Bar complex of Orlik-Solomon algebra and rational universal holonomy maps

Toshitake Kohno

(The University of Tokyo)

Plan of Talk
(1) Preliminaries on iterated integrals
(2) Bar complex of Orlik-Solomon algebra
(3) Finite type invariants for braids
(4) Universal holonomy map defined over \mathbf{Q}

1 Iterated integrals

$\omega_{1}, \cdots, \omega_{k}$: differential forms on M
$\Delta_{k}=\left\{\left(t_{1}, \cdots, t_{k}\right) \in \mathbf{R}^{k} ; 0 \leq t_{1} \leq \cdots \leq t_{k} \leq 1\right\}$
$\varphi: \Delta_{k} \times \Omega M \rightarrow \underbrace{M \times \cdots \times M}_{k}$
defined by $\varphi\left(t_{1}, \cdots, t_{k} ; \gamma\right)=\left(\gamma\left(t_{1}\right), \cdots, \gamma\left(t_{k}\right)\right)$
The iterated integral of $\omega_{1}, \cdots, \omega_{k}$ is defined as

$$
\int \omega_{1} \cdots \omega_{k}=\int_{\Delta_{k}} \varphi^{*}\left(\omega_{1} \times \cdots \times \omega_{k}\right)
$$

$$
\int_{\Delta_{k}} \varphi^{*}\left(\omega_{1} \times \cdots \times \omega_{k}\right)
$$

is the integration along fiber with respect to the projection $p: \Delta_{k} \times \Omega M \rightarrow \Omega M$.
It is a differential form on the loop space ΩM with degree $p_{1}+\cdots+p_{k}-k$, where

$$
\operatorname{deg} \omega_{j}=p_{j}
$$

Proposition (Chen complex)

As a differential form on the loop space $d \int \omega_{1} \cdots \omega_{k}$ is

$$
\begin{aligned}
& \sum_{j=1}^{k}(-1)^{\nu_{j-1}+1} \int \omega_{1} \cdots \omega_{j-1} d \omega_{j} \omega_{j+1} \cdots \omega_{k} \\
+ & \sum_{j=1}^{k-1}(-1)^{\nu_{j}+1} \int \omega_{1} \cdots \omega_{j-1}\left(\omega_{j} \wedge \omega_{j+1}\right) \omega_{j+2} \cdots \omega_{k}
\end{aligned}
$$

where $\nu_{j}=\operatorname{deg} \omega_{1}+\cdots+\operatorname{deg} \omega_{j}-j$.

Bar complex $B^{*}(M)$ is a total complex associated with Chen complex

$$
B^{-k, p}(M)=\left[\otimes^{k} \mathcal{E}^{*}(M)[1]\right]^{p-k}
$$

The iterated integral induces a map

$$
I: B^{*}(M) \longrightarrow \mathcal{E}^{*}(\Omega M)
$$

which induces an isomorphism on cohomology if M is simply connected.

Example

In the case $m \geq 3$, there is an isomorphism

$$
H^{*}\left(B \operatorname{Conf}_{n}\left(\mathbf{R}^{m}\right)\right) \cong H_{D R}^{*}\left(\Omega \operatorname{Conf}_{n}\left(\mathbf{R}^{m}\right)\right)
$$

In the case $m=2, H^{0}\left(B \operatorname{Conf}_{n}\left(\mathbf{R}^{2}\right)\right)$ is isomorphic to the space of finite type invariants for P_{n}.

In the case $m \geq 3$, the de Rham cohomology

$$
H_{D R}^{k(m-2)}\left(\Omega \operatorname{Conf}_{n}\left(\mathbf{R}^{m}\right)\right)
$$

is represented by iterated integrals of the form

$$
\sum a_{i_{1} j_{1} \cdots i_{k} j_{k}} \int \omega_{i_{1} j_{1}} \cdots \omega_{i_{k} j_{k}}
$$

$+($ iterated integrals of length $<k$)
Here the coefficients $a_{i_{1} j_{1} \cdots i_{k} j_{k}} \in \mathbf{Z}$ satisfy the graded infinitesimal pure braid relations.

2 Bar complex of Orlik-Solomon

algebra

Let $\left\{H_{j}\right\}, 1 \leq j \leq r$, be a family of complex hyperplanes in \mathbf{C}^{m} and f_{j} be a linear form defining the hyperplane H_{j}.

$$
M=\mathbf{C}^{m} \backslash \bigcup_{1 \leq j \leq r} H_{j}
$$

We consider the logarithmic differential forms

$$
\omega_{j}=\frac{1}{2 \pi \sqrt{-1}} \frac{d f_{j}}{f_{j}}, \quad 1 \leq j \leq r .
$$

The Orlik-Solomon algebra A is the \mathbf{Z} subalgebra of $\mathcal{E}^{*}(M)$ generated by the logarithmic forms $\omega_{j}, 1 \leq j \leq r$.

Proposition The inclusion

$$
i: B^{*}(A) \longrightarrow B^{*}(M)
$$

induces an isomorphism of algebras

$$
H^{*}\left(B^{*}(A)\right) \otimes \mathbf{C} \cong H^{*}\left(B^{*}(M)\right) .
$$

3 Acyclicity of the bar complex

The following vanishing holds for the cohomology of the bar complex of the Orlik-Solomon algebra for fiber type arrangements.

$$
H^{j}\left(B^{*}(A)\right) \cong 0, \quad j \neq 0
$$

4 Finite type invariants

There is an increasing sequence of modules:

$$
\begin{gathered}
V_{0}\left(P_{n}\right) \subset V_{1}\left(P_{n}\right) \subset \cdots \subset V_{k}\left(P_{n}\right) \subset \cdots \\
V_{k}\left(P_{n}\right)=\operatorname{Hom}\left(\mathbf{Z} P_{n} / I^{k+1}, \mathbf{Z}\right)
\end{gathered}
$$

We set $V\left(B_{n}\right)=\bigcup_{k \geq 0} V_{k}\left(B_{n}\right)$: the space of finite type invariants for B_{n}.
A : Orlik-Solomon algebra for braid arrangement

$$
\mathcal{F}^{-k} B^{*}(A)=\bigoplus_{q \leq k} B^{-q, p}(A), \quad k=0,1,2, \cdots
$$

This induces a filtration $\mathcal{F}^{-k} H^{0}\left(B^{*}(A)\right), k \geq 0$, on the cohomology of the bar complex.
The above iterated integral defines a map

$$
\iota: H^{0}\left(B^{*}(A)\right) \longrightarrow \operatorname{Hom}\left(\mathbf{Z} P_{n}, \mathbf{C}\right)
$$

The iterated integral map ι gives the isomopshisms

$$
\begin{aligned}
& \mathcal{F}^{-k} H^{0}\left(B^{*}(A)\right) \otimes \mathbf{C} \cong V_{k}\left(P_{n}\right)_{\mathbf{C}} \\
& H^{0}\left(B^{*}(A)\right) \otimes \mathbf{C} \cong V\left(P_{n}\right)_{\mathbf{C}}
\end{aligned}
$$

We shall explain that these isomorphisms actually hold over \mathbf{Q}.

The iterated integrals give multivalued functions on M.

$$
I: \mathcal{F}^{-k} H^{0}\left(B^{*}(A)\right) \longrightarrow F_{k}(M)
$$

$F_{k}(M)$ is the space of order k hyperlogarithms.

$$
\begin{aligned}
F_{k}(M) & \subset F_{k+1}(M) \\
d F_{k+1}(M) & \subset F_{k}(M) \otimes A^{1}
\end{aligned}
$$

5 Drinfel'd associator and holonomy of braid groups

We denote by \mathcal{A}_{n} the algebra over \mathbf{Z} generated by $X_{i j}, 1 \leq i \neq j \leq n$, with the relations :

$$
\begin{align*}
& X_{i j}=X_{j i} \tag{1}\\
& {\left[X_{i k}, X_{i j}+X_{j k}\right]=0 \quad i, j, k \text { distinct }} \\
& {\left[X_{i j}, X_{k \ell}\right]=0 \quad i, j, k, \ell \text { distinct. }}
\end{align*}
$$

We define the semi-direct product $\mathcal{A}_{n} \rtimes \mathbf{Z} S_{n}$ by the relation

$$
X_{i j} \cdot \sigma=\sigma \cdot X_{\sigma(i) \sigma(j)}
$$

for $\sigma \in S_{n}$.

We define the operation of doubling the i-th vertical strand

$$
\Delta_{i}: \mathcal{A}_{n} \longrightarrow \mathcal{A}_{n+1}
$$

by the correspondence

The $\operatorname{map} \varepsilon_{i}: \mathcal{A}_{n} \longrightarrow \mathcal{A}_{n-1}, 1 \leq i \leq n$, is defined by setting $\varepsilon_{i}(X)$ to be represented by the chord diagram obtained by deleting the i-th vertical strand if there is no horizontal chord on the i-th vertical strand in $X \in \mathcal{A}_{n}$ and to be 0 otherwise.
$t_{i j} \in S_{n}$: permutation of i-th and j-th letters.
The element R is defined by

$$
R=t_{12} \exp \left(\frac{1}{2} X_{12}\right)
$$

A Drinfel'd associator Φ is an element of
$\widehat{\mathcal{A}}_{3} \otimes \mathbf{C}$ satisfying the following properties.

- (strong invertibility)

$$
\varepsilon_{1}(\Phi)=\varepsilon_{2}(\Phi)=\varepsilon_{3}(\Phi)=1
$$

- (skew symmetry)

$$
\Phi^{-1}=t_{13} \cdot \Phi \cdot t_{13}
$$

- (pentagon relation)
$(\Phi \otimes i d) \cdot\left(\Delta_{2} \Phi\right) \cdot(i d \otimes \Phi)=\left(\Delta_{1} \Phi\right) \cdot\left(\Delta_{3} \Phi\right)$

- (hexagon relation)

$$
\Phi \cdot\left(\Delta_{2} R\right) \cdot \Phi=(R \otimes i d) \cdot \Phi \cdot(i d \otimes R)
$$

The original Drinfel'd associator is an element in the ring of non-commutative formal power series $\mathbf{C}[[X, Y]]$ describing a relation of the solutions $G_{0}(z)$ and $G_{1}(z)$ of the differential equation

$$
\begin{equation*}
G^{\prime}(z)=\left(\frac{X}{z}+\frac{Y}{z-1}\right) G(z) \tag{4}
\end{equation*}
$$

with the asymptotic behavior

$$
\begin{aligned}
& G_{0}(z) \sim z^{X}, \quad z \longrightarrow 0 \\
& G_{1}(z) \sim(1-z)^{Y}, \quad z \longrightarrow 1
\end{aligned}
$$

We set

$$
G_{0}(z)=G_{1}(z) \Phi_{K Z}(X, Y)
$$

and it can be shown that $\Phi_{K Z}\left(X_{12}, X_{23}\right)$ satisfies the above properties for an associator.
Drinfel'd shows that there exists an associator with coefficients in \mathbf{Q} unique upto "gauge equivalence".

An explicit rational associator up to degree 4 terms is of the form

$$
\begin{aligned}
& \Phi(X, Y)=1-\frac{\zeta(2)}{(2 \pi i)^{2}}[X, Y] \\
& -\frac{\zeta(4)}{(2 \pi i)^{4}}[X,[X,[X, Y]]]-\frac{\zeta(4)}{(2 \pi i)^{4}}[Y,[Y,[X, Y]]] \\
& -\frac{\zeta(3,1)}{(2 \pi i)^{4}}[X,[Y,[X, Y]]]+\frac{1}{2} \frac{\zeta(2)^{2}}{(2 \pi i)^{4}}[X, Y]^{2}+\cdots
\end{aligned}
$$

with $X=X_{12}, Y=X_{23}$, where $\zeta(2)=\pi^{2} / 6$, $\zeta(4)=\pi^{4} / 90$ and $\zeta(3,1)=\pi^{4} / 360$.

We set

$$
R_{j, j+1}=t_{j, j+1} \exp \left(\frac{1}{2} X_{j, j+1}\right)
$$

For the generators $\sigma_{j}, 1 \leq j \leq n-1$, of the braid group B_{n} we put

$$
\Theta\left(\sigma_{j}\right)=\Phi_{j} \cdot R_{j, j+1} \cdot \Phi_{j}^{-1}, \quad 1 \leq j \leq n-1
$$

Φ_{j} is defined by means of a rational Drinfel'd associator by the formulae

$$
\Phi_{j}=\Phi\left(\sum_{i=1}^{j-1} X_{i j}, X_{j, j+1}\right), \quad j>1
$$

and $\Phi_{1}=1$.

Theorem

Θ defines an injective homomorphism

$$
\Theta: B_{n} \longrightarrow\left(\widehat{\mathcal{A}}_{n} \otimes \mathbf{Q}\right) \rtimes \mathbf{Z} S_{n} .
$$

The map Θ is called a universal holonomy homomorphism of the braid group over \mathbf{Q}.

Theorem

The universal holonomy homomorphism Θ is equivalent to the holonomy map

$$
B_{n} \longrightarrow\left(\widehat{\mathcal{A}}_{n} \otimes \mathbf{C}\right) \rtimes \mathbf{Z} S_{n}
$$

defined by

$$
\begin{gathered}
\gamma \mapsto 1+\int_{\gamma} \omega+\int_{\gamma} \omega \omega+\cdots \\
\omega=\sum_{i, j} \omega_{i j} X_{i j}
\end{gathered}
$$

Theorem

We have the following isomorpshisms for finite type invariants over the field of rational numbers.

$$
\begin{aligned}
& V\left(P_{n}\right)_{\mathbf{Q}} \cong \operatorname{Hom}\left(\widehat{\mathcal{A}}_{n}, \mathbf{Q}\right) \\
& V\left(B_{n}\right)_{\mathbf{Q}} \cong \operatorname{Hom}\left(\widehat{\mathcal{A}}_{n} \rtimes \mathbf{Z} S_{n}, \mathbf{Q}\right)
\end{aligned}
$$

