LP + Branch-and-Cut for solving certain hard Quadratic Unconstrained Binary Optimization (QUBO) problems

Gabriel Tavares(*) Endre Boros ${ }^{(* \star)}$
Peter L. Hammer ${ }^{1}$

Fair Isaac*
Rutgers University**
RUTCOR - Rutgers Center for Operations Research

Fields Industrial Optimization Seminar, Toronto, Oct-2008

Outline

(1) Introduction
(2) Linearizations and Persistencies
(3) Lower Bounds

4 A Branch-And-Cut Exact Method

Outline

2 Linearizations and Persistencies

(3) Lower Bounds

4 A Branch-And-Cut Exact Method

What is QUBO?

QUBO (or Quadratic Unconstrained Binary Optimization) is the problem

$$
\min _{\mathbf{x} \in\{0,1\}^{n}} f(\mathbf{x})
$$

concerning the minimization of a quadratic pseudo-Boolean function f given by

$$
f\left(x_{1}, \cdots, x_{n}\right)=c_{0}+\sum_{j=1}^{n} c_{i} x_{i}+\sum_{1 \leqslant i<j \leqslant n} c_{i j} x_{i} x_{j}
$$

where c_{0}, c_{i} for $i=1, \cdots, n$ and $c_{i j}$ for $1 \leqslant i<j \leqslant n$ are given reals.

Motivation: Wide variety of Applications

Graph Models

Engineering and Social Sciences

Motivation: Wide variety of Applications

Graph Models

- MAX-CUT

Engineering and Social Sciences

- Via Minimization
- 2D and 3D Ising Model
- 1D Ising Chain
- Preventing DDoS attacks

Motivation: Wide variety of Applications

Graph Models

- MAX-CUT
- MAX-Clique

Engineering and Social Sciences

- Via Minimization
- 2D and 3D Ising Model
- 1D Ising Chain
- Fault Diagnosis

Motivation: Wide variety of Applications

Graph Models

- MAX-CUT
- MAX-Clique
- MIN-VC

Engineering and Social Sciences

- Via Minimization
- 2D and 3D Ising Model
- 1D Ising Chain
- Fault Diagnosis
- Preventing DDoS attacks
- Combinatorics of Real World Graphs

Motivation: Wide variety of Applications

Graph Models

- MAX-CUT
- MAX-Clique
- MIN-VC
- Graph Coloring

- Graph Balancing

Engineering and Social Sciences

- Via Minimization
- 2D and 3D Ising Model
- 1D Ising Chain
- Fault Diagnosis
- Hierarchical Clustering
- Preventing DDoS attacks
- Combinatorics of Real World Graphs

Motivation: Wide variety of Applications

Graph Models

- MAX-CUT
- MAX-Clique
- MIN-VC
- Graph Coloring
- Graph Partitioning

Engineering and Social Sciences

- Via Minimization
- 2D and 3D Ising Model
- 1D Ising Chain
- Fault Diagnosis
- Hierarchical Clusterina
- Preventing DDoS attacks
- Finding Highly Connected Proteins
- Combinatorics of Real World Graphs

Motivation: Wide variety of Applications

Graph Models

- MAX-CUT
- MAX-Clique
- MIN-VC
- Graph Coloring
- Graph Partitioning
- Graph Balancing

Engineering and Social Sciences

- Via Minimization
- 2D and 3D Ising Model
- 1D Ising Chain
- Fault Diagnosis
- Hierarchical Clustering
- Preventing DDoS attacks
- Finding Highly Connected Proteins
- Combinatorics of Real World Graphs

Motivation: Wide variety of Applications

Graph Models

- MAX-CUT
- MAX-Clique
- MIN-VC
- Graph Coloring
- Graph Partitioning
- Graph Balancing
- MIN-3-Partition

Engineering and Social Sciences

- Via Minimization
- 2D and 3D Ising Model
- 1D Ising Chain
- Fault Diagnosis
- Hierarchical Clustering
- Preventing DDoS attacks
- Finding Highly Connected Proteins
- Combinatorics of Real World Graphs

Motivation: Wide variety of Applications

Graph Models

- MAX-CUT
- MAX-Clique
- MIN-VC
- Graph Coloring
- Graph Partitioning
- Graph Balancing
- MIN-3-Partition

Engineering and Social Sciences

- MAX-SAT
- Via Minimization
- 2D and 3D Ising Model
- 1D Ising Chain
- Fault Diagnosis
- Hierarchical Clustering
- Preventing DDoS attacks
- Finding Highly Connected Proteins
- Combinatorics of Real World Graphs

Motivation: Wide variety of Applications

Graph Models

- MAX-CUT
- MAX-Clique
- MIN-VC
- Graph Coloring
- Graph Partitioning
- Graph Balancing
- MIN-3-Partition

Engineering and Social Sciences

- MAX-SAT
- Via Minimization
- VLSI design
- 2D and 3D Ising Model
- 1D Ising Chain
- Fault Diagnosis
- Hierarchical Clustering
- Preventing DDoS attacks
- Finding Highly Connected Proteins
- Combinatorics of Real World Graphs

Motivation: Wide variety of Applications

Graph Models

- MAX-CUT
- MAX-Clique
- MIN-VC
- Graph Coloring
- Graph Partitioning
- Graph Balancing
- MIN-3-Partition

Engineering and Social Sciences

- MAX-SAT
- Via Minimization
- VLSI design
- 2D and 3D Ising Model
- 1D Ising Chain
- Fault Diagnosis
- Hierarchical Clustering
- Vision
- Preventing DDoS attacks
- Finding Highly Connected Proteins
- Combinatorics of Real World Graphs

Outline

(1) Introduction

(2) Linearizations and Persistencies
(3) Lower Bounds

4 A Branch-And-Cut Exact Method

Linearization Model for QUBO

The standard linearization model to compute the minimum value of a quadratic pseudo-Boolean function is

$$
\begin{array}{ll}
\min \left(c_{0}+\sum_{i=1}^{n} c_{i} x_{i}+\sum_{1 \leqslant i<j \leqslant n} c_{i j} y_{i j}\right) \\
\text { subject to } & \\
y_{i j} \leqslant x_{i}, & 1 \leqslant i<j \leqslant n, c_{i j}<0, \\
y_{i j} \leqslant x_{j}, & 1 \leqslant i<j \leqslant n, c_{i j}<0, \\
y_{i j} \geqslant x_{i}+x_{j}-1, & 1 \leqslant i<j \leqslant n, c_{i j}>0, \\
y_{i j} \geqslant 0, & 1 \leqslant i<j \leqslant n, \\
x_{j} \in\{0,1\}, & j \in \mathbf{V},
\end{array}
$$

whose optimal solutions $\mathbf{x}^{\star} \in\{0,1\}^{n}$ are minimizers of f.

Linearization Model for QUBO

The roof-dual bound $C_{2}(f)$ is obtained by relaxing the integrality in the linearization model [Hammer, Hansen and Simeone '84], i.e.

$$
\begin{array}{cl}
C_{2}(f)=\min \left(c_{0}+\sum_{i=1}^{n} c_{i} x_{i}+\sum_{1 \leqslant i<j \leqslant n} c_{i j} y_{i j}\right) \\
\text { subject to } & \\
y_{i j} \leqslant x_{i}, & 1 \leqslant i<j \leqslant n, c_{i j}<0, \\
y_{i j} \leqslant x_{j}, & 1 \leqslant i<j \leqslant n, c_{i j}<0, \\
y_{i j} \geqslant x_{i}+x_{j}-1, & 1 \leqslant i<j \leqslant n, c_{i j}>0, \\
y_{i j} \geqslant 0, & 1 \leqslant i<j \leqslant n, \\
x_{j} \in[0,1], & j \in \mathbf{V} .
\end{array}
$$

Persistencies of the Linearization Model

Half-Integral Solutions Theorem [Balinski' 68]

Every extreme point of the relaxation of the linearization model has components $0, \frac{1}{2}$ or 1 .

Persistencies of the Linearization Model

Half-Integral Solutions Theorem [Balinski' 68]

Every extreme point of the relaxation of the linearization model has components $0, \frac{1}{2}$ or 1 .

Persistency Theorem [Hammer, Hansen and Simeone’ 84]

If there exists an optimal solution \mathbf{x}^{+}of the relaxation of the linearization model having certain variables S with $0-1$ values, then there is an optimal solution \mathbf{x}^{\star} to the linearization model such that $x_{j}^{\star}=x_{j}^{+}, j \in S$.

Persistencies of the Linearization Model

Half-Integral Solutions Theorem [Balinski' 68]

Every extreme point of the relaxation of the linearization model has components $0, \frac{1}{2}$ or 1 .

Persistency Theorem [Hammer, Hansen and Simeone’ 84]

If there exists an optimal solution \mathbf{x}^{+}of the relaxation of the linearization model having certain variables S with $0-1$ values, then there is an optimal solution \mathbf{x}^{\star} to the linearization model such that $x_{j}^{\star}=x_{j}^{+}, j \in S$.

The identification of these variables (called persistencies) can be very helpful in simplifying the QUBO problem.

Properties of Persistencies

Questions

- How to find a maximal set of persistencies? - How to find a maximum set of persistencies?

Properties of Persistencies

Questions

- How to find a maximal set of persistencies?

Properties of Persistencies

Questions

- How to find a maximal set of persistencies?
- How to find a maximum set of persistencies?

Properties of Persistencies

Questions

- How to find a maximal set of persistencies?
- How to find a maximum set of persistencies?

New Persistency Results

Any maximal set of persistencies is also maximum possible for the relaxed linearization model

Properties of Persistencies

Questions

- How to find a maximal set of persistencies?
- How to find a maximum set of persistencies?

New Persistency Results

- Any maximal set of persistencies is also maximum possible for the relaxed linearization model

model

The maximum set of persistencies of the relaxed linearization model can be comnited in
\square

Properties of Persistencies

Questions

- How to find a maximal set of persistencies?
- How to find a maximum set of persistencies?

New Persistency Results

- Any maximal set of persistencies is also maximum possible for the relaxed linearization model
- The maximum set of persistencies of the relaxed linearization model is unique

The maximum set of persistencies of the relaxed linearization model can be computed in
\square

Properties of Persistencies

Questions

- How to find a maximal set of persistencies?
- How to find a maximum set of persistencies?

New Persistency Results

- Any maximal set of persistencies is also maximum possible for the relaxed linearization model
- The maximum set of persistencies of the relaxed linearization model is unique
- The maximum set of persistencies of the relaxed linearization model can be computed in

$$
O(\text { max-flow }(2 n, 2 m)+\text { strong-components }(2 n, 2 m))
$$

Properties of Persistencies

The above result is proved by
Using the equivalence between posiform maximization and the weigthed vertex packing problem of graphs

Properties of Persistencies

The above result is proved by
Using the equivalence between posiform maximization and the weigthed vertex packing problem of graphs

Consequently

The linearization models of general Pseudo-Boolean optimization problems also satisfy the previous persistency results

Outline

(1) Introduction

2 Linearizations and Persistencies

(3) Lower Bounds

4 A Branch-And-Cut Exact Method

If the Roof-Dual is not Sharp, then How to Improve the Bound?

Hierarchy of Bounds

- Boros, Crama and Hammer '90 presented a hierarchy of bounds

$$
C_{2}(f) \leqslant C_{3}(f) \leqslant C_{4}(f) \leqslant \cdots \leqslant C_{n}(f)=\min (f)
$$

for QUBO

If the Roof-Dual is not Sharp, then How to Improve the Bound?

Hierarchy of Bounds

- Boros, Crama and Hammer '90 presented a hierarchy of bounds

$$
C_{2}(f) \leqslant C_{3}(f) \leqslant C_{4}(f) \leqslant \cdots \leqslant C_{n}(f)=\min (f)
$$

for QUBO

- $C_{2}(f)$ corresponds to the roof-dual value of f

If the Roof-Dual is not Sharp, then How to Improve the Bound?

Hierarchy of Bounds

- Boros, Crama and Hammer '90 presented a hierarchy of bounds

$$
C_{2}(f) \leqslant C_{3}(f) \leqslant C_{4}(f) \leqslant \cdots \leqslant C_{n}(f)=\min (f)
$$

for QUBO

- $C_{2}(f)$ corresponds to the roof-dual value of f
- $C_{3}(f)$ corresponds to the cubic-dual of f [Boros, Crama and Hammer '92]

If the Roof-Dual is not Sharp, then How to Improve the Bound?

Hierarchy of Bounds

- Boros, Crama and Hammer '90 presented a hierarchy of bounds

$$
C_{2}(f) \leqslant C_{3}(f) \leqslant C_{4}(f) \leqslant \cdots \leqslant C_{n}(f)=\min (f)
$$

for QUBO

- $C_{2}(f)$ corresponds to the roof-dual value of f
- $C_{3}(f)$ corresponds to the cubic-dual of f [Boros, Crama and Hammer '92]
- $C_{4}(f)$ corresponds to the square-dual of f

If the Roof-Dual is not Sharp, then How to Improve the Bound?

Hierarchy of Bounds

- Boros, Crama and Hammer '90 presented a hierarchy of bounds

$$
C_{2}(f) \leqslant C_{3}(f) \leqslant C_{4}(f) \leqslant \cdots \leqslant C_{n}(f)=\min (f)
$$

for QUBO

- $C_{2}(f)$ corresponds to the roof-dual value of f
- $C_{3}(f)$ corresponds to the cubic-dual of f [Boros, Crama and Hammer '92]
- $C_{4}(f)$ corresponds to the square-dual of f
- C_{2}, C_{3} and C_{4} are well characterized by LP

Outline

(1) Introduction

2) Linearizations and Persistencies
(3) Lower Bounds

4 A Branch-And-Cut Exact Method

Linearization Model (LM) + Cuts

Let us consider again the relaxation of the LM

$$
\begin{array}{cl}
C_{2}(f)=\min \left(c_{0}+\sum_{i=1}^{n} c_{i} x_{i}+\sum_{1 \leqslant i<j \leqslant n} c_{i j} y_{i j}\right) \\
\text { subject to } & \\
y_{i j} \leqslant x_{i}, & 1 \leqslant i<j \leqslant n, c_{i j} \neq 0, \\
y_{i j} \leqslant x_{j}, & 1 \leqslant i<j \leqslant n, c_{i j} \neq 0, \\
y_{i j} \geqslant x_{i}+x_{j}-1, & 1 \leqslant i<j \leqslant n, c_{i j} \neq 0, \\
y_{i j} \geqslant 0, & 1 \leqslant i<j \leqslant n, \\
x_{j} \in[0,1], & j \in \mathbf{V} .
\end{array}
$$

Linearization Model (LM) + Cuts

Consider the C_{3} cuts

Linearization Model (LM) + Cuts

Consider the C_{3} cuts

- Consist of the subset of triangle inequalities

$$
\mathbf{W}(\mathcal{S})=\left\{(\mathbf{x}, \mathbf{y}) \left\lvert\, \begin{array}{rrrl}
x_{i} & +x_{j} & +x_{k} & -y_{i, j}-y_{i, k}-y_{j, k} \leqslant 1, \\
-x_{i} & -y_{i, j}+y_{i, k}-y_{j, k} \leqslant 0, \\
& -x_{j} & & +y_{i, j}-y_{i, k}+y_{j, k} \leqslant 0, \\
& & -x_{k} & -y_{i, j}+y_{i, k}+y_{j, k} \leqslant 0,
\end{array} \quad\binom{1 \leqslant i<j<k \leqslant n}{(i, j, k) \in \mathcal{S}}\right.\right\}
$$

- \mathcal{S} represents the set of triplets (i, j, k) corresponding to the triangle inequalities involvina variables x_{i}, x_{i} and x_{i}. Four basic cases are considered

Linearization Model (LM) + Cuts

Consider the C_{3} cuts

- Consist of the subset of triangle inequalities

$$
\mathbf{W}(\mathcal{S})=\left\{(\mathbf{x}, \mathbf{y}) \left\lvert\, \begin{array}{rrrl}
x_{i} & +x_{j} & +x_{k} & \begin{array}{l}
-y_{i, j}-y_{i, k}-y_{j, k} \leqslant 1, \\
-x_{i} \\
\\
\\
\\
-x_{j}
\end{array} \\
& -y_{k} & \begin{array}{l}
+y_{i, j}+y_{i, k}-y_{j, k}+y_{j, k} \leqslant 0, \\
-y_{i, j}+y_{i, k}+y_{j, k} \leqslant 0,
\end{array}
\end{array} \quad\binom{1 \leqslant i<j<k \leqslant n}{(i, j, k) \in \mathcal{S}}\right.\right\} .
$$

- \mathcal{S} represents the set of triplets (i, j, k) corresponding to the triangle inequalities involving variables x_{i}, x_{j} and x_{k}. Four basic cases are considered:
- $\mathcal{S}_{0}=\left\{(i, j, k) \in V^{3} \mid c_{i j} c_{i k} c_{j k} \neq 0\right\}$
- $\mathcal{S}_{1}=\left\{(i, j, k) \in V^{3} \mid c_{i j} \neq 0\right.$ and $\left(c_{i k} \neq 0\right.$ or $\left.\left.c_{j k} \neq 0\right)\right\}$
- $\mathcal{S}_{2}=\left\{(i, j, k) \in V^{3} \mid c_{i j} \neq 0\right\}$
- $\mathcal{S}_{3}=\left\{(i, j, k) \in V^{3} \mid c_{i j} \neq 0\right.$ or $c_{i k} \neq 0$ or $\left.c_{j k} \neq 0\right\}$

Linearization Model (LM) + Cuts

Consider the C_{3} cuts

- Consist of the subset of triangle inequalities

$$
\mathbf{W}(\mathcal{S})=\left\{(\mathbf{x}, \mathbf{y}) \left\lvert\, \begin{array}{rrrl}
x_{i} & +x_{j} & +x_{k} & -y_{i, j}-y_{i, k}-y_{j, k} \leqslant 1, \\
-x_{i} & -y_{i, j}+y_{i, k}-y_{j, k} \leqslant 0, \\
& -x_{j} & & +y_{i, j}-y_{i, k}+y_{j, k} \leqslant 0, \\
& & -x_{k} & -y_{i, j}+y_{i, k}+y_{j, k} \leqslant 0,
\end{array} \quad\binom{1 \leqslant i<j<k \leqslant n}{(i, j, k) \in \mathcal{S}}\right.\right\}
$$

- \mathcal{S} represents the set of triplets (i, j, k) corresponding to the triangle inequalities involving variables x_{i}, x_{j} and x_{k}. Four basic cases are considered:
- $\mathcal{S}_{0}=\left\{(i, j, k) \in V^{3} \mid c_{i j} c_{i k} c_{j k} \neq 0\right\}$
- $\mathcal{S}_{1}=\left\{(i, j, k) \in V^{3} \mid c_{i j} \neq 0\right.$ and $\left(c_{i k} \neq 0\right.$ or $\left.\left.c_{j k} \neq 0\right)\right\}$
- $\mathcal{S}_{2}=\left\{(i, j, k) \in V^{3} \mid c_{i j} \neq 0\right\}$
- $\mathcal{S}_{3}=\left\{(i, j, k) \in V^{3} \mid c_{i j} \neq 0\right.$ or $c_{i k} \neq 0$ or $\left.c_{j k} \neq 0\right\}$
- Theorem: $C_{3}=\mathrm{LM}+\mathbf{W}\left(\mathcal{S}_{3}\right)$

Linearization Model (LM) + Cuts

Consider the C_{3} cuts

- Consist of the subset of triangle inequalities

$$
\mathbf{W}(\mathcal{S})=\left\{(\mathbf{x}, \mathbf{y}) \left\lvert\, \begin{array}{rrrl}
x_{i} & +x_{j} & +x_{k} & -y_{i, j}-y_{i, k}-y_{j, k} \leqslant 1, \\
-x_{i} & -y_{i, j}+y_{i, k}-y_{j, k} \leqslant 0, \\
& -x_{j} & & +y_{i, j}-y_{i, k}+y_{j, k} \leqslant 0, \\
& & -x_{k} & -y_{i, j}+y_{i, k}+y_{j, k} \leqslant 0,
\end{array} \quad\binom{1 \leqslant i<j<k \leqslant n}{(i, j, k) \in \mathcal{S}}\right.\right\}
$$

- \mathcal{S} represents the set of triplets (i, j, k) corresponding to the triangle inequalities involving variables x_{i}, x_{j} and x_{k}. Four basic cases are considered:
- $\mathcal{S}_{0}=\left\{(i, j, k) \in V^{3} \mid c_{i j} c_{i k} c_{j k} \neq 0\right\}$
- $\mathcal{S}_{1}=\left\{(i, j, k) \in V^{3} \mid c_{i j} \neq 0\right.$ and $\left(c_{i k} \neq 0\right.$ or $\left.\left.c_{j k} \neq 0\right)\right\}$
- $\mathcal{S}_{2}=\left\{(i, j, k) \in V^{3} \mid c_{i j} \neq 0\right\}$
- $\mathcal{S}_{3}=\left\{(i, j, k) \in V^{3} \mid c_{i j} \neq 0\right.$ or $c_{i k} \neq 0$ or $\left.c_{j k} \neq 0\right\}$
- Theorem: $C_{3}=\mathrm{LM}+\mathbf{W}\left(\mathcal{S}_{3}\right)$
- Conjecture: $C_{3}=\mathrm{LM}+\mathbf{W}\left(\mathcal{S}_{2}\right)$

A LP Branch-and-Cut (B\&C) model for QUBO

$$
\operatorname{LP-B\& C-QUBO}(f, \mathcal{S}, \mathcal{P})
$$

Input: Let f be a quadratic pseudo-Boolean function f. \mathcal{S} is the set of triplets considered to define the triangle inequalities. \mathcal{P} is the set of 4 -tuples considered to define the square inequalities.
Step 1: \quad Find an incumbent \mathbf{x}^{+}for f using the tabu search implementation of Palubeckis ' 04.
Step 2: \quad Solve the LP

$$
z(f, \mathcal{S}, \mathcal{P})=\min \left\{L_{f}(\mathbf{x}, \mathbf{y}) \mid(\mathbf{x}, \mathbf{y}) \in \mathbf{W}^{[3]}(\mathcal{S}) \cup \mathbf{W}^{[4]}(\mathcal{P}), \mathbf{x} \in \mathbb{U}^{n}\right\}
$$

Save the optimal basic feasible solution B.
Step 3: Remove all triangle and square cuts that have zero dual values, i.e. remove those cuts that are non-binding. The resulting problem is a $0-1$ MIP.
Step 4: \quad Solve the LP relaxation of the MIP by warm starting it with the basis B. Load the incumbent \mathbf{x}^{+}as a solution of the MIP and then solve it.

Output: The minimum value of f is equal to the optimum of the MIP, and every minimizer \mathbf{x}^{\star} of the MIP is also a minimizer of f.

Application Covered Next

Graph Models

- MAX-CUT
- MAX-Clique
- MIN-VC
- Graph Coloring
- Graph Partitioning
- Graph Balancing
- MIN-3-Partition

Engineering and Social Sciences

- MAX-SAT
- Via Minimization
- VLSI design
- 2D and 3D Ising Model
- 1D Ising Chain
- Fault Diagnosis
- Hierarchical Clustering
- Vision
- Preventing DDoS attacks
- Finding Highly Connected Proteins
- Combinatorics of Real World Graphs

2D Ising Models

The MAX-CUT of the g3-8 torus graph was found
> - There are four torus graphs considered in the DIMACS library of mixed semidefinite-quadratic-linear programs
> - The torus aranhs are 3D-tornidal aranhs, originated from the Ising model

2D Ising Models

The MAX-CUT of the g3-8 torus graph was found

- There are four torus graphs considered in the DIMACS library of mixed semidefinite-quadratic-linear programs

2D Ising Models

The MAX-CUT of the g3-8 torus graph was found

- There are four torus graphs considered in the DIMACS library of mixed semidefinite-quadratic-linear programs
- The torus graphs are 3D-toroidal graphs, originated from the Ising model

2D Ising Models

The MAX-CUT of the g3-8 torus graph was found

- There are four torus graphs considered in the DIMACS library of mixed semidefinite-quadratic-linear programs
- The torus graphs are 3D-toroidal graphs, originated from the Ising model

2D Ising Models

The MAX-CUT of the g3-8 torus graph was found

- There are four torus graphs considered in the DIMACS library of mixed semidefinite-quadratic-linear programs
- The torus graphs are 3D-toroidal graphs, originated from the Ising model
- LP-B\&C-QUBO $\left(\mathcal{S}_{1}, \emptyset\right)$ was able to prove optimality for the first time to graph g3-8, which has ± 1 interactions and 512 vertices

2D Ising Models

The MAX-CUT of the g3-8 torus graph was found

- There are four torus graphs considered in the DIMACS library of mixed semidefinite-quadratic-linear programs
- The torus graphs are 3D-toroidal graphs, originated from the Ising model
- LP-B\&C-QUBO $\left(\mathcal{S}_{1}, \emptyset\right)$ was able to prove optimality for the first time to graph g3-8, which has ± 1 interactions and 512 vertices
- It required 302156 nodes and 1871155 sec to find this proof on a standard computer

2D Ising Models

Found better solutions for 2D Ising models than top meta-heuristics for QUBO

Instance	Vertices	LP-B\&C-QUBO with $\mathcal{S}=\mathcal{S}_{1}$ and $\mathcal{P}=\emptyset$				
		MAX-CUT	Nodes	Computing Time ${ }^{\star}$		
				Incumbent	Relaxation	MIP ${ }^{\dagger}$
G11	100×8	564	30	8.5 s	1.6 s	12.2 s
G12	50×16	556	39	8.4 s	1.8 s	17.7 s
G13	25×32	582	36	8.5 s	1.8 s	22.7 s
G32	100×20	[1410,1412]	83837	35.2 s	5.3 s	10000.0 s
G33	80×25	[1 382,1 383]	134133	35.6 s	6.0 s	10000.0 s
G34	50×40	[1 384,1 388]	66149	35.2 s	5.9 s	10000.0 s
G57	100×50	[3492,3 505]	20598	111.4 s	21.7 s	10000.0 s
G62	100×70	[4862,4886]	10109	178.7 s	36.9 s	10000.0 s
G65	100×80	[5550,5 581]	4199	217.4 s	47.1 s	10000.0 s
G66	90×100	[6352,6387]	5065	258.8 s	159.7 s	10000.0 s
G67	100×100	[6932,6981]	7683	303.7 s	323.8 s	10000.0 s

* Computed on an AMD Athlon 64 X2 Dual Core $4800+$, $2.41 \mathrm{GHz}, 4 \mathrm{~GB}$ RAM and runs XP.
${ }^{\dagger}$ The MIP solver stage was set to run at most 10000 sec .

Application Covered Next

Graph Models

- MAX-CUT
- MAX-Clique
- MIN-VC
- Graph Coloring
- Graph Partitioning
- Graph Balancing
- MIN-3-Partition

Engineering and Social Sciences

- MAX-SAT
- Via Minimization
- VLSI design
- 2D and 3D Ising Model
- 1D Ising Chain
- Fault Diagnosis
- Hierarchical Clustering
- Vision
- Preventing DDoS attacks
- Finding Highly Connected Proteins
- Combinatorics of Real World Graphs

Minimum-3-Partition (M3P) of Graphs

M3P

- Given a weighted graph $G=(V, E, \mathbf{w})$, the MkP problem is the problem of partitioning the set of vertices V into k disjoint subsets such that the total weight of the edges joining vertices of the same partition is minimum.

A branch-and-cut algorithm based on semidefinite programming for the minimum k-partition problem

Minimum-3-Partition (M3P) of Graphs

M3P

- Given a weighted graph $G=(V, E, \mathbf{w})$, the MkP problem is the problem of partitioning the set of vertices V into k disjoint subsets such that the total weight of the edges joining vertices of the same partition is minimum.
- To solve M3P we use the solver LP-B\&C-QUBO $(f, \mathcal{S}, \mathcal{Z})$, where \mathcal{S} is \mathcal{S}_{1} or \mathcal{S}_{2} and \mathcal{Z} defines the set of pure square cuts

A branch-and-cut algorithm based on semidefinite programming for the minimum k-partition problem

Minimum-3-Partition (M3P) of Graphs

M3P

- Given a weighted graph $G=(V, E, \mathbf{w})$, the MkP problem is the problem of partitioning the set of vertices V into k disjoint subsets such that the total weight of the edges joining vertices of the same partition is minimum.
- To solve M3P we use the solver LP-B\&C-QUBO $(f, \mathcal{S}, \mathcal{Z})$, where \mathcal{S} is \mathcal{S}_{1} or \mathcal{S}_{2} and \mathcal{Z} defines the set of pure square cuts

Main reference about the M3P problem

\square Anjos, M., B. Ghaddar and F. Liers.
A branch-and-cut algorithm based on semidefinite programming for the minimum k-partition problem.
Research report, Combinatorial Optimization in Physics (COPhy) (July 2007).

Minimum-3-Partition (M3P) of Graphs

Optimal Minimum-3-Partitions of 2D and 3D Ising models

			SBC		LP with $\left(\mathcal{S}_{1}, \mathcal{Z}\right)$		$L P$ with $\left(\mathcal{S}_{2}, \mathcal{Z}\right)$	
Instance	Weights	M3P	Nodes	Time*	Nodes	Time ${ }^{\star}$ *	Nodes	Time ${ }^{\star}$
4×4	Gaussian	-954077	1	16 s	1	1.7 s	1	2.1 s
5×5		-1484348	2	23 s	5	2.7 s	13	5.3 s
6×6		-2865 560	1	312 s	1	4.4 s	9	10.4 s
7×7		-3282435	1	3128 s	9	8.2 s	13	20.9 s
8×8		-5935339	1	8503 s	27	12.7 s	45	43.9 s
4×4	± 1	-13	1	<0.005 s	1	1.8 s	1	2.4 s
5×5		-20	1	4 s	28	4.4 s	14	5.6 s
6×6		-29	1	22 s	107	7.5 s	68	10.8 s
7×7		-40	1	112 s	277	13.8 s	170	25.8 s
8×8		-55	1	1598 s	243	22.6 s	330	50.1 s
9×9		-64	1	27349 s	50175	1116.5 s	25794	1256.4 s
$2 \times 3 \times 4$	± 1	-20	1	3 s	8	5.6 s	8	6.9 s
$2 \times 4 \times 4$		-28	4	234 s	522	19.1 s	592	25.4 s
$3 \times 3 \times 3$		-26	1	11 s	20	8.0 s	53	11.9 s
$3 \times 3 \times 4$		-36	1	50 s	453	30.0 s	1222	60.5 s
$3 \times 4 \times 4$		-48	1	719 s	17499	862.9 s	15629	639.7 s
$3 \times 4 \times 5$		-63	16	32133 s	13123	1126.5 s	32709	2657.1 s
$4 \times 4 \times 4$		-65	19	30975 s	171846	15247.2 s	136671	11157.3 s

* Sun Sparc 1200 MHz .
**Computed on an AMD Athlon 64 X2 Dual Core 4800+, 2.41 GHz, 4GB RAM and runs XP.

Application Covered Next

Graph Models

- MAX-CUT
- MAX-Clique
- MIN-VC
- Graph Coloring
- Graph Partitioning
- Graph Balancing
- MIN-3-Partition

Engineering and Social Sciences

- MAX-SAT
- Via Minimization
- VLSI design
- 2D and 3D Ising Model
- 1D Ising Chain
- Fault Diagnosis
- Hierarchical Clustering
- Vision
- Preventing DDoS attacks
- Finding Highly Connected Proteins
- Combinatorics of Real World Graphs

QUBOs derived from Vision problems

QUBO's derived from Vision problems

- Preprocessing could fix about 15% of the variables within 1 sec
- Branch-and-Cut can solve the entire problem in about 10 sec

THANK YOU

