LP + Branch-and-Cut for solving certain hard Quadratic Unconstrained Binary Optimization (QUBO) problems

Gabriel Tavares^(*) Endre Boros^(**)
Peter L. Hammer¹

Fair Isaac*

Rutgers University**
RUTCOR – Rutgers Center for Operations Research

Fields Industrial Optimization Seminar, Toronto, Oct-2008

Outline

- Introduction
- Linearizations and Persistencies
- 3 Lower Bounds
- A Branch-And-Cut Exact Method

Outline

- **1** Introduction
- 2 Linearizations and Persistencies
- **3** Lower Bounds
- A Branch-And-Cut Exact Method

What is QUBO?

QUBO (or Quadratic Unconstrained Binary Optimization) is the problem

$$\min_{\mathbf{x}\in\{0,1\}^n}f(\mathbf{x}),$$

concerning the minimization of a quadratic pseudo–Boolean function *f* given by

$$f(x_1, \cdots, x_n) = c_0 + \sum_{j=1}^n c_j x_j + \sum_{1 \leqslant i < j \leqslant n} c_{ij} x_i x_j,$$

where c_0 , c_i for $i = 1, \dots, n$ and c_{ij} for $1 \le i < j \le n$ are given reals.

Graph Models

Linearizations and Persistencies

Graph Models

- MAX-CUT

- Via Minimization
- 2D and 3D Ising Model
- 1D Ising Chain

Graph Models

Introduction

- MAX-CUT
- MAX-Clique
- MIN-VC
- Graph Coloring
- Graph Partitioning
- Graph Balancing
- MIN_3_Partition

- MAX—SAT
- Via Minimization
- VLSI design
- 2D and 3D Ising Model
- 1D Ising Chain
- Fault Diagnosis
- Hierarchical Clustering
- Vision
- Preventing DDoS attacks
- Finding Highly Connected Proteins
- Combinatorics of Real World Graphs

Graph Models

- MAX-CUT
- MAX-Clique
- MIN-VC
- Graph Coloring
- Graph Partitioning
- Graph Balancing
- MIN-3-Partition

- MAX—SAT
- Via Minimization
- VLSI design
- 2D and 3D Ising Model
- 1D Ising Chain
- Fault Diagnosis
- Hierarchical Clustering
- Vision
- Preventing DDoS attacks
- Finding Highly Connected Proteins
- Combinatorics of Real World Graphs

Graph Models

- MAX-CUT
- MAX-Clique
- MIN-VC
- Graph Coloring
- Graph Partitioning
- Graph Balancing
- MIN-3-Partition

- MAX-SAT
- Via Minimization
- VLSI design
- 2D and 3D Ising Model
- 1D Ising Chain
- Fault Diagnosis
- Hierarchical Clustering
- Vision
- Preventing DDoS attacks
- Finding Highly Connected Proteins
- Combinatorics of Real World Graphs

Graph Models

- MAX-CUT
- MAX-Clique
- MIN-VC
- Graph Coloring
- Graph Partitioning

- Via Minimization
- 2D and 3D Ising Model
- 1D Ising Chain
- Fault Diagnosis

- Preventing DDoS attacks
- Finding Highly Connected Proteins
- Combinatorics of Real World Graphs

Graph Models

- MAX-CUT
- MAX-Clique
- MIN-VC
- Graph Coloring
- Graph Partitioning
- Graph Balancing
- MIN-3-Partition

- MAX—SAT
- Via Minimization
- VLSI design
- 2D and 3D Ising Model
- 1D Ising Chain
- Fault Diagnosis
- Hierarchical Clustering
- Vision
- Preventing DDoS attacks
- Finding Highly Connected Proteins
- Combinatorics of Real World Graphs

Graph Models

- MAX-CUT
- MAX-Clique
- MIN-VC
- Graph Coloring
- Graph Partitioning
- Graph Balancing
- MIN-3-Partition

- MAX-SAT
- Via Minimization
- VLSI design
- 2D and 3D Ising Model
- 1D Ising Chain
- Fault Diagnosis
- Hierarchical Clustering
 - Vision
- Preventing DDoS attacks
- Finding Highly Connected Proteins
- Combinatorics of Real World Graphs

Graph Models

- MAX-CUT
- MAX-Clique
- MIN-VC
- Graph Coloring
- Graph Partitioning
- Graph Balancing
- MIN-3-Partition

- MAX-SAT
- Via Minimization
- VLSI design
- 2D and 3D Ising Model
- 1D Ising Chain
- Fault Diagnosis
- Hierarchical Clustering
- Vision
- Preventing DDoS attacks
- Finding Highly Connected Proteins
- Combinatorics of Real World Graphs

Graph Models

- MAX-CUT
- MAX-Clique
- MIN-VC
- Graph Coloring
- Graph Partitioning
- Graph Balancing
- MIN-3-Partition

- MAX-SAT
- Via Minimization
- VLSI design
- 2D and 3D Ising Model
- 1D Ising Chain
- Fault Diagnosis
- Hierarchical Clustering
- Vision
- Preventing DDoS attacks
- Finding Highly Connected Proteins
- Combinatorics of Real World Graphs

Graph Models

- MAX-CUT
- MAX-Clique
- MIN-VC
- Graph Coloring
- Graph Partitioning
- Graph Balancing
- MIN-3-Partition

- MAX-SAT
- Via Minimization
- VLSI design
- 2D and 3D Ising Model
- 1D Ising Chain
- Fault Diagnosis
- Hierarchical Clustering
- Vision
- Preventing DDoS attacks
- Finding Highly Connected Proteins
- Combinatorics of Real World Graphs

Outline

- 1 Introduction
- Linearizations and Persistencies
- 3 Lower Bounds
- A Branch-And-Cut Exact Method

Linearization Model for QUBO

The standard linearization model to compute the minimum value of a quadratic pseudo-Boolean function is

$$\begin{aligned} & \text{min} \quad \left(c_0 + \sum_{i=1}^n c_i x_i + \sum_{1 \leqslant i < j \leqslant n} c_{ij} y_{ij} \right) \\ & \text{subject to} \\ & y_{ij} \leqslant x_i, & 1 \leqslant i < j \leqslant n, \ c_{ij} < 0, \\ & y_{ij} \leqslant x_j, & 1 \leqslant i < j \leqslant n, \ c_{ij} < 0, \\ & y_{ij} \geqslant x_i + x_j - 1, & 1 \leqslant i < j \leqslant n, \ c_{ij} > 0, \\ & y_{ij} \geqslant 0, & 1 \leqslant i < j \leqslant n, \\ & x_i \in \{0, 1\}, & j \in \mathbf{V}, \end{aligned}$$

whose optimal solutions $\mathbf{x}^* \in \{0, 1\}^n$ are minimizers of f.

Linearization Model for QUBO

The roof–dual bound $C_2(f)$ is obtained by relaxing the integrality in the linearization model [Hammer, Hansen and Simeone '84], i.e.

$$C_{2}(f) = \min \left(c_{0} + \sum_{i=1}^{n} c_{i}x_{i} + \sum_{1 \leqslant i < j \leqslant n} c_{ij}y_{ij} \right)$$
subject to
$$y_{ij} \leqslant x_{i}, \qquad 1 \leqslant i < j \leqslant n, \ c_{ij} < 0,$$

$$y_{ij} \leqslant x_{j}, \qquad 1 \leqslant i < j \leqslant n, \ c_{ij} < 0,$$

$$y_{ij} \geqslant x_{i} + x_{j} - 1, \quad 1 \leqslant i < j \leqslant n, \ c_{ij} > 0,$$

$$y_{ij} \geqslant 0, \qquad 1 \leqslant i < j \leqslant n, \ c_{ij} > 0,$$

$$x_{i} \in [0, 1], \qquad j \in \mathbf{V}.$$

Persistencies of the Linearization Model

Half-Integral Solutions Theorem [Balinski' 68]

Every extreme point of the relaxation of the linearization model has components 0, $\frac{1}{2}$ or 1.

Persistency Theorem [Hammer, Hansen and Simeone' 84]

If there exists an optimal solution \mathbf{x}^+ of the relaxation of the linearization model having certain variables S with 0–1 values, then there is an optimal solution \mathbf{x}^* to the linearization model such that $x_j^* = x_j^+, \ j \in S$.

The identification of these variables (called persistencies) can be very helpful in simplifying the QUBO problem.

Persistencies of the Linearization Model

Half-Integral Solutions Theorem [Balinski' 68]

Every extreme point of the relaxation of the linearization model has components 0, $\frac{1}{2}$ or 1.

Persistency Theorem [Hammer, Hansen and Simeone' 84]

If there exists an optimal solution \mathbf{x}^+ of the relaxation of the linearization model having certain variables S with 0–1 values, then there is an optimal solution \mathbf{x}^* to the linearization model such that $x_i^* = x_i^+, j \in S$.

The identification of these variables (called persistencies) can be very helpful in simplifying the QUBO problem.

Persistencies of the Linearization Model

Half-Integral Solutions Theorem [Balinski' 68]

Every extreme point of the relaxation of the linearization model has components 0, $\frac{1}{2}$ or 1.

Persistency Theorem [Hammer, Hansen and Simeone' 84]

If there exists an optimal solution \mathbf{x}^+ of the relaxation of the linearization model having certain variables S with 0–1 values, then there is an optimal solution \mathbf{x}^* to the linearization model such that $x_i^* = x_i^+, j \in S$.

The identification of these variables (called persistencies) can be very helpful in simplifying the QUBO problem.

Questions

- How to find a maximal set of persistencies?
- How to find a maximum set of persistencies?

New Persistency Results

Questions

- How to find a maximal set of persistencies?
- How to find a maximum set of persistencies?

New Persistency Results

Questions

- How to find a maximal set of persistencies?
- How to find a maximum set of persistencies?

New Persistency Results

 Any maximal set of persistencies is also maximum possible for the relaxed linearization model

Questions

- How to find a maximal set of persistencies?
- How to find a maximum set of persistencies?

New Persistency Results

- Any maximal set of persistencies is also maximum possible for the relaxed linearization model
- The maximum set of persistencies of the relaxed linearization model is unique
- The maximum set of persistencies of the relaxed linearization model can be computed in
 - $O(\max{-100} (2n, 2m) + \text{strong-components} (2n, 2m))$

Questions

- How to find a maximal set of persistencies?
- How to find a maximum set of persistencies?

New Persistency Results

- Any maximal set of persistencies is also maximum possible for the relaxed linearization model
- The maximum set of persistencies of the relaxed linearization model is unique
- The maximum set of persistencies of the relaxed linearization model can be computed in

 $O(\max-\text{flow}(2n,2m) + \text{strong-components}(2n,2m))$

Questions

- How to find a maximal set of persistencies?
- How to find a maximum set of persistencies?

New Persistency Results

- Any maximal set of persistencies is also maximum possible for the relaxed linearization model
- The maximum set of persistencies of the relaxed linearization model is unique
- The maximum set of persistencies of the relaxed linearization model can be computed in

 $O(\max-\text{flow}(2n,2m) + \text{strong-components}(2n,2m))$

Questions

- How to find a maximal set of persistencies?
- How to find a maximum set of persistencies?

New Persistency Results

- Any maximal set of persistencies is also maximum possible for the relaxed linearization model
- The maximum set of persistencies of the relaxed linearization model is unique
- The maximum set of persistencies of the relaxed linearization model can be computed in
 - $O(\max-\text{flow}(2n,2m) + \text{strong-components}(2n,2m))$

The above result is proved by

Using the equivalence between posiform maximization and the weigthed vertex packing problem of graphs

Consequently

The linearization models of general Pseudo–Boolean optimization problems also satisfy the previous persistency results

The above result is proved by

Using the equivalence between posiform maximization and the weigthed vertex packing problem of graphs

Consequently

The linearization models of general Pseudo–Boolean optimization problems also satisfy the previous persistency results

Outline

- 1 Introduction
- 2 Linearizations and Persistencies
- 3 Lower Bounds
- A Branch-And-Cut Exact Method

Hierarchy of Bounds

 Boros, Crama and Hammer '90 presented a hierarchy of bounds

$$C_2(f) \leqslant C_3(f) \leqslant C_4(f) \leqslant \cdots \leqslant C_n(f) = \min(f)$$

- C₂ (f) corresponds to the roof–dual value of f
- C₃ (f) corresponds to the cubic-dual of f [Boros, Crama and Hammer '92]
- $C_4(f)$ corresponds to the square—dual of f
- C₂. C₃ and C₁ are well characterized by LP

Hierarchy of Bounds

 Boros, Crama and Hammer '90 presented a hierarchy of bounds

$$C_2(f) \leqslant C_3(f) \leqslant C_4(f) \leqslant \cdots \leqslant C_n(f) = \min(f)$$

- C₂ (f) corresponds to the roof–dual value of f
- C₃ (f) corresponds to the cubic-dual of f [Boros, Crama and Hammer '92]
- $C_4(f)$ corresponds to the square—dual of f
- C₂. C₃ and C₄ are well characterized by LF

Hierarchy of Bounds

 Boros, Crama and Hammer '90 presented a hierarchy of bounds

$$C_2(f) \leqslant C_3(f) \leqslant C_4(f) \leqslant \cdots \leqslant C_n(f) = \min(f)$$

- C₂ (f) corresponds to the roof–dual value of f
- C₃ (f) corresponds to the cubic—dual of f [Boros, Crama and Hammer '92]
- $C_4(f)$ corresponds to the square—dual of f
- C₂, C₃ and C₄ are well characterized by Lf

Hierarchy of Bounds

 Boros, Crama and Hammer '90 presented a hierarchy of bounds

$$C_2(f) \leqslant C_3(f) \leqslant C_4(f) \leqslant \cdots \leqslant C_n(f) = \min(f)$$

- C₂ (f) corresponds to the roof-dual value of f
- $C_3(f)$ corresponds to the cubic-dual of f [Boros, Crama and Hammer '92]
- $C_4(f)$ corresponds to the square—dual of f

Hierarchy of Bounds

 Boros, Crama and Hammer '90 presented a hierarchy of bounds

$$C_2(f) \leqslant C_3(f) \leqslant C_4(f) \leqslant \cdots \leqslant C_n(f) = \min(f)$$

- C₂ (f) corresponds to the roof–dual value of f
- C₃ (f) corresponds to the cubic-dual of f [Boros, Crama and Hammer '92]
- C₄ (f) corresponds to the square—dual of f
- C₂, C₃ and C₄ are well characterized by LP

Outline

- 1 Introduction
- 2 Linearizations and Persistencies
- 3 Lower Bounds
- A Branch-And-Cut Exact Method

Let us consider again the relaxation of the LM

$$\begin{array}{lll} C_{2}\left(f\right) = & \min & \left(c_{0} + \sum\limits_{i=1}^{n} c_{i}x_{i} + \sum\limits_{1 \leqslant i < j \leqslant n} c_{ij}y_{ij}\right) \\ & \text{subject to} & \\ & y_{ij} \leqslant x_{i}, & 1 \leqslant i < j \leqslant n, \ c_{ij} \neq 0, \\ & y_{ij} \leqslant x_{j}, & 1 \leqslant i < j \leqslant n, \ c_{ij} \neq 0, \\ & y_{ij} \geqslant x_{i} + x_{j} - 1, & 1 \leqslant i < j \leqslant n, \ c_{ij} \neq 0, \\ & y_{ij} \geqslant 0, & 1 \leqslant i < j \leqslant n, \\ & x_{i} \in [0, 1], & j \in \mathbf{V}. \end{array}$$

Consider the C_3 cuts

Consist of the subset of triangle inequalities

$$W(S) = \left\{ (\mathbf{x}, \mathbf{y}) \middle| \begin{array}{ccc} x_i & +x_j & +x_k & -y_{i,j} - y_{i,k} - y_{j,k} \leqslant 1, \\ -x_i & & +y_{i,j} + y_{i,k} - y_{j,k} \leqslant 0, \\ -x_j & & +y_{i,j} - y_{i,k} + y_{j,k} \leqslant 0, \\ & -x_k & -y_{i,j} + y_{i,k} + y_{j,k} \leqslant 0, \end{array} \right. \left(\begin{array}{c} 1 \leqslant i < j < k \leqslant n \\ (i,j,k) \in \mathcal{S} \end{array} \right) \right\}$$

S represents the set of triplets (i, j, k) corresponding to the triangle inequalities involving variables x_i, x_j and x_k. Four basic cases are considered:

•
$$S_0 = \{(i, j, k) \in V^3 | c_{ii} c_{ik} c_{ik} \neq 0 \}$$

•
$$S_1 = \{(i, j, k) \in V^3 | c_{ii} \neq 0 \text{ and } (c_{ik} \neq 0 \text{ or } c_{ik} \neq 0) \}$$

•
$$S_2 = \{(i, j, k) \in V^3 | c_{ij} \neq 0 \}$$

•
$$S_3 = \{(i,j,k) \in V^3 | c_{ii} \neq 0 \text{ or } c_{ik} \neq 0 \text{ or } c_{ik} \neq 0 \}$$

- Theorem: $C_3 = LM + W(S_3)$
- Conjecture: $C_3 = LM + W(S_2)$

Consider the C_3 cuts

Introduction

Consist of the subset of triangle inequalities

$$\mathbf{W}(\mathcal{S}) = \left\{ (\mathbf{x}, \mathbf{y}) \middle| \begin{array}{ccc} x_i & +x_j & +x_k & -y_{i,j} - y_{i,k} - y_{j,k} \leqslant 1, \\ -x_i & & +y_{i,j} + y_{i,k} - y_{j,k} \leqslant 0, \\ & -x_j & & +y_{i,j} - y_{i,k} + y_{j,k} \leqslant 0, \\ & -x_k & -y_{i,j} + y_{i,k} + y_{j,k} \leqslant 0, \end{array} \right. \left(\begin{array}{c} 1 \leqslant i < j < k \leqslant n \\ (i,j,k) \in \mathcal{S} \end{array} \right) \right\}.$$

•
$$S_0 = \{(i, j, k) \in V^3 | c_{ij}c_{ik}c_{jk} \neq 0 \}$$

• $S_1 = \{(i, j, k) \in V^3 | c_{ij} \neq 0 \text{ and } (c_{ik} \neq 0 \text{ or } c_{jk} \neq 0) \}$
• $S_2 = \{(i, j, k) \in V^3 | c_{ij} \neq 0 \}$
• $S_3 = \{(i, i, k) \in V^3 | c_{ij} \neq 0 \}$

Consider the C3 cuts

Consist of the subset of triangle inequalities

$$\mathbf{W}(\mathcal{S}) = \left\{ (\mathbf{x}, \mathbf{y}) \middle| \begin{array}{ccc} x_i & +x_j & +x_k & -y_{i,j} - y_{i,k} - y_{j,k} \leqslant 1, \\ -x_i & & +y_{i,j} + y_{i,k} - y_{j,k} \leqslant 0, \\ & -x_j & & +y_{i,j} - y_{i,k} + y_{j,k} \leqslant 0, \\ & -x_k & -y_{i,j} + y_{i,k} + y_{j,k} \leqslant 0, \end{array} \right. \left(\begin{array}{c} 1 \leqslant i < j < k \leqslant n \\ (i,j,k) \in \mathcal{S} \end{array} \right) \right\}.$$

• S represents the set of triplets (i, j, k) corresponding to the triangle inequalities involving variables x_i , x_j and x_k . Four basic cases are considered:

•
$$S_0 = \{(i, j, k) \in V^3 | c_{ii} c_{ik} c_{ik} \neq 0 \}$$

•
$$S_1 = \{(i,j,k) \in V^3 | c_{ii} \neq 0 \text{ and } (c_{ik} \neq 0 \text{ or } c_{ik} \neq 0) \}$$

•
$$S_2 = \{(i,j,k) \in V^3 | c_{ij} \neq 0 \}$$

•
$$S_3 = \{(i, j, k) \in V^3 | c_{ii} \neq 0 \text{ or } c_{ik} \neq 0 \text{ or } c_{ik} \neq 0 \}$$

- Theorem: $C_3 = LM + W(S_3)$
- Onjecture: $C_3 = LM + W(S_2)$

Consider the C_3 cuts

Consist of the subset of triangle inequalities

$$\mathbf{W}(\mathcal{S}) = \left\{ (\mathbf{x}, \mathbf{y}) \middle| \begin{array}{cccc} x_{j} & +x_{j} & +x_{k} & -y_{i,j} - y_{i,k} - y_{j,k} \leqslant 1, \\ -x_{i} & & +y_{i,j} + y_{i,k} - y_{j,k} \leqslant 0, \\ & -x_{j} & & +y_{i,j} - y_{i,k} + y_{j,k} \leqslant 0, \\ & -x_{k} & -y_{i,j} + y_{i,k} + y_{j,k} \leqslant 0, \end{array} \right. \left(\begin{array}{c} 1 \leqslant i < j < k \leqslant n \\ (i,j,k) \in \mathcal{S} \end{array} \right) \right\}.$$

• S represents the set of triplets (i, j, k) corresponding to the triangle inequalities involving variables x_i , x_j and x_k . Four basic cases are considered:

•
$$S_0 = \{(i, j, k) \in V^3 | c_{ii} c_{ik} c_{ik} \neq 0 \}$$

•
$$S_1 = \{(i,j,k) \in V^3 | c_{ii} \neq 0 \text{ and } (c_{ik} \neq 0 \text{ or } c_{ik} \neq 0) \}$$

•
$$S_2 = \{(i, j, k) \in V^3 | c_{ij} \neq 0 \}$$

•
$$S_3 = \{(i,j,k) \in V^3 | c_{ii} \neq 0 \text{ or } c_{ik} \neq 0 \text{ or } c_{ik} \neq 0 \}$$

- Theorem: $C_3 = LM + W(S_3)$
- Onjecture: $C_3 = LM + W(S_2)$

Consider the C_3 cuts

Consist of the subset of triangle inequalities

$$\mathbf{W}(\mathcal{S}) = \left\{ (\mathbf{x}, \mathbf{y}) \middle| \begin{array}{cccc} x_{j} & +x_{j} & +x_{k} & -y_{i,j} - y_{i,k} - y_{j,k} \leqslant 1, \\ -x_{i} & & +y_{i,j} + y_{i,k} - y_{j,k} \leqslant 0, \\ & -x_{j} & & +y_{i,j} - y_{i,k} + y_{j,k} \leqslant 0, \\ & -x_{k} & -y_{i,j} + y_{i,k} + y_{j,k} \leqslant 0, \end{array} \right. \left(\begin{array}{c} 1 \leqslant i < j < k \leqslant n \\ (i,j,k) \in \mathcal{S} \end{array} \right) \right\}.$$

- S represents the set of triplets (i, j, k) corresponding to the triangle inequalities involving variables x_i , x_j and x_k . Four basic cases are considered:
 - $S_0 = \{(i, j, k) \in V^3 | c_{ii} c_{ik} c_{ik} \neq 0 \}$
 - $S_1 = \{(i, j, k) \in V^3 | c_{ij} \neq 0 \text{ and } (c_{ik} \neq 0 \text{ or } c_{jk} \neq 0) \}$
 - $S_2 = \{(i,j,k) \in V^3 | c_{ij} \neq 0 \}$
 - $S_3 = \{(i, j, k) \in V^3 | c_{ij} \neq 0 \text{ or } c_{ik} \neq 0 \text{ or } c_{ik} \neq 0 \}$
- Theorem: $C_3 = LM + W(S_3)$
- Conjecture: $C_3 = LM + W(S_2)$

A LP Branch-and-Cut (B&C) model for QUBO

LP-B&C-QUBO(f, S, P)

Let f be a quadratic pseudo-Boolean function f. S is the set of triplets considered to define Input: the triangle inequalities. \mathcal{P} is the set of 4-tuples considered to define the square inequalities.

Find an incumbent **x**⁺ for f using the tabu search implementation of Palubeckis '04. Step 1:

Step 2: Solve the LP

Output:

Introduction

$$z\left(f,\mathcal{S},\mathcal{P}\right)=\min\left\{L_{f}\left(\boldsymbol{x},\boldsymbol{y}\right)\left|\left(\boldsymbol{x},\boldsymbol{y}\right)\in\boldsymbol{W}^{\left[3\right]}\left(\mathcal{S}\right)\cup\boldsymbol{W}^{\left[4\right]}\left(\mathcal{P}\right),\boldsymbol{x}\in\mathbb{U}^{n}\right.\right\}.$$

Lower Bounds

Save the optimal basic feasible solution B.

Step 3: Remove all triangle and square cuts that have zero dual values, i.e. remove those cuts that are non-binding. The resulting problem is a 0-1 MIP.

Solve the LP relaxation of the MIP by warm starting it with the basis B. Load the incumbent Step 4: x⁺ as a solution of the MIP and then solve it

> The minimum value of f is equal to the optimum of the MIP, and every minimizer \mathbf{x}^* of the MIP is also a minimizer of f.

Application Covered Next

Graph Models

- MAX-CUT
- MAX-Clique
- MIN-VC
- Graph Coloring
- Graph Partitioning
- Graph Balancing
- MIN-3-Partition

Engineering and Social Sciences

- MAX-SAT
- Via Minimization
- VLSI design
- 2D and 3D Ising Model
- 1D Ising Chain
- Fault Diagnosis
- Hierarchical Clustering
- Vision
- Preventing DDoS attacks
- Finding Highly Connected Proteins
- Combinatorics of Real World Graphs

- There are four torus graphs considered in the DIMACS library of mixed semidefinite-quadratic-linear programs
- The torus graphs are 3D-toroidal graphs, originated from the Ising model
- LP-B&C-QUBO(S_1 , \emptyset) was able to prove optimality for the first time to graph g3-8, which has ± 1 interactions and 512 vertices
- It required 302 156 nodes and 1871 155 sec to find this proof on a standard computer

Introduction

- There are four torus graphs considered in the DIMACS library of mixed semidefinite-quadratic-linear programs
- The torus graphs are 3D-toroidal graphs, originated from the Ising model
- LP-B&C-QUBO(S_1 , \emptyset) was able to prove optimality for the first time to graph g3-8, which has ± 1 interactions and 512 vertices
- It required 302 156 nodes and 1 871 155 sec to find this proof on a standard computer

Introduction

- There are four torus graphs considered in the DIMACS library of mixed semidefinite-quadratic-linear programs
- The torus graphs are 3D-toroidal graphs, originated from the Ising model
- LP-B&C-QUBO(S_1 , \emptyset) was able to prove optimality for the first time to graph g3-8, which has ± 1 interactions and 512 vertices
- It required 302 156 nodes and 1 871 155 sec to find this proof on a standard computer

Introduction

- There are four torus graphs considered in the DIMACS library of mixed semidefinite-quadratic-linear programs
- The torus graphs are 3D-toroidal graphs, originated from the Ising model
- LP-B&C-QUBO(S_1 , \emptyset) was able to prove optimality for the first time to graph g3-8, which has ± 1 interactions and 512 vertices
- It required 302 156 nodes and 1 871 155 sec to find this proof on a standard computer

- There are four torus graphs considered in the DIMACS library of mixed semidefinite-quadratic-linear programs
- The torus graphs are 3D-toroidal graphs, originated from the Ising model
- LP-B&C-QUBO(S_1 , \emptyset) was able to prove optimality for the first time to graph g3-8, which has ± 1 interactions and 512 vertices
- It required 302 156 nodes and 1 871 155 sec to find this proof on a standard computer

- There are four torus graphs considered in the DIMACS library of mixed semidefinite-quadratic-linear programs
- The torus graphs are 3D-toroidal graphs, originated from the Ising model
- LP-B&C-QUBO(S_1 , \emptyset) was able to prove optimality for the first time to graph g3-8, which has ± 1 interactions and 512 vertices
- It required 302 156 nodes and 1 871 155 sec to find this proof on a standard computer

Found better solutions for 2D Ising models than top meta-heuristics for QUBO

		LP-B&C-QUBO with $\mathcal{S}=\mathcal{S}_1$ and $\mathcal{P}=\emptyset$							
	Vertices		Nodes	Computing Time*					
Instance		MAX-CUT		Incumbent	Relaxation	MIP [†]			
G11	100×8	564	30	8.5 s	1.6 s	12.2 s			
G12	50×16	556	39	8.4 s	1.8 s	17.7 s			
G13	25×32	582	36	8.5 s	1.8 s	22.7 s			
G32	100×20	[1 410,1 412]	83 837	35.2 s	5.3 s	10 000.0 s			
G33	80×25	[1 382,1 383]	134 133	35.6 s	6.0 s	10 000.0 s			
G34	50×40	[1 384,1 388]	66149	35.2 s	5.9 s	10 000.0 s			
G57	100×50	[3 492,3 505]	20 598	111.4 s	21.7 s	10 000.0 s			
G62	100×70	[4862,4886]	10 109	178.7 s	36.9 s	10 000.0 s			
G65	100×80	[5 550,5 581]	4 199	217.4 s	47.1 s	10 000.0 s			
G66	90×100	[6 352,6 387]	5 065	258.8 s	159.7 s	10 000.0 s			
G67	100×100	[6 932,6 981]	7 683	303.7 s	323.8 s	10 000.0 s			

^{*}Computed on an AMD Athlon 64 X2 Dual Core 4800+, 2.41 GHz, 4GB RAM and runs XP.

[†]The MIP solver stage was set to run at most 10 000 sec.

Application Covered Next

Graph Models

- MAX-CUT
- MAX-Clique
- MIN-VC
- Graph Coloring
- Graph Partitioning
- Graph Balancing
- MIN-3-Partition

Engineering and Social Sciences

- MAX-SAT
- Via Minimization
- VLSI design
- 2D and 3D Ising Model
- 1D Ising Chain
- Fault Diagnosis
- Hierarchical Clustering
- Vision
- Preventing DDoS attacks
- Finding Highly Connected Proteins
- Combinatorics of Real World Graphs

Minimum-3-Partition (M3P) of Graphs

МЗР

- Given a weighted graph $G = (V, E, \mathbf{w})$, the MkP problem is the problem of partitioning the set of vertices *V* into *k* disjoint subsets such that the total weight of the edges joining vertices of the same partition is minimum.

Minimum-3-Partition (M3P) of Graphs

МЗР

- Given a weighted graph $G = (V, E, \mathbf{w})$, the MkP problem is the problem of partitioning the set of vertices V into k disjoint subsets such that the total weight of the edges joining vertices of the same partition is minimum.
- To solve M3P we use the solver LP-B&C-QUBO(f, S, Z), where S is S_1 or S_2 and Z defines the set of pure square cuts

Main reference about the M3P problen

Anios, M., B. Ghaddar and F. Liers

A branch-and-cut algorithm based on semidefinite programming for the minimum k-partition problem.

Research report, Combinatorial Optimization in Physics (COPhy) (July 2007)

Minimum-3-Partition (M3P) of Graphs

МЗР

- Given a weighted graph $G = (V, E, \mathbf{w})$, the MkP problem is the problem of partitioning the set of vertices V into k disjoint subsets such that the total weight of the edges joining vertices of the same partition is minimum.
- To solve M3P we use the solver LP-B&C-QUBO(f, S, Z), where S is S_1 or S_2 and Z defines the set of pure square cuts

Main reference about the M3P problem

Anjos, M., B. Ghaddar and F. Liers.

A branch-and-cut algorithm based on semidefinite programming for the minimum k-partition problem.

Research report, Combinatorial Optimization in Physics (COPhy) (July 2007).

Introduction

Minimum-3-Partition (M3P) of Graphs

Optimal Minimum-3-Partitions of 2D and 3D Ising models

Lower Bounds

			SBC		LP with (S_1, \mathcal{Z})		LP with (S_2, \mathcal{Z})	
Instance	Weights	M3P	Nodes	Time*	Nodes	Time**	Nodes	Time* *
4×4		-954 077	1	16 s	1	1.7 s	1	2.1 s
5×5		-1 484 348	2	23 s	5	2.7 s	13	5.3 s
6×6	Gaussian	-2865560	1	312 s	1	4.4 s	9	10.4 s
7×7		-3 282 435	1	3 128 s	9	8.2 s	13	20.9 s
8×8		-5 935 339	1	8 503 s	27	12.7 s	45	43.9 s
4×4		-13	1	< 0.005 s	1	1.8 s	1	2.4 s
5×5		-20	1	4 s	28	4.4 s	14	5.6 s
6×6	±1	-29	1	22 s	107	7.5 s	68	10.8 s
7×7		-40	1	112 s	277	13.8 s	170	25.8 s
8×8		-55	1	1 598 s	243	22.6 s	330	50.1 s
9×9		-64	1	27 349 s	50 175	1116.5 s	25 794	1 256.4 s
$2 \times 3 \times 4$		-20	1	3 s	8	5.6 s	8	6.9 s
$2 \times 4 \times 4$		-28	4	234 s	522	19.1 s	592	25.4 s
$3 \times 3 \times 3$		-26	1	11 s	20	8.0 s	53	11.9 s
$3 \times 3 \times 4$	±1	-36	1	50 s	453	30.0 s	1 222	60.5 s
$3 \times 4 \times 4$		-48	1	719 s	17 499	862.9 s	15 629	639.7 s
$3 \times 4 \times 5$		-63	16	32 133 s	13 123	1126.5 s	32 709	2657.1 s
$4 \times 4 \times 4$	4000 MU	-65	19	30 975 s	171 846	15247.2 s	136 671	11 157.3 s

^{*} Sun Sparc 1200 MHz.

^{**} Computed on an AMD Athlon 64 X2 Dual Core 4800+, 2.41 GHz, 4GB RAM and runs XP.

Application Covered Next

Graph Models

- MAX-CUT
- MAX-Clique
- MIN-VC
- Graph Coloring
- Graph Partitioning
- Graph Balancing
- MIN-3-Partition

Engineering and Social Sciences

- MAX-SAT
- Via Minimization
- VLSI design
- 2D and 3D Ising Model
- 1D Ising Chain
- Fault Diagnosis
- Hierarchical Clustering
- Vision
- Preventing DDoS attacks
- Finding Highly Connected Proteins
- Combinatorics of Real World Graphs

QUBOs derived from Vision problems

QUBO's derived from Vision problems

- Preprocessing could fix about 15% of the variables within 1 sec
- Branch-and-Cut can solve the entire problem in about 10 sec

Introduction

THANK YOU