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What is QUBO?

QUBO (or Quadratic Unconstrained Binary Optimization)
is the problem

min
x∈{0,1}n

f (x) ,

concerning the minimization of a quadratic pseudo–Boolean
function f given by

f (x1, · · · , xn) = c0 +
n∑

j=1

cixi +
∑

16i<j6n

cijxixj ,

where c0, ci for i = 1, · · · , n and cij for 1 6 i < j 6 n are given
reals.
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Linearization Model for QUBO

The standard linearization model to compute the minimum value
of a quadratic pseudo–Boolean function is

min

(
c0 +

n∑
i=1

cixi +
∑

16i<j6n
cijyij

)
subject to

yij 6 xi , 1 6 i < j 6 n, cij < 0,
yij 6 xj , 1 6 i < j 6 n, cij < 0,
yij > xi + xj − 1, 1 6 i < j 6 n, cij > 0,
yij > 0, 1 6 i < j 6 n,
xj ∈ {0, 1} , j ∈ V,

whose optimal solutions x? ∈ {0, 1}n are minimizers of f .
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Linearization Model for QUBO

The roof–dual bound C2 (f ) is obtained by relaxing the integrality
in the linearization model [Hammer, Hansen and Simeone ’84],
i.e.

C2 (f ) = min

(
c0 +

n∑
i=1

cixi +
∑

16i<j6n
cijyij

)
subject to

yij 6 xi , 1 6 i < j 6 n, cij < 0,
yij 6 xj , 1 6 i < j 6 n, cij < 0,
yij > xi + xj − 1, 1 6 i < j 6 n, cij > 0,
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Persistencies of the Linearization Model

Half-Integral Solutions Theorem [Balinski’ 68]

Every extreme point of the relaxation of the linearization model has
components 0, 1

2 or 1.

Persistency Theorem [Hammer, Hansen and Simeone’ 84]

If there exists an optimal solution x+ of the relaxation of the
linearization model having certain variables S with 0–1 values, then
there is an optimal solution x? to the linearization model such that
x?

j = x+
j , j ∈ S.

The identification of these variables (called persistencies) can be very
helpful in simplifying the QUBO problem.
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Properties of Persistencies

Questions

How to find a maximal set of persistencies?

How to find a maximum set of persistencies?

New Persistency Results

Any maximal set of persistencies is also maximum possible for
the relaxed linearization model

The maximum set of persistencies of the relaxed linearization
model is unique

The maximum set of persistencies of the relaxed linearization
model can be computed in

O (max-flow (2n, 2m) + strong-components (2n, 2m))
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Properties of Persistencies

The above result is proved by

Using the equivalence between posiform maximization and the
weigthed vertex packing problem of graphs

Consequently

The linearization models of general Pseudo–Boolean optimization
problems also satisfy the previous persistency results
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If the Roof–Dual is not Sharp, then How to Improve
the Bound?

Hierarchy of Bounds
Boros, Crama and Hammer ’90 presented a hierarchy of
bounds

C2 (f ) 6 C3 (f ) 6 C4 (f ) 6 · · · 6 Cn (f ) = min (f )

for QUBO
C2 (f ) corresponds to the roof–dual value of f
C3 (f ) corresponds to the cubic–dual of f [Boros, Crama
and Hammer ’92]
C4 (f ) corresponds to the square–dual of f
C2, C3 and C4 are well characterized by LP
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Linearization Model (LM) + Cuts

Let us consider again the relaxation of the LM

C2 (f ) = min

(
c0 +

n∑
i=1

ci xi +
∑

16i<j6n
cij yij

)
subject to

yij 6 xi , 1 6 i < j 6 n, cij 6= 0,
yij 6 xj , 1 6 i < j 6 n, cij 6= 0,
yij > xi + xj − 1, 1 6 i < j 6 n, cij 6= 0,
yij > 0, 1 6 i < j 6 n,
xj ∈ [0, 1] , j ∈ V.
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Linearization Model (LM) + Cuts

Consider the C3 cuts

Consist of the subset of triangle inequalities

W (S) =

(x, y)

∣∣∣∣∣∣∣∣
xi +xj +xk −yi,j − yi,k − yj,k 6 1,
−xi +yi,j + yi,k − yj,k 6 0,

−xj +yi,j − yi,k + yj,k 6 0,
−xk −yi,j + yi,k + yj,k 6 0,

(
1 6 i < j < k 6 n

(i, j, k) ∈ S

) .

S represents the set of triplets (i, j, k) corresponding to the triangle inequalities
involving variables xi , xj and xk . Four basic cases are considered:

S0 =
{
(i, j, k) ∈ V 3

∣∣cij cik cjk 6= 0
}

S1 =
{
(i, j, k) ∈ V 3

∣∣cij 6= 0 and
(
cik 6= 0 or cjk 6= 0

)}
S2 =

{
(i, j, k) ∈ V 3

∣∣cij 6= 0
}

S3 =
{
(i, j, k) ∈ V 3

∣∣cij 6= 0 or cik 6= 0 or cjk 6= 0
}

Theorem: C3 = LM + W (S3)

Conjecture: C3 = LM + W (S2)
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A LP Branch–and–Cut (B&C) model for QUBO

LP-B&C-QUBO(f ,S,P)

Input: Let f be a quadratic pseudo–Boolean function f . S is the set of triplets considered to define
the triangle inequalities. P is the set of 4-tuples considered to define the square inequalities.

Step 1: Find an incumbent x+ for f using the tabu search implementation of Palubeckis ’04.

Step 2: Solve the LP

z (f ,S,P) = min
{

Lf (x, y)
∣∣∣(x, y) ∈ W[3] (S) ∪ W[4] (P) , x ∈ Un

}
.

Save the optimal basic feasible solution B.

Step 3: Remove all triangle and square cuts that have zero dual values, i.e. remove those cuts that
are non-binding. The resulting problem is a 0–1 MIP.

Step 4: Solve the LP relaxation of the MIP by warm starting it with the basis B. Load the incumbent
x+ as a solution of the MIP and then solve it.

Output: The minimum value of f is equal to the optimum of the MIP, and every minimizer x? of the
MIP is also a minimizer of f .
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Application Covered Next

Graph Models

MAX–CUT

MAX–Clique

MIN–VC

Graph Coloring

Graph Partitioning

Graph Balancing

MIN–3–Partition

Engineering and Social Sciences

MAX–SAT

Via Minimization

VLSI design

2D and 3D Ising Model

1D Ising Chain

Fault Diagnosis

Hierarchical Clustering

Vision

Preventing DDoS attacks

Finding Highly Connected Proteins

Combinatorics of Real World Graphs
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2D Ising Models

The MAX–CUT of the g3-8 torus graph was found

There are four torus graphs considered in the DIMACS library of mixed
semidefinite-quadratic-linear programs

The torus graphs are 3D-toroidal graphs, originated from the Ising
model

LP-B&C-QUBO(S1, ∅) was able to prove optimality for the first time to
graph g3-8, which has ±1 interactions and 512 vertices

It required 302 156 nodes and 1 871 155 sec to find this proof on a
standard computer
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2D Ising Models

Found better solutions for 2D Ising models than top meta–heuristics for
QUBO

LP-B&C-QUBO with S = S1 and P = ∅

Computing Time?

Instance Vertices MAX–CUT Nodes
Incumbent Relaxation MIP†

G11 100×8 564 30 8.5 s 1.6 s 12.2 s
G12 50×16 556 39 8.4 s 1.8 s 17.7 s
G13 25×32 582 36 8.5 s 1.8 s 22.7 s
G32 100×20 [1 410,1 412] 83 837 35.2 s 5.3 s 10 000.0 s
G33 80×25 [1 382,1 383] 134 133 35.6 s 6.0 s 10 000.0 s
G34 50×40 [1 384,1 388] 66149 35.2 s 5.9 s 10 000.0 s
G57 100×50 [3 492,3 505] 20 598 111.4 s 21.7 s 10 000.0 s
G62 100×70 [4 862,4 886] 10 109 178.7 s 36.9 s 10 000.0 s
G65 100×80 [5 550,5 581] 4 199 217.4 s 47.1 s 10 000.0 s
G66 90×100 [6 352,6 387] 5 065 258.8 s 159.7 s 10 000.0 s
G67 100×100 [6 932,6 981] 7 683 303.7 s 323.8 s 10 000.0 s
?Computed on an AMD Athlon 64 X2 Dual Core 4800+, 2.41 GHz, 4GB RAM and runs XP.
†The MIP solver stage was set to run at most 10 000 sec.
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Minimum–3–Partition (M3P) of Graphs

M3P

Given a weighted graph G = (V , E , w), the MkP problem is the problem
of partitioning the set of vertices V into k disjoint subsets such that the
total weight of the edges joining vertices of the same partition is
minimum.

To solve M3P we use the solver LP-B&C-QUBO(f ,S,Z), where S is
S1 or S2 and Z defines the set of pure square cuts

Main reference about the M3P problem

Anjos, M., B. Ghaddar and F. Liers.
A branch-and-cut algorithm based on semidefinite programming for the
minimum k-partition problem.
Research report, Combinatorial Optimization in Physics (COPhy) (July
2007).
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Minimum–3–Partition (M3P) of Graphs

Optimal Minimum–3–Partitions of 2D and 3D Ising models
SBC LP with (S1,Z) LP with (S2,Z)

Instance Weights M3P Nodes Time? Nodes Time?? Nodes Time??

4×4 -954 077 1 16 s 1 1.7 s 1 2.1 s
5×5 -1 484 348 2 23 s 5 2.7 s 13 5.3 s
6×6 Gaussian -2 865 560 1 312 s 1 4.4 s 9 10.4 s
7×7 -3 282 435 1 3 128 s 9 8.2 s 13 20.9 s
8×8 -5 935 339 1 8 503 s 27 12.7 s 45 43.9 s
4×4 -13 1 < 0.005 s 1 1.8 s 1 2.4 s
5×5 -20 1 4 s 28 4.4 s 14 5.6 s
6×6 ±1 -29 1 22 s 107 7.5 s 68 10.8 s
7×7 -40 1 112 s 277 13.8 s 170 25.8 s
8×8 -55 1 1 598 s 243 22.6 s 330 50.1 s
9×9 -64 1 27 349 s 50 175 1 116.5 s 25 794 1 256.4 s

2× 3× 4 -20 1 3 s 8 5.6 s 8 6.9 s
2× 4× 4 -28 4 234 s 522 19.1 s 592 25.4 s
3× 3× 3 -26 1 11 s 20 8.0 s 53 11.9 s
3× 3× 4 ±1 -36 1 50 s 453 30.0 s 1 222 60.5 s
3× 4× 4 -48 1 719 s 17 499 862.9 s 15 629 639.7 s
3× 4× 5 -63 16 32 133 s 13 123 1 126.5 s 32 709 2 657.1 s
4× 4× 4 -65 19 30 975 s 171 846 15 247.2 s 136 671 11 157.3 s

?Sun Sparc 1200 MHz.
??Computed on an AMD Athlon 64 X2 Dual Core 4800+, 2.41 GHz, 4GB RAM and runs XP.
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QUBOs derived from Vision problems

QUBO’s derived from Vision problems
Preprocessing could fix about 15% of the variables within 1
sec
Branch-and-Cut can solve the entire problem in about 10
sec



Introduction Linearizations and Persistencies Lower Bounds A Branch-And-Cut Exact Method

THANK YOU
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