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Fix a linear form αH such that ker(αH) = H for each H ∈ A.

A multiarrangement (A,m) is free if the logarithmic derivation module

D(A,m) := {θ ∈ DerR(S) | θ(αH) ∈ S · αm(H)
H ∀H ∈ A}

is a free S-module.

The freeness of multiarrangements was introduced by G. Ziegler (1989).
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A multiplicity m : A → Z>0 is called free if (A,m) is free.

Define the non-free multiplicity set

NFM(A) := {m : A → Z>0 | m is not a free multiplicity}.

Definition 1.1 An arrangement A is called totally free if every multiplicity
m : A → Z>0 is a free multiplicity, or equivalently NFM(A) = ∅.

For example, any arrangement in either one-dimensional or two-dimensional
vector spaces is totally free. Boolean arrangements are totally free.
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Main Theorem. An arrangement A is totally free if and only if
it has a decomposition

A = A1 ×A2 × · · · × As,

where each Ai is an arrangement in either one-dimensional or
two-dimensional vector spaces.

We will also prove the following theorem:

Theorem 2.1. If NFM(A) is a finite set, then it is empty.
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Main Theorem (again). An arrangement A is totally free if and only if
it has a decomposition

A = A1 ×A2 × · · · × As,

where each Ai is an arrangement in either one-dimensional or
two-dimensional vector spaces.

Corollary 2.2 The totally freeness is a combinatorial property.
(i. e., depending only on the intersection lattice L(A).)

Corollary 2.3 The totally freeness is closed under restriction and deletion.
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(deg(θi) := deg θi(α) for any linear form α with θi(α) ̸= 0)

L(A)2 := {X ∈ L(A) | codimV (X) = 2}

AX := {H ∈ A | X ⊂ H}: the localization of A at X
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(dX
1 , dX

2 , 0, . . . , 0) : the exponents of (AX,m|AX
)

LMP2(A,m) :=
∑

X∈L(A)2
dX
1 dX

2 : second local mixed product

Suppose that (A,m) is free with exponents (d1, . . . , dℓ)

GMP2(A,m) :=
∑

1≤i<j≤ℓ didj : second global mixed product

Theorem 3.1. (Abe-T-Wakefield (2007)) If a multiarrangement (A,m)
is free, then

LMP2(A,m) = GMP2(A,m).
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in Vi (i = 1, 2).

A is irreducible if it is not reducible.

Lemma 3.2. Let A be an irreducible arrangement in Kℓ with ℓ ≥ 2.
Then there exist ℓ + 1 hyperplanes H1,H2, . . . ,Hℓ+1 in A satisfying the
following conditions:

codimV Hi1 ∩ Hi2 ∩ · · · ∩ Hip = p (1 ≤ i1 < · · · < ip ≤ ℓ + 1, 1 ≤ p ≤ ℓ),

H1 ∩ H2 ∩ · · · ∩ Hℓ+1 = {0}.
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Proposition 3.3 If A is an irreducible arrangement in Kℓ with ℓ ≥ 3,
then NFM(A) is an infinite set.

Proof. Suppose that NFM(A) is a finite set. Choose ℓ + 1 hyperplanes
H1,H2, . . . ,Hℓ+1 in A satisfying the conditions in Lemma 3.2.

Let B := {H1,H2, . . . ,Hℓ+1}. Define a multiplicity m by:

m(H) =
{

1 if H ̸∈ B,
k if H ∈ B,

for every positive integer k.
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)
.

By the definition of LMP2,

LMP2(A,m) ≥LMP2(B,m|B) = |L(B)2|k2 =
(

ℓ + 1
2

)
k2.

Let |A| = n. Then ∑
d∈exp(A,m)

d = (k − 1)(ℓ + 1) + n.
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ℓ

}2

=
(ℓ + 1)2(ℓ − 1)

2ℓ
k2+Ak+B

with some constants A and B. By Theorem 3.1. we have

(
ℓ + 1

2

)
k2 ≤ LMP2(A,m) = GMP2(A,m)≤ (ℓ + 1)2(ℓ − 1)

2ℓ
k2 + Ak + B

whenever k is sufficiently large.
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GMP2(A,m) ≤
(

ℓ

2

){
(k − 1)(ℓ + 1) + n

ℓ

}2

=
(ℓ + 1)2(ℓ − 1)

2ℓ
k2+Ak+B

with some constants A and B. By Theorem 3.1. we have

(
ℓ + 1

2

)
k2 ≤ LMP2(A,m) = GMP2(A,m)≤ (ℓ + 1)2(ℓ − 1)

2ℓ
k2 + Ak + B

whenever k is sufficiently large.

This is a contradiction because(
ℓ + 1

2

)
− (ℓ + 1)2(ℓ − 1)

2ℓ
=

ℓ + 1
2ℓ

> 0. ¤
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We now prove the following theorem stronger than Main Theorem.

Theorem 3.4 The following four conditions are equivalent:

(1) A is totally free, i. e., NFM(A) is empty,

(2) NFM(A) is a finite set,

(3) A has a decomposition A = A1 ×A2 × · · · × As, where each Ai is
an arrangement in either one-dimensional or two-dimensional vector spaces,

(4) every subarrangement of A is free.

Proof. We only show (2) ⇒ (3) and (4) ⇒ (3) because the other
implications are easy to check.
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D(A,m) ≃ S · D(A1,m|A1) ⊕ S · D(A2,m|A2) ⊕ · · · ⊕ S · D(As,m|As)

holds, NFM(Ai) is a finite set.

Thus Proposition 3.3 shows that each arrangement Ai is in K1 or K2.
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Then each of the irreducible arrangements satisfies the assumption (4).

Therefore we may assume that A is irreducible from the beginning.

Enough to prove ℓ ≤ 2. Suppose ℓ ≥ 3.

Then there exist ℓ+1 hyperplanes H1,H2, . . . ,Hℓ+1 in A satisfying the
conditions in Lemma 3.2.

Then the arrangement B = {H1,H2, . . . ,Hℓ+1} is a generic arrangement
which is known to be non-free.

This is a contradiction and thus we may conclude ℓ ≤ 2. ¤
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We learned that the condition NFM(A) = ∅ restricts A very strongly.

FM(A) is the set of free multiplicities. Then

Question 1. How does the condition FM(A) = ∅ (= totally non-
freeness ) restrict A?

Question 2. Is the totally non-freeness a combinatorial property ?

Question 3. If FM(A) is a finite set, then is FM(A) empty?

More in general,

Question 4. What kind of restrictions does the set FM(A) (or
NFM(A)) impose on the original arrangement A?
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I stop here.
Thank you!

18



The Mathematical Society of Japan, Seasonal Institute

Arrangements of 
Hyperplanes

August 1 - 13, 2009
Conference Hall, Hokkaido University, Sapporo, Japan

http://www.math.sci.hokudai.ac.jp/sympo/MSJ/2009/index.html

　

Organizing committee:
Peter Orlik (University of Wisconsin, USA)
Hiroaki Terao (Hokkaido University, Japan, chair)
Masahiko Yoshinaga (Kobe Univeristy, Japan) 
Sergey Yuzvinsky (University of Oregon, USA)

 Survey Lecturers:
Toshitake Kohno Peter Orlik Kyoji Saito
Hal Schenck Richard Stanley Akimichi Takemura
Alexander Varchenko Masahiko Yoshinaga

 Invited Speakers:
Kazuhiko Aomoto Christos Athanasiadis Anders Björner 
Daniel Cohen Frederick Cohen Corrado De Concini
Alexandru Dimca Igor Dolgachev Michael Falk
Eva Maria Feichtner Akio Hattori Anatoly Libgober 
Eduard Looijenga David Mond Claudio Procesi 
Mario Salvetti Alexandru Suciu

Email: cri@math.sci.hokudai.ac.jp

The 2nd MSJ-SI


	TeraoSlidesFinal.pdf
	TeraoSlidesFinal.pdf
	OT
	terao-slidesAll.pdf
	terao-slide.pdf
	SI2009poster0704-2






