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1 Introduction

LetM be the complement of a complex hyperplane arrange-
ment in C`. For re�ection arrangements, M is aspher-
ical, that is, the higher homotopy groups �k(M) van-
ish, k > 1. For generic arrangements, the higher ho-
motopy groups don�t vanish. So generally one would
like to understand these groups. Thanks to Brieskorn
and Orlik-Solomon, we think we understand the homol-
ogy Hk(M ;Z) pretty well. So a natural question is:
What is the image of the higher Hurewicz homomorphism
hk : �k(M) ! Hk(M) for arrangement complements
M?



Theorem 1 (Vanishing Theorem, R., [8], 1997) For k >
1,

hk : �k(M)! Hk(M)

is the zero homomorphism.

(this space intentionally left blank)

This concludes my talk. Thank you



But..., ten years later Yoshinaga proved

Theorem 2 (Non-Vanishing Theorem, M. Yoshinaga [11])
Let L be a non-resonant complex rank r local system on
M , and let M 0 =M \H be the intersection of M with
a generic hyperplane H. Then

h
0
`�1 : �`�1(M)
Z Lx0 ! H`�1(M

0;L
0
)

is onto (where L0 = i�L is the restriction, andHn�1(M 0;L0)
has positive rank equal to the absolute value of the euler
characteristic of M 0.)

So, what gives? Here we will give general results which
put the above two theorems in a more uni�ed setting and
which clari�es what topological properties of a complex
arrangement complement are important in their proofs.



2 Some background on topology of

arrangements

There are three fundamental topological properties of
arrangement complements:

� (Locality) The Brieskorn mapping

i� : �ZHr(MZ)! Hr(M)

is an isomorphism, the direct sum taken over all lat-
tice elements Z of rank r. MZ being the comple-
ment associated to the arrangement of all hyper-
planes containing Z.

� (Toroidality)H�(M) is generated by degree one classes
d�i
�i
, where �i are the de�ning linear forms for the

arrangement.(Arnol�d, Brieskorn)



� (Minimality) M admits the structure of a minimal
n-dimensional CW complex. That is, the number
of cells in each dimension equals the corresponding
betti number. (Dimca-Papadima[3], R.[9])

The proof of the vanishing theorem above uses toroidality
in a crucial way. The proof of Yoshinaga�s non-vanishing
theorem uses CW structures in what seems a crucial way.
Part of the point of this work is to understand whether
these properties are essential to these proofs.

3 Some background on higher ho-

motopy groups of arrangements.

Here are some known results for higher homotopy groups
of complements of complex hyperplane arrangements.



� Sometimes M is aspherical, such as for the braid
arrangement (Fadell-Neuwirth), many real re�ection
arrangements (Brieskorn), all real simplicial arrange-
ments, hence all real re�ection arrangements (Deligne),
�ber-type (=supersolvable) arrangements (Falk-R.),
complex re�ection arrangements (most by Orlik-Solomon,
proof for all by Bessis).

� Sometimes M isn�t aspherical (Hattori for generic
arrangements, Falk-R. for certain fundamental groups
or for non-formal arrangements, R. for sections of as-
pherical, Falk for some line arrangements)

� More precise calculations in some speci�c cases are
known. See Papadima-Suciu for the hypersolvable
case, Dimca-Papadima for iterated generic sections.

� Unless there is a good special reason, you shouldn�t
expect much. e.g. Free arrangements need not be
aspherical (Edelman-Reiner).



� For real arrangements, recent advances (Yoshinaga,
Salvetti-Settepanella, Delucchi-Settepanella, Hager)
give one tools to understand the attaching maps in
a minimal CW-structure.

4 Some background on local (twisted)

coe¢ cient systems

Let X be a topological space which has a universal coverfX, and let � = �1(X). Let N be a left Z[�]-module,
characterized by the left action

' : �1(X)�N ! N

or equivalently by the homomorphism



' : �1(X)! Aut(N):

Then as usual there is an associated local system N on
X. (See Hatcher [5] for details about local systems).
Then one has homology with coe¢ cients in N , de�ned
by the chain complex

Cj(X;N) = Cj(
fX)
Z[�] N

Recall that since we are in general working here over a
non-commutative ring we need to make the left Z[�]
module Cj(fX). into a right module by de�ning the right
action as left multiplication by the inverse element.

Furthermore, by the usual left action of � on �n(X;Y )
we may form the tensor product

�n(X;Y )
� N

where we use the subscript��" to indicate the tensor
product over Z[�]. In what follows we will switch as ap-
propriate among the various viewpoints and notations for



local systems, but we will always have the above set-up
in mind. We will generally suppress ' from the notation.

In the context of local systems locality is not usually rele-
vant, since the Brieskorn homomorphisms are usually not
de�ned: to do so one needs a local system on M(A)
which is the restriction of one on M(AZ), and so is
trivial around hyperplanes not containing Z. Deletion-
restriction for this situation (when rk(Z) = 1 is exam-
ined by D. Cohen in [1].

Minimality in the local systems setting has been examined
by Dimca and Papadima in [4]. In particular they show
there that the �-equivariant chain complex associated to
a Morse-theoretic minimal CW structure on an arrange-
ment complement is independent of the CW structure.

Now for a non-resonant (or �generic") local system it is
known that the �rst homology and cohomology groups
vanish ([2]). Thus for generic local systems, toroidality
fails badly. Toroidality is a key ingredient in the proof
that the usual Hurewicz homomorphism is zero. In place
of that result we have a result below.



5 A more general Hurewicz theo-

rem

There is the following general version of the Hurewicz
theorem. See for example [10]

Theorem 3 (Twisted Hurewicz Theorem) Let (X;Y )
be an (n � 1)�connected topological pair with n � 3

and letN be a local system onX. Then there is a natural
isomorphism

h : �n(X;Y )
� N ! Hn(X;Y ;N) (1)

Notice that the right hand side involves local system ho-
mology, while the left hand side is an algebraic tensor
product. Here �Naturality" means that with these as-
sumptions there exist homomorphisms

h : �n(X;Y )
� N ! Hn(X;N)



and

h : �n(X;Y )
� N ! Hn(Y ;N)

so that the following diagram commutes.

! Hn(X;N) ! Hn(X;Y ;N)
i�! Hn�1(Y ;N) !

" h " h �= " h
! �n(X)
� N ! �n(X;Y )
� N ! �n(Y )
� N !

(2)

! Hn�1(X;N) ! Hn�1(X;Y ;N) !
" h " h

! �n�1(X)
� N ! �n�1(X;Y )
� N !

Note that since tensor product is not exact, we have no
guarantee that the lower row of this diagram is exact. It
will be exact, of course, if the module N is �at.



6 Consequences of the twisted Hurewicz

theorem

We �rst have the following general consequence of the
twisted Hurewicz result.

Theorem 4 Let (X;Y ) be an (n�1)�connected topo-
logical pair with n � 3. Then ker(i� : Hn�1(Y ;N) !
Hn�1(X;N)) � im(hY : �n�1(Y )
�N ! Hn�1(Y ;N)).

Proof. Since �n�1(X;Y ) �= 0, and tensor product is
right exact, the sequence

�n(X;Y )
�N ! �n�1(Y )
�N ! �n�1(X)
�N ! 0



is exact, so that the commuting diagram above yields a
commuting diagram with exact rows

Hn(X;Y ;N) ! Hn�1(Y ;N)
i�! Hn�1(X;N) ! 0

" h �= " hY " h
�n(X;Y )
� N ! �n�1(Y )
� N ! �n�1(X)
� N ! 0

(3)

A simple diagram chase then gives the result.

The following result follows immediately.

Proposition 5 Let (X;Y ) be an (n � 1)�connected
topological pair with n � 3. If hY is the zero homo-
morphism, then i� : Hn�1(Y ;N) ! Hn�1(X;N) is
injective.

If the local system is trivial, N = Z, then hY is indeed
the zero homomorphism for arrangement complements,
and the injectivity of i� with trivial integral coe¢ cients is
well-known. On the other hand, if i� is not injective, say



when Hn�1(X;N) = 0 and Hn�1(Y ;N) 6= 0, then
hY cannot be the zero homomorphism. We consider
this in more detail.

We now want to consider arrangements�we switch nota-
tion and set ` = n.

De�nition 6 An arrangement pair (M;M 0) is an (n �
1)-connected pair of topological spaces withM an arrange-
ment complement and M 0 a hyperplane section of M .

It is well-known that a generic section M 0 of M yields
an arrangement pair with the homotopy type of a CW
pair, and that in fact the number of n-cells attached to
M 00 to yieldM is exactly equal to the n-th betti number
of M . (See ([3], [9]). Our de�nition of an arrangement
pair assumes only (n � 1)-connectedness, however, not
minimality.

Proposition 7 If N is the trivial system, N = Z, and
(M;M 0) is an arrangement pair, then i� is an isomor-
phism, as is j� : Hn(M ;N)! Hn(M;M 0;N).



Proof. The second statement holds because for the
trivial system, it was shown in [8] that the Hurewicz
map is always trivial on higher homotopy groups. Thus
hM 00 = 0.

In the case of hyperplane arrangments, the fact that i�
is an isomorphism follows from the Orlik-Solomon alge-
bra (or, more basically from the Lefschetz theorem on
hyperplane sections). The next result generalizes Yoshi-
naga�s nonvanishing theorem. Our method of proof uses
nothing about the CW structure of arrangement comple-
ments, however, only connectivity properties.

Corollary 8 Suppose (X;Y ) is an (n � 1)�connected
pair of topological spaces, n � 3 . Suppose that N is
a local system on X so that Hn�1(X;N) = 0. Then
hY : �n�1(Y )
� N ! Hn�1(X;N) is onto.

Stated for arrangement pairs we have



Theorem 9 (Yoshinaga [11]) Suppose (M;M 0) is an
arrangement pair and N is a non-resonant local system
of rank r on M . Then hM 00 : �n�1(M 0) 
� N !
Hn�1(M 0;N) is onto.

Proof. For a non-resonant system Hn�1(M ;N) = 0

It should be noted that Yoshinaga obtains a more precise
result: Hn�1(X;N) is generated by the attaching maps
for the n-cells, appropriately interpreted.

Actually the Hurewicz map here di¤ers slightly from the
one considered by Yoshinaga, but the the result above
clearly implies that of Yoshinaga. Here is the relationship.
Let X be a topological space with basepoint x. Then, as
in [11] we have a twisted Hurewicz map

hj : �j(X;x)
Z Lx ! Hj(X;L)



de�ned by setting h(f 
 t) equal to the twisted cycle it
determines. This Hurewicz homomorphism di¤ers by a
change of ring (from Z[�] to Z[1] �= Z) from the one
we considered earlier. The homomorphisms are related
by the obvious commuting triangle.

7 The Hurewicz image for general

arrangement covers

Now since M is an arrangement complement, it is path-
connected, locally path-connected and semi-locally sim-
ply connected. Therefore M has a universal cover and
there is a bijective correspondence between subgroups �0

of � = �1(M) and connected covering spaces of M .
Let M 0 be the cover corresponding to �0. Then the free
abelian group Z[�=�0] with basis the cosets 
�0 is a Z[�]-
module and the homology groups ofM 0 with coe¢ cients



in Z are the same as the homology groups of M with
coe¢ cients in the local system Z[�=�0]. There are iso-
morphisms

Hj(M;Z[�=�
0]) �= Hj(M 0;Z):

Let us now consider the case where we have a local system
on M of the form N = Z[�=�0]) .

Proposition 10 Im(h0 : �j(M 0)! Hj(M
0)) � ker(p� :

Hj(M
0)! Hj(M)).

Note that Hj(M 0) = Hj(M;Z[�=�
0]). In case M =

M 0 this is the result of [8].



Proof. Fix j � 2. Let p : ~M ! M be the universal
cover of M . Then there is a commuting diagram

�j( ~M)
~h! Hj( ~M)

p� #�= # p�
�j(M

0) h0! Hj(M
0)

p� #�= # p�
�j(M)

h! Hj(M)

(4)

Now by the result of [8] the bottom horizontal arrow is
the zero homomorphism, and the result follows

Among interesting covers of arrangement complements
are the universal cover, lots of abelian covers such as
those considered in LKB representations, and �nite cyclic
covers, most notably the Milnor �ber associated to a cen-
tral arrangement (which is a �nite cyclic cover of the
projectivization). For instance, in the case of the Milnor
�ber one may see easily that one does not have equality
in the above proposition.



Example 11 Consider the re�ection arrangement A3, in
projective space. In that case H1(M) is free abelian of
rank �ve, while the six-fold cyclic cover M 0 which is the
Milnor �ber F has H1(F ) free of rank seven. One may
use standard calculations and euler characteristic argu-
ments to conclude that the second homology groups have
ranks six and eighteen respectively. Also, M and F are
aspherical, so that Im(h0 : �j(M 0)! Hj(M

0)) is zero,
while it may be seen easily that p� : H2(M 0)! H2(M)

has non-trivial kernel (in fact, p� is surjective, so that the
kernel is free abelian of rank twelve.

Example 12 In general the image of the Hurewicz map is
non-trivial. Consider for example any arrangement which
is not aspherical. Then by the classical Hurewicz theorem
the Hurewicz map on the �rst non-trivial homotopy group
of the universal cover is an isomorphism.



8 The Hurewicz image for complex

local systems

Complex rank one local systems N = L on M are an-
other case of particular interest. Here the module N is
just the additive complex numbers as an abelian group,
and the local system is given by a homomorphism of
�1(M) to Aut(C) = C�. Since Aut(C) is abelian,
such a homomorphism factors through the �rst homology
group of M , and can thus be thought of as an assign-
ment of a non-zero complex number to each hyperplane
in the arrangement (the associated homology class being
a small loop transverse to the hyperplane.)

Let L be a complex local system on the topological space
X, of rank 1. Thus as a bundle of groups, the local
system has �ber C. Then by the universal coe¢ cient
theorem one has



Hp(M(A);L) �= HomC(Hp(M(A);L);C) (5)

Via this isomorphism we identify homology and cohomol-
ogy.

De�nition 13 Let T p(M;L) denote the submodule of
Hp(M;L) generated by products of degree one classes.
We will refer to these submodules as the toroidal portion
of cohomology. We have the dual notion in homology,
giving submodules Tp(M;L).

We also need a twisted Hurewicz homomorphism for this
setting. Let M have basepoint m. Then, as in [11] we
have a twisted Hurewicz map

hj : �j(M;m)
Z Lm ! Hj(M;L)



de�ned as before by setting h(f
 t) equal to the twisted
cycle it determines.

The general result is

Theorem 14 For a rank 1 complex local system, im(hj)\
Tj(L) = 0

If the rank one system is trivial, than Tj(L) = Hj(M;L),
giving the vanishing result which began this talk.
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