Totally free arrangements of hyperplanes

presented by

Hiroaki Terao (Hokkaido University)

Conference for Honor of PETER ORLIK
Fields Institute, Toronto, Canada
August 19, 2008

SEARCH INSIDE! ${ }^{\text {m }}$

SEARCH INSIDE! ${ }^{\text {" }}$

Ken's Kindle

Alice's Adventures in Won... Lewis Carroll a...

Arrangements of Hyperpla... Poter Orik and...
The Aspern Papers Henry James

A Christmas Carol Charles Dickens
+*****
Great Gatsby by F. Scott F... F. Scott Fitzge... James Joyce: Ulysses, A ... MobileReferen...

Totally free arrangements of hyperplanes

presented by

Hiroaki Terao (Hokkaido University)

Conference for Honor of PETER ORLIK
Fields Institute, Toronto, Canada
August 11, 2008

Joint with

Joint with

Takuro Abe (Hokkaido University)

Joint with

Takuro Abe (Hokkaido University)
 and

Joint with

Takuro Abe (Hokkaido University)

and
Masahiko Yoshinaga (Kobe University)

CONTENTS

CONTENTS

- 1. Notation and Definitions

CONTENTS

- 1. Notation and Definitions
- 2. Main Theorem

CONTENTS

- 1. Notation and Definitions
- 2. Main Theorem
- 3. Proof of Main Theorem

CONTENTS

- 1. Notation and Definitions
- 2. Main Theorem
- 3. Proof of Main Theorem
- 4. Questions

1. Notation and Definitions

1. Notation and Definitions

V : an ℓ-dimensional vector space $(\ell \geq 1)$ over \mathbb{K}

1. Notation and Definitions

V : an ℓ-dimensional vector space $(\ell \geq 1)$ over \mathbb{K}
$\left\{x_{1}, \ldots, x_{\ell}\right\}$: a basis for V^{*}

1. Notation and Definitions

V : an ℓ-dimensional vector space $(\ell \geq 1)$ over \mathbb{K}
$\left\{x_{1}, \ldots, x_{\ell}\right\}:$ a basis for V^{*}
$S:=\operatorname{Sym}\left(V^{*}\right) \simeq \mathbb{K}\left[x_{1}, \ldots, x_{\ell}\right]$

1. Notation and Definitions

V : an ℓ-dimensional vector space $(\ell \geq 1)$ over \mathbb{K}
$\left\{x_{1}, \ldots, x_{\ell}\right\}$: a basis for V^{*}
$S:=\operatorname{Sym}\left(V^{*}\right) \simeq \mathbb{K}\left[x_{1}, \ldots, x_{\ell}\right]$
$\operatorname{Der}_{\mathbb{K}}(S):=\oplus_{i=1}^{\ell} S\left(\partial / \partial x_{i}\right):$ the derivation module

1. Notation and Definitions

V : an ℓ-dimensional vector space $(\ell \geq 1)$ over \mathbb{K}
$\left\{x_{1}, \ldots, x_{\ell}\right\}$: a basis for V^{*}
$S:=\operatorname{Sym}\left(V^{*}\right) \simeq \mathbb{K}\left[x_{1}, \ldots, x_{\ell}\right]$
$\operatorname{Der}_{\mathbb{K}}(S):=\oplus_{i=1}^{\ell} S\left(\partial / \partial x_{i}\right)$: the derivation module
Assume that every arrangement is central.

1. Notation and Definitions

V : an ℓ-dimensional vector space $(\ell \geq 1)$ over \mathbb{K}
$\left\{x_{1}, \ldots, x_{\ell}\right\}$: a basis for V^{*}
$S:=\operatorname{Sym}\left(V^{*}\right) \simeq \mathbb{K}\left[x_{1}, \ldots, x_{\ell}\right]$
$\operatorname{Der}_{\mathbb{K}}(S):=\oplus_{i=1}^{\ell} S\left(\partial / \partial x_{i}\right):$ the derivation module
Assume that every arrangement is central.
$m: \mathcal{A} \rightarrow \mathbb{Z}_{>0}:$ a multiplicity

1. Notation and Definitions

V : an ℓ-dimensional vector space $(\ell \geq 1)$ over \mathbb{K}
$\left\{x_{1}, \ldots, x_{\ell}\right\}:$ a basis for V^{*}
$S:=\operatorname{Sym}\left(V^{*}\right) \simeq \mathbb{K}\left[x_{1}, \ldots, x_{\ell}\right]$
$\operatorname{Der}_{\mathbb{K}}(S):=\oplus_{i=1}^{\ell} S\left(\partial / \partial x_{i}\right)$: the derivation module
Assume that every arrangement is central.
$m: \mathcal{A} \rightarrow \mathbb{Z}_{>0}:$ a multiplicity
(\mathcal{A}, m) : a multiarrangement

1. Notation and Definitions

1. Notation and Definitions

Fix a linear form α_{H} such that $\operatorname{ker}\left(\alpha_{H}\right)=H$ for each $H \in \mathcal{A}$.

1. Notation and Definitions

Fix a linear form α_{H} such that $\operatorname{ker}\left(\alpha_{H}\right)=H$ for each $H \in \mathcal{A}$.
A multiarrangement (\mathcal{A}, m) is free if the logarithmic derivation module

1. Notation and Definitions

Fix a linear form α_{H} such that $\operatorname{ker}\left(\alpha_{H}\right)=H$ for each $H \in \mathcal{A}$.
A multiarrangement (\mathcal{A}, m) is free if the logarithmic derivation module

$$
D(\mathcal{A}, m):=\left\{\theta \in \operatorname{Der}_{\mathbb{R}}(S) \mid \theta\left(\alpha_{H}\right) \in S \cdot \alpha_{H}^{m(H)} \forall H \in \mathcal{A}\right\}
$$

is a free S-module.

1. Notation and Definitions

Fix a linear form α_{H} such that $\operatorname{ker}\left(\alpha_{H}\right)=H$ for each $H \in \mathcal{A}$.
A multiarrangement (\mathcal{A}, m) is free if the logarithmic derivation module

$$
D(\mathcal{A}, m):=\left\{\theta \in \operatorname{Der}_{\mathbb{R}}(S) \mid \theta\left(\alpha_{H}\right) \in S \cdot \alpha_{H}^{m(H)} \forall H \in \mathcal{A}\right\}
$$

is a free S-module.

The freeness of multiarrangements was introduced by G. Ziegler (1989).

1. Notation and Definitions

1. Notation and Definitions

A multiplicity $m: \mathcal{A} \rightarrow \mathbb{Z}_{>0}$ is called free if (\mathcal{A}, m) is free.

1. Notation and Definitions

A multiplicity $m: \mathcal{A} \rightarrow \mathbb{Z}_{>0}$ is called free if (\mathcal{A}, m) is free.
Define the non-free multiplicity set
$\mathcal{N} \mathcal{F} \mathcal{M}(\mathcal{A}):=\left\{m: \mathcal{A} \rightarrow \mathbb{Z}_{>0} \mid m\right.$ is not a free multiplicity $\}$.

1. Notation and Definitions

A multiplicity $m: \mathcal{A} \rightarrow \mathbb{Z}_{>0}$ is called free if (\mathcal{A}, m) is free.
Define the non-free multiplicity set
$\mathcal{N} \mathcal{F} \mathcal{M}(\mathcal{A}):=\left\{m: \mathcal{A} \rightarrow \mathbb{Z}_{>0} \mid m\right.$ is not a free multiplicity $\}$.

Definition 1.1 An arrangement \mathcal{A} is called totally free if every multiplicity $m: \mathcal{A} \rightarrow \mathbb{Z}_{>0}$ is a free multiplicity, or equivalently $\mathcal{N} \mathcal{F} \mathcal{M}(\mathcal{A})=\emptyset$.

1. Notation and Definitions

A multiplicity $m: \mathcal{A} \rightarrow \mathbb{Z}_{>0}$ is called free if (\mathcal{A}, m) is free.
Define the non-free multiplicity set
$\mathcal{N} \mathcal{F} \mathcal{M}(\mathcal{A}):=\left\{m: \mathcal{A} \rightarrow \mathbb{Z}_{>0} \mid m\right.$ is not a free multiplicity $\}$.

Definition 1.1 An arrangement \mathcal{A} is called totally free if every multiplicity $m: \mathcal{A} \rightarrow \mathbb{Z}_{>0}$ is a free multiplicity, or equivalently $\mathcal{N} \mathcal{F} \mathcal{M}(\mathcal{A})=\emptyset$.

For example, any arrangement in either one-dimensional or two-dimensional vector spaces is totally free. Boolean arrangements are totally free.

2. Main Theorem - statement

2. Main Theorem - statement

Main Theorem. An arrangement \mathcal{A} is totally free if and only if

2. Main Theorem - statement

Main Theorem. An arrangement \mathcal{A} is totally free if and only if it has a decomposition

$$
\mathcal{A}=\mathcal{A}_{1} \times \mathcal{A}_{2} \times \cdots \times \mathcal{A}_{s}
$$

where each \mathcal{A}_{i} is an arrangement in either one-dimensional or two-dimensional vector spaces.

2. Main Theorem - statement

Main Theorem. An arrangement \mathcal{A} is totally free if and only if it has a decomposition

$$
\mathcal{A}=\mathcal{A}_{1} \times \mathcal{A}_{2} \times \cdots \times \mathcal{A}_{s}
$$

where each \mathcal{A}_{i} is an arrangement in either one-dimensional or two-dimensional vector spaces.

We will also prove the following theorem:

2. Main Theorem - statement

Main Theorem. An arrangement \mathcal{A} is totally free if and only if it has a decomposition

$$
\mathcal{A}=\mathcal{A}_{1} \times \mathcal{A}_{2} \times \cdots \times \mathcal{A}_{s},
$$

where each \mathcal{A}_{i} is an arrangement in either one-dimensional or two-dimensional vector spaces.

We will also prove the following theorem:
Theorem 2.1. If $\mathcal{N} \mathcal{F} \mathcal{M}(\mathcal{A})$ is a finite set, then it is empty.

2. Main Theorem - two corollaries

2. Main Theorem - two corollaries

Main Theorem (again). An arrangement \mathcal{A} is totally free if and only if it has a decomposition

$$
\mathcal{A}=\mathcal{A}_{1} \times \mathcal{A}_{2} \times \cdots \times \mathcal{A}_{s},
$$

where each \mathcal{A}_{i} is an arrangement in either one-dimensional or two-dimensional vector spaces.

2. Main Theorem - two corollaries

Main Theorem (again). An arrangement \mathcal{A} is totally free if and only if it has a decomposition

$$
\mathcal{A}=\mathcal{A}_{1} \times \mathcal{A}_{2} \times \cdots \times \mathcal{A}_{s},
$$

where each \mathcal{A}_{i} is an arrangement in either one-dimensional or two-dimensional vector spaces.

Corollary 2.2 The totally freeness is a combinatorial property. (i. e., depending only on the intersection lattice $L(\mathcal{A})$.)

2. Main Theorem - two corollaries

Main Theorem (again). An arrangement \mathcal{A} is totally free if and only if it has a decomposition

$$
\mathcal{A}=\mathcal{A}_{1} \times \mathcal{A}_{2} \times \cdots \times \mathcal{A}_{s},
$$

where each \mathcal{A}_{i} is an arrangement in either one-dimensional or two-dimensional vector spaces.

Corollary 2.2 The totally freeness is a combinatorial property.
(i. e., depending only on the intersection lattice $L(\mathcal{A})$.)

Corollary 2.3 The totally freeness is closed under restriction and deletion.
3. Proof of Main Theorem - LMP vs $G M P$

3. Proof of Main Theorem - LMP vs $G M P$

(\mathcal{A}, m) : a free multiarrangement

3. Proof of Main Theorem - LMP vs $G M P$

(\mathcal{A}, m) : a free multiarrangement
$\theta_{1}, \ldots, \theta_{\ell}$: a homogeneous basis for $D(\mathcal{A}, m)$

3. Proof of Main Theorem - LMP vs $G M P$

(\mathcal{A}, m) : a free multiarrangement
$\theta_{1}, \ldots, \theta_{\ell}$: a homogeneous basis for $D(\mathcal{A}, m)$
$\exp (\mathcal{A}, m):=\left(\operatorname{deg} \theta_{1}, \ldots, \operatorname{deg} \theta_{\ell}\right):$ the set of exponents
$\left(\operatorname{deg}\left(\theta_{i}\right):=\operatorname{deg} \theta_{i}(\alpha)\right.$ for any linear form α with $\left.\theta_{i}(\alpha) \neq 0\right)$

3. Proof of Main Theorem - LMP vs $G M P$

(\mathcal{A}, m) : a free multiarrangement
$\theta_{1}, \ldots, \theta_{\ell}$: a homogeneous basis for $D(\mathcal{A}, m)$
$\exp (\mathcal{A}, m):=\left(\operatorname{deg} \theta_{1}, \ldots, \operatorname{deg} \theta_{\ell}\right):$ the set of exponents
$\left(\operatorname{deg}\left(\theta_{i}\right):=\operatorname{deg} \theta_{i}(\alpha)\right.$ for any linear form α with $\left.\theta_{i}(\alpha) \neq 0\right)$
$L(\mathcal{A})_{2}:=\left\{X \in L(\mathcal{A}) \mid \operatorname{codim}_{V}(X)=2\right\}$

3. Proof of Main Theorem - LMP vs $G M P$

(\mathcal{A}, m) : a free multiarrangement
$\theta_{1}, \ldots, \theta_{\ell}$: a homogeneous basis for $D(\mathcal{A}, m)$
$\exp (\mathcal{A}, m):=\left(\operatorname{deg} \theta_{1}, \ldots, \operatorname{deg} \theta_{\ell}\right):$ the set of exponents
$\left(\operatorname{deg}\left(\theta_{i}\right):=\operatorname{deg} \theta_{i}(\alpha)\right.$ for any linear form α with $\left.\theta_{i}(\alpha) \neq 0\right)$
$L(\mathcal{A})_{2}:=\left\{X \in L(\mathcal{A}) \mid \operatorname{codim}_{V}(X)=2\right\}$
$\mathcal{A}_{X}:=\{H \in \mathcal{A} \mid X \subset H\}:$ the localization of \mathcal{A} at X
3. Proof of Main Theorem - LMP vs $G M P$

3. Proof of Main Theorem - LMP vs $G M P$

$\left(d_{1}^{X}, d_{2}^{X}, 0, \ldots, 0\right):$ the exponents of $\left(\mathcal{A}_{X},\left.m\right|_{\mathcal{A}_{X}}\right)$

3. Proof of Main Theorem - LMP vs $G M P$

$\left(d_{1}^{X}, d_{2}^{X}, 0, \ldots, 0\right):$ the exponents of $\left(\mathcal{A}_{X},\left.m\right|_{\mathcal{A}_{X}}\right)$
$L M P_{2}(\mathcal{A}, m):=\sum_{X \in L(\mathcal{A})_{2}} d_{1}^{X} d_{2}^{X}:$ second local mixed product

3. Proof of Main Theorem - LMP vs $G M P$

$\left(d_{1}^{X}, d_{2}^{X}, 0, \ldots, 0\right):$ the exponents of $\left(\mathcal{A}_{X},\left.m\right|_{\mathcal{A}_{X}}\right)$
$L M P_{2}(\mathcal{A}, m):=\sum_{X \in L(\mathcal{A})_{2}} d_{1}^{X} d_{2}^{X}:$ second local mixed product
Suppose that (\mathcal{A}, m) is free with exponents $\left(d_{1}, \ldots, d_{\ell}\right)$

3. Proof of Main Theorem - LMP vs $G M P$

$\left(d_{1}^{X}, d_{2}^{X}, 0, \ldots, 0\right):$ the exponents of $\left(\mathcal{A}_{X},\left.m\right|_{\mathcal{A}_{X}}\right)$
$L M P_{2}(\mathcal{A}, m):=\sum_{X \in L(\mathcal{A})_{2}} d_{1}^{X} d_{2}^{X}:$ second local mixed product
Suppose that (\mathcal{A}, m) is free with exponents $\left(d_{1}, \ldots, d_{\ell}\right)$
$G M P_{2}(\mathcal{A}, m):=\sum_{1 \leq i<j \leq \ell} d_{i} d_{j}:$ second global mixed product

3. Proof of Main Theorem - LMP vs $G M P$

$\left(d_{1}^{X}, d_{2}^{X}, 0, \ldots, 0\right):$ the exponents of $\left(\mathcal{A}_{X},\left.m\right|_{\mathcal{A}_{X}}\right)$
$L M P_{2}(\mathcal{A}, m):=\sum_{X \in L(\mathcal{A})_{2}} d_{1}^{X} d_{2}^{X}:$ second local mixed product
Suppose that (\mathcal{A}, m) is free with exponents $\left(d_{1}, \ldots, d_{\ell}\right)$
$G M P_{2}(\mathcal{A}, m):=\sum_{1 \leq i<j \leq \ell} d_{i} d_{j} \quad:$ second global mixed product
Theorem 3.1. (Abe-T-Wakefield (2007)) If a multiarrangement (\mathcal{A}, m) is free, then

$$
L M P_{2}(\mathcal{A}, m)=G M P_{2}(\mathcal{A}, m) .
$$

3. Proof of Main Theorem

3. Proof of Main Theorem

\mathcal{A} is said to be reducible if $\mathcal{A}=\mathcal{A}_{1} \times \mathcal{A}_{2}$ for certain arrangements \mathcal{A}_{i} in $V_{i}(i=1,2)$.

3. Proof of Main Theorem

\mathcal{A} is said to be reducible if $\mathcal{A}=\mathcal{A}_{1} \times \mathcal{A}_{2}$ for certain arrangements \mathcal{A}_{i} in $V_{i}(i=1,2)$.
\mathcal{A} is irreducible if it is not reducible.

3. Proof of Main Theorem

\mathcal{A} is said to be reducible if $\mathcal{A}=\mathcal{A}_{1} \times \mathcal{A}_{2}$ for certain arrangements \mathcal{A}_{i} in $V_{i}(i=1,2)$.
\mathcal{A} is irreducible if it is not reducible.
Lemma 3.2. Let \mathcal{A} be an irreducible arrangement in \mathbb{K}^{ℓ} with $\ell \geq 2$. Then there exist $\ell+1$ hyperplanes $H_{1}, H_{2}, \ldots, H_{\ell+1}$ in \mathcal{A} satisfying the following conditions:

3. Proof of Main Theorem

\mathcal{A} is said to be reducible if $\mathcal{A}=\mathcal{A}_{1} \times \mathcal{A}_{2}$ for certain arrangements \mathcal{A}_{i} in $V_{i}(i=1,2)$.
\mathcal{A} is irreducible if it is not reducible.
Lemma 3.2. Let \mathcal{A} be an irreducible arrangement in \mathbb{K}^{ℓ} with $\ell \geq 2$. Then there exist $\ell+1$ hyperplanes $H_{1}, H_{2}, \ldots, H_{\ell+1}$ in \mathcal{A} satisfying the following conditions:

$$
\begin{aligned}
\operatorname{codim}_{V} H_{i_{1}} \cap H_{i_{2}} \cap \cdots \cap H_{i_{p}} & =p\left(1 \leq i_{1}<\cdots<i_{p} \leq \ell+1,1 \leq p \leq \ell\right), \\
H_{1} \cap H_{2} \cap \cdots \cap H_{\ell+1} & =\{\mathbf{0}\} .
\end{aligned}
$$

3. Proof of Main Theorem

3. Proof of Main Theorem

Proposition 3.3 If \mathcal{A} is an irreducible arrangement in \mathbb{K}^{ℓ} with $\ell \geq 3$, then $\mathcal{N} \mathcal{F} \mathcal{M}(\mathcal{A})$ is an infinite set.

3. Proof of Main Theorem

Proposition 3.3 If \mathcal{A} is an irreducible arrangement in \mathbb{K}^{ℓ} with $\ell \geq 3$, then $\mathcal{N} \mathcal{F} \mathcal{M}(\mathcal{A})$ is an infinite set.

Proof. Suppose that $\mathcal{N F} \mathcal{M}(\mathcal{A})$ is a finite set. Choose $\ell+1$ hyperplanes $H_{1}, H_{2}, \ldots, H_{\ell+1}$ in \mathcal{A} satisfying the conditions in Lemma 3.2.

3. Proof of Main Theorem

Proposition 3.3 If \mathcal{A} is an irreducible arrangement in \mathbb{K}^{ℓ} with $\ell \geq 3$, then $\mathcal{N} \mathcal{F} \mathcal{M}(\mathcal{A})$ is an infinite set.

Proof. Suppose that $\mathcal{N F} \mathcal{M}(\mathcal{A})$ is a finite set. Choose $\ell+1$ hyperplanes $H_{1}, H_{2}, \ldots, H_{\ell+1}$ in \mathcal{A} satisfying the conditions in Lemma 3.2.

Let $\mathcal{B}:=\left\{H_{1}, H_{2}, \ldots, H_{\ell+1}\right\}$. Define a multiplicity m by:

$$
m(H)= \begin{cases}1 & \text { if } H \notin \mathcal{B}, \\ k & \text { if } H \in \mathcal{B},\end{cases}
$$

for every positive integer k.
3. Proof of Main Theorem

3. Proof of Main Theorem

Since $\mathcal{N F} \mathcal{M}(\mathcal{A})$ is a finite set, the multiarrangement (\mathcal{A}, m) is free whenever k is sufficiently large. Note $\left|L(\mathcal{B})_{2}\right|=\binom{\ell+1}{2}$.

3. Proof of Main Theorem

Since $\mathcal{N F} \mathcal{M}(\mathcal{A})$ is a finite set, the multiarrangement (\mathcal{A}, m) is free whenever k is sufficiently large. Note $\left|L(\mathcal{B})_{2}\right|=\binom{\ell+1}{2}$.

By the definition of $L M P_{2}$,

$$
L M P_{2}(\mathcal{A}, m) \geq L M P_{2}\left(\mathcal{B},\left.m\right|_{\mathcal{B}}\right)=\left|L(\mathcal{B})_{2}\right| k^{2}=\binom{\ell+1}{2} k^{2} .
$$

3. Proof of Main Theorem

Since $\mathcal{N} \mathcal{F M}(\mathcal{A})$ is a finite set, the multiarrangement (\mathcal{A}, m) is free whenever k is sufficiently large. Note $\left|L(\mathcal{B})_{2}\right|=\binom{\ell+1}{2}$.

By the definition of $L M P_{2}$,

$$
L M P_{2}(\mathcal{A}, m) \geq L M P_{2}\left(\mathcal{B},\left.m\right|_{\mathcal{B}}\right)=\left|L(\mathcal{B})_{2}\right| k^{2}=\binom{\ell+1}{2} k^{2}
$$

Let $|\mathcal{A}|=n$. Then

$$
\sum_{d \in \exp (\mathcal{A}, m)} d=(k-1)(\ell+1)+n .
$$

3. Proof of Main Theorem

$G M P_{2}(\mathcal{A}, m) \leq\binom{\ell}{2}\left\{\frac{(k-1)(\ell+1)+n}{\ell}\right\}^{2}=\frac{(\ell+1)^{2}(\ell-1)}{2 \ell} k^{2}+A k+B$
with some constants A and B. By Theorem 3.1. we have

3. Proof of Main Theorem

$G M P_{2}(\mathcal{A}, m) \leq\binom{\ell}{2}\left\{\frac{(k-1)(\ell+1)+n}{\ell}\right\}^{2}=\frac{(\ell+1)^{2}(\ell-1)}{2 \ell} k^{2}+A k+B$
with some constants A and B. By Theorem 3.1. we have
$\binom{\ell+1}{2} k^{2} \leq L M P_{2}(\mathcal{A}, m)=G M P_{2}(\mathcal{A}, m) \leq \frac{(\ell+1)^{2}(\ell-1)}{2 \ell} k^{2}+A k+B$
whenever k is sufficiently large.

3. Proof of Main Theorem

$G M P_{2}(\mathcal{A}, m) \leq\binom{\ell}{2}\left\{\frac{(k-1)(\ell+1)+n}{\ell}\right\}^{2}=\frac{(\ell+1)^{2}(\ell-1)}{2 \ell} k^{2}+A k+B$
with some constants A and B. By Theorem 3.1. we have
$\binom{\ell+1}{2} k^{2} \leq L M P_{2}(\mathcal{A}, m)=G M P_{2}(\mathcal{A}, m) \leq \frac{(\ell+1)^{2}(\ell-1)}{2 \ell} k^{2}+A k+B$
whenever k is sufficiently large.
This is a contradiction because

$$
\binom{\ell+1}{2}-\frac{(\ell+1)^{2}(\ell-1)}{2 \ell}=\frac{\ell+1}{2 \ell}>0 .
$$

3. Proof of Main Theorem

3. Proof of Main Theorem

We now prove the following theorem stronger than Main Theorem.

3. Proof of Main Theorem

We now prove the following theorem stronger than Main Theorem.
Theorem 3.4 The following four conditions are equivalent:

3. Proof of Main Theorem

We now prove the following theorem stronger than Main Theorem.
Theorem 3.4 The following four conditions are equivalent:
(1) \mathcal{A} is totally free, i. e., $\mathcal{N} \mathcal{F} \mathcal{M}(\mathcal{A})$ is empty,

3. Proof of Main Theorem

We now prove the following theorem stronger than Main Theorem.
Theorem 3.4 The following four conditions are equivalent:
(1) \mathcal{A} is totally free, i. e., $\mathcal{N} \mathcal{F} \mathcal{M}(\mathcal{A})$ is empty,
(2) $\mathcal{N F} \mathcal{M}(\mathcal{A})$ is a finite set,

3. Proof of Main Theorem

We now prove the following theorem stronger than Main Theorem.
Theorem 3.4 The following four conditions are equivalent:
(1) \mathcal{A} is totally free, i. e., $\mathcal{N} \mathcal{F} \mathcal{M}(\mathcal{A})$ is empty,
(2) $\mathcal{N F} \mathcal{F}(\mathcal{A})$ is a finite set,
(3) \mathcal{A} has a decomposition $\mathcal{A}=\mathcal{A}_{1} \times \mathcal{A}_{2} \times \cdots \times \mathcal{A}_{s}$, where each \mathcal{A}_{i} is an arrangement in either one-dimensional or two-dimensional vector spaces,

3. Proof of Main Theorem

We now prove the following theorem stronger than Main Theorem.
Theorem 3.4 The following four conditions are equivalent:
(1) \mathcal{A} is totally free, i. e., $\mathcal{N} \mathcal{F} \mathcal{M}(\mathcal{A})$ is empty,
(2) $\mathcal{N F} \mathcal{F}(\mathcal{A})$ is a finite set,
(3) \mathcal{A} has a decomposition $\mathcal{A}=\mathcal{A}_{1} \times \mathcal{A}_{2} \times \cdots \times \mathcal{A}_{s}$, where each \mathcal{A}_{i} is an arrangement in either one-dimensional or two-dimensional vector spaces,
(4) every subarrangement of \mathcal{A} is free.

3. Proof of Main Theorem

We now prove the following theorem stronger than Main Theorem.
Theorem 3.4 The following four conditions are equivalent:
(1) \mathcal{A} is totally free, i. e., $\mathcal{N} \mathcal{F} \mathcal{M}(\mathcal{A})$ is empty,
(2) $\mathcal{N F} \mathcal{F}(\mathcal{A})$ is a finite set,
(3) \mathcal{A} has a decomposition $\mathcal{A}=\mathcal{A}_{1} \times \mathcal{A}_{2} \times \cdots \times \mathcal{A}_{s}$, where each \mathcal{A}_{i} is an arrangement in either one-dimensional or two-dimensional vector spaces,
(4) every subarrangement of \mathcal{A} is free.

Proof. We only show $(2) \Rightarrow(3)$ and $(4) \Rightarrow(3)$ because the other implications are easy to check.
3. Proof of Main Theorem

3. Proof of Main Theorem

$(2) \Rightarrow(3)$: Suppose that $\mathcal{N} \mathcal{F} \mathcal{M}(\mathcal{A})$ is a finite set.

3. Proof of Main Theorem

$(2) \Rightarrow(3)$: Suppose that $\mathcal{N} \mathcal{F M}(\mathcal{A})$ is a finite set.
Decompose \mathcal{A} into

$$
\mathcal{A}_{1} \times \mathcal{A}_{2} \times \cdots \times \mathcal{A}_{s}
$$

such that each \mathcal{A}_{i} is irreducible.

3. Proof of Main Theorem

$(2) \Rightarrow(3)$: Suppose that $\mathcal{N} \mathcal{F M}(\mathcal{A})$ is a finite set.
Decompose \mathcal{A} into

$$
\mathcal{A}_{1} \times \mathcal{A}_{2} \times \cdots \times \mathcal{A}_{s}
$$

such that each \mathcal{A}_{i} is irreducible.
Since

$$
D(\mathcal{A}, m) \simeq S \cdot D\left(\mathcal{A}_{1},\left.m\right|_{\mathcal{A}_{1}}\right) \oplus S \cdot D\left(\mathcal{A}_{2},\left.m\right|_{\mathcal{A}_{2}}\right) \oplus \cdots \oplus S \cdot D\left(\mathcal{A}_{s},\left.m\right|_{\mathcal{A}_{s}}\right)
$$

holds, $\mathcal{N F} \mathcal{M}\left(\mathcal{A}_{i}\right)$ is a finite set.

3. Proof of Main Theorem

$(2) \Rightarrow(3)$: Suppose that $\mathcal{N} \mathcal{F} \mathcal{M}(\mathcal{A})$ is a finite set.
Decompose \mathcal{A} into

$$
\mathcal{A}_{1} \times \mathcal{A}_{2} \times \cdots \times \mathcal{A}_{s}
$$

such that each \mathcal{A}_{i} is irreducible.
Since
$D(\mathcal{A}, m) \simeq S \cdot D\left(\mathcal{A}_{1},\left.m\right|_{\mathcal{A}_{1}}\right) \oplus S \cdot D\left(\mathcal{A}_{2},\left.m\right|_{\mathcal{A}_{2}}\right) \oplus \cdots \oplus S \cdot D\left(\mathcal{A}_{s},\left.m\right|_{\mathcal{A}_{s}}\right)$
holds, $\mathcal{N F} \mathcal{M}\left(\mathcal{A}_{i}\right)$ is a finite set.
Thus Proposition 3.3 shows that each arrangement \mathcal{A}_{i} is in \mathbb{K}^{1} or \mathbb{K}^{2}.

3. Proof of Main Theorem

(4) \Rightarrow (3): Decompose \mathcal{A} into irreducible arrangements.

3. Proof of Main Theorem

$(4) \Rightarrow(3)$: Decompose \mathcal{A} into irreducible arrangements.
Then each of the irreducible arrangements satisfies the assumption (4).

3. Proof of Main Theorem

$(4) \Rightarrow(3)$: Decompose \mathcal{A} into irreducible arrangements.
Then each of the irreducible arrangements satisfies the assumption (4).
Therefore we may assume that \mathcal{A} is irreducible from the beginning.

3. Proof of Main Theorem

$(4) \Rightarrow(3)$: Decompose \mathcal{A} into irreducible arrangements.
Then each of the irreducible arrangements satisfies the assumption (4).
Therefore we may assume that \mathcal{A} is irreducible from the beginning.
Enough to prove $\ell \leq 2$. Suppose $\ell \geq 3$.

3. Proof of Main Theorem

$(4) \Rightarrow(3)$: Decompose \mathcal{A} into irreducible arrangements.
Then each of the irreducible arrangements satisfies the assumption (4).
Therefore we may assume that \mathcal{A} is irreducible from the beginning.
Enough to prove $\ell \leq 2$. Suppose $\ell \geq 3$.
Then there exist $\ell+1$ hyperplanes $H_{1}, H_{2}, \ldots, H_{\ell+1}$ in \mathcal{A} satisfying the conditions in Lemma 3.2.

3. Proof of Main Theorem

$(4) \Rightarrow(3)$: Decompose \mathcal{A} into irreducible arrangements.
Then each of the irreducible arrangements satisfies the assumption (4).
Therefore we may assume that \mathcal{A} is irreducible from the beginning.
Enough to prove $\ell \leq 2$. Suppose $\ell \geq 3$.
Then there exist $\ell+1$ hyperplanes $H_{1}, H_{2}, \ldots, H_{\ell+1}$ in \mathcal{A} satisfying the conditions in Lemma 3.2.

Then the arrangement $\mathcal{B}=\left\{H_{1}, H_{2}, \ldots, H_{\ell+1}\right\}$ is a generic arrangement which is known to be non-free.

3. Proof of Main Theorem

$(4) \Rightarrow(3)$: Decompose \mathcal{A} into irreducible arrangements.
Then each of the irreducible arrangements satisfies the assumption (4).
Therefore we may assume that \mathcal{A} is irreducible from the beginning.
Enough to prove $\ell \leq 2$. Suppose $\ell \geq 3$.
Then there exist $\ell+1$ hyperplanes $H_{1}, H_{2}, \ldots, H_{\ell+1}$ in \mathcal{A} satisfying the conditions in Lemma 3.2.

Then the arrangement $\mathcal{B}=\left\{H_{1}, H_{2}, \ldots, H_{\ell+1}\right\}$ is a generic arrangement which is known to be non-free.

This is a contradiction and thus we may conclude $\ell \leq 2$.

4. Questions

4. Questions

We learned that the condition $\mathcal{N} \mathcal{F} \mathcal{M}(\mathcal{A})=\emptyset$ restricts \mathcal{A} very strongly.

4. Questions

We learned that the condition $\mathcal{N} \mathcal{F} \mathcal{M}(\mathcal{A})=\emptyset$ restricts \mathcal{A} very strongly.
$\mathcal{F M}(\mathcal{A})$ is the set of free multiplicities. Then

4. Questions

We learned that the condition $\mathcal{N} \mathcal{F} \mathcal{M}(\mathcal{A})=\emptyset$ restricts \mathcal{A} very strongly.
$\mathcal{F M}(\mathcal{A})$ is the set of free multiplicities. Then
Question 1. How does the condition $\mathcal{F} \mathcal{M}(\mathcal{A})=\emptyset$ ($=$ totally nonfreeness) restrict \mathcal{A} ?

4. Questions

We learned that the condition $\mathcal{N} \mathcal{F} \mathcal{M}(\mathcal{A})=\emptyset$ restricts \mathcal{A} very strongly.
$\mathcal{F M}(\mathcal{A})$ is the set of free multiplicities. Then
Question 1. How does the condition $\mathcal{F} \mathcal{M}(\mathcal{A})=\emptyset$ ($=$ totally nonfreeness) restrict \mathcal{A} ?

Question 2. Is the totally non-freeness a combinatorial property?

4. Questions

We learned that the condition $\mathcal{N} \mathcal{F} \mathcal{M}(\mathcal{A})=\emptyset$ restricts \mathcal{A} very strongly.
$\mathcal{F M}(\mathcal{A})$ is the set of free multiplicities. Then
Question 1. How does the condition $\mathcal{F} \mathcal{M}(\mathcal{A})=\emptyset$ ($=$ totally nonfreeness) restrict \mathcal{A} ?

Question 2. Is the totally non-freeness a combinatorial property ?
Question 3. If $\mathcal{F} \mathcal{M}(\mathcal{A})$ is a finite set, then is $\mathcal{F M}(\mathcal{A})$ empty?

4. Questions

We learned that the condition $\mathcal{N} \mathcal{F} \mathcal{M}(\mathcal{A})=\emptyset$ restricts \mathcal{A} very strongly.
$\mathcal{F M}(\mathcal{A})$ is the set of free multiplicities. Then
Question 1. How does the condition $\mathcal{F} \mathcal{M}(\mathcal{A})=\emptyset$ ($=$ totally nonfreeness) restrict \mathcal{A} ?

Question 2. Is the totally non-freeness a combinatorial property ?
Question 3. If $\mathcal{F} \mathcal{M}(\mathcal{A})$ is a finite set, then is $\mathcal{F M}(\mathcal{A})$ empty?
More in general,
Question 4. What kind of restrictions does the set $\mathcal{F} \mathcal{M}(\mathcal{A})$ (or $\mathcal{N} \mathcal{F} \mathcal{M}(\mathcal{A})$) impose on the original arrangement \mathcal{A} ?

I stop here. Thank you!

 a
 \section*{\title{The 2nd MSJ-SI
}}
 \section*{\title{
The 2nd MSJ-SI
}}

The Mathematical Society of Japan, Seasonal Institute

Arrangements of Hyperplanes

August 1-13, 2009
 Conference Hall, Hokkaido University, Sapporo, Japan

Survey Lecturers:

Toshitake Kohno Hal Schenck
Alexander Varchenko

Invited Speakers:

Kazuhiko Aomoto Daniel Cohen Alexandru Dimca Eva Maria Feichtner Eduard Looijenga Mario Salvetti Organizing committee:
Peter Orlik (University of Wisconsin, USA) Hiroaki Terao (Hokkaido University, Japan, chair) Masahiko Yoshinaga (Kobe Univeristy, Japan) Sergey Yuzvinsky (University of Oregon, USA)

Peter Orlik
Richard Stanley
Masahiko Yoshinaga

Kyoji Saito
Akimichi Takemura

Christos Athanasiádis Anders Björner Frederick Cohen tgor Dolgachev
Akio Hattori
David Mond
Alexandru Suciu

Corrado De Concini Michael Falk
Anatoly Libgober
Claudio Procesi

