane in Y.

Known: Every region is an open cell and its closure is a closed cell.

Affine pseudohyperplane arrangement:

$$\mathfrak{P}_0 := \{ H \setminus H_0 \} \text{ in } \mathbb{R}^n = \mathbb{RP}^n \setminus H_0.$$

 \mathcal{A} is *projectivizable* if it is homeomorphic to a \mathcal{P}_0 .

Two topoplanes are *parallel* if they are disjoint.

Lemma 11. If a topoplane arrangement is projectivizable then it is transsective, parallelism is an equivalence relation on topoplanes, and every region is a cell.

Proof: Easy.

Look at a transsective topoplane arrangement in which parallelism is an equivalence relation?

How to Avoid Being Projective

1. Disconnection:

 \mathcal{A} is connected if $\bigcup \mathcal{A}$ is connected.

Disconnected A may be a pseudohyperplane arrangement. But:

Counterexample:

Put \mathcal{A}_1 and \mathcal{A}_2 in the right and left halfspaces of \mathbb{R}^n . Then $\mathcal{A}_1 \cup \mathcal{A}_2$ is disconnected.

Proposition 12. If A_1 has a pair of intersecting topoplanes, $A_1 \cup A_2$ is not projectivizable.

Proof: Easy.

In the Plane:

Theorem 13. A topoline arrangement is projectivizable iff it is transsective and parallelism is an equivalence relation.

The diagram (next) shows the construction.

2. Connection:

Counterexample:

$$L := \{x : x_1 x_2 = 0 \text{ and } x_1, x_2 \ge 0\}.$$

Parallelism is not transitive. Connected, transsective, but not projectivizable.

Question:

In higher dimensions, is intransitivity of parallelism the only obstruction?

3. Restriction to a Domain

Restriction of A to a domain:

 $\mathcal{A}^D:=\{\text{components of } H\cap D: H\in \mathcal{A} \text{ and } H\cap D\neq\varnothing\},$

where $D \subseteq \mathbb{R}^n$ is a cellular domain and \mathcal{A}^D is a topoplane arrangement in D. (Alexanderson and Wetzel, Zaslavsky)

Properties:

- \mathcal{A}^D is transsective if \mathcal{A} is transsective.
- Parallelism could be transitive in \mathcal{A} but not in \mathcal{A}^D .

Theorem (Las Vergnas, unpublished). Any transsective topoline arrangement is the restriction to a cellular domain of a projectivizable arrangement.

Question:

In higher dimensions, is failure of transsectivity the only obstruction to being the restriction of a projectivizable arrangement?

Las Vergnas has an apparent counterexample in dimension 3, being studied by J. Ramírez Alfonsín.

OPEN QUESTIONS

- (1) Is the condition that every region be a cell ever superfluous?
- (2) Are there simple properties that imply all intersecting topoplanes cross? For instance, if there are enough topoplanes?
- (3) Complexify!

REFERENCES

- [1] G.L. Alexanderson and John E. Wetzel, Dissections of a plane oval.
 Amer. Math. Monthly 84 (1977), 442–449.
 MR 58 #23976. Zbl. 375.50009.
- [2] Michel Las Vergnas, Matroïdes orientables.
 C. R. Acad. Sci. Paris Sér. A-B 280 (1975), Ai, A61-A64.
 MR 51 #7910. Zbl. 304.05013.
- [3] Thomas Zaslavsky, A combinatorial analysis of topological dissections.
 Adv. Math. 25 (1977), 267–285.
 MR 56 #5310. Zbl. 406.05004.
- [4] David Forge and Thomas Zaslavsky, On the division of space by topological hyperplanes. European J. Combin., to appear.