Credit Risk Optimization

Helmut Mausser

Fields Industrial Optimization Seminar
March 3, 2009
With: Ian Iscoe, Alex Kreinin, Oleksandr Romanko

Algorithmics A^{i}

Overview

Objective: Re-balance a portfolio of financial instruments to minimize the risk of losses due to credit events
§Background
§Portfolio credit risk model
§Optimization models
§Computational results

Background

Corporate Bond Prices

	27-Feb-08		27-Feb-09		
Issue	Price (\$)	Yield (\%)	Price (\$)	Yield (\%)	Δ Price (\$)
Ford 6.5\% 8/1/18	70	11.5	16	45.6	-54
GM 7.7\% 4/15/16	82	11.0	13	66.4	-69
Target 6.0\% 1/15/18	103	5.6	100	6.0	-3
Walmart 5.375\% 4/5/17	103	4.9	105	4.5	2

Automotive bonds lost about 80\% of their value in one year Bonds of discount retailers retained their value

Market is less confident that automative companies will be able to make the required interest and principal payments

Credit Risk

The risk of monetary loss due to the default, or a change in the perceived likelihood of default, of a counterparty to a contract.

Counterparties (governments, companies) are assigned a credit rating reflecting the likelihood that they will honour their contracts
§Various rating scales (S\&P, Moody's, Fitch, DBRS)
§Range from AAA (best) to Default (worst)
\$The lower the rating, the more compensation is required
§Pay more interest
§Provide more collateral

Credit Transition Matrix

Specifies the likelihood of migrating from one credit rating (state) to another over a fixed time horizon (usually one year)
e.g., annual transition matrix (\% probability)

	AAA	AA	A	BBB	BB	B	CCC	Default
AAA	92.18	7.06	0.73	0.00	0.02	0.00	0.00	0.01
AA	1.17	90.84	7.63	0.26	0.07	0.01	0.00	0.02
A	0.05	2.39	91.83	5.07	0.50	0.13	0.01	0.02
BBB	0.05	0.24	5.20	88.49	4.88	0.80	0.16	0.18
BB	0.01	0.05	0.50	5.45	85.12	7.05	0.55	1.27
B	0.01	0.03	0.13	0.43	6.52	83.20	3.04	6.64
CCC	0.00	0.00	0.00	0.58	1.74	4.18	68.00	25.50
Default	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00

Credit Losses

Associated with each future credit state is a change in the monetary value of the contract
se.g., a BBB-rated bond that is worth $\$ 100$ today may, one year from now, be worth $\$ 92$ if the issuer is rated BB or $\$ 104$ if the issuer is rated A
\$For simplicity, assume that value depends only on credit rating

Each counterparty loss (L) has a discrete distribution $\left(F_{L}\right)$ se.g., for a BBB-rated counterparty

	AAA	AA	A	BBB	BB	B	CCC	Default
Loss per $\$ 1$	-0.07	-0.06	-0.04	0.00	0.08	0.20	0.45	1.00
Probability (\%)	0.05	0.24	5.20	88.49	4.88	0.80	0.16	0.18

§Note that losses are positive and gains are negative

Credit Risk Measures

Portfolio loss distribution $\left(F_{\Lambda}\right)$ is positively skewed with mode zero

Credit Risk Optimization

We want to adjust the composition of the portfolio to "shrink" the right tail of the portfolio loss distribution
\&Let x_{j} denote the size of the position in counterparty j
sLet L^{j} denote the loss in value per unit of counterparty j
§The loss for a portfolio of J counterparties is

$$
\mathrm{L}(\boldsymbol{x})=\sum_{j=1}^{J} L^{j} x_{j} \leftarrow L^{j,} \text { s are co-dependent }
$$

Minimize $_{x \in \Omega} g(\Lambda(x))$ where g is
§VaR ${ }_{\alpha}$
$\S E S_{\alpha}$
§Variance
§Second moment, i.e., $\mathrm{E}\left[\Lambda(\boldsymbol{x})^{2}\right]=\operatorname{var}[\Lambda(\boldsymbol{x})]+\mathrm{E}[\Lambda(\boldsymbol{x})]^{2}$

Portfolio Credit Risk Model

Structural Models of Portfolio Credit Risk

Structural models infer a counterparty's future credit state from a continuous random variable called a creditworthiness index (W)
Se.g., if $T_{B B B} \leq W<T_{A}$ then new credit state is BBB
§Thresholds are chosen so that $P\left(T_{B B B} \leq W<T_{A}\right)$ is consistent with the credit transition matrix

Creditworthiness Index

Creditworthiness index of counterparty j :

$$
W_{j}=\sum_{k=1}^{K} \beta_{j k} Y_{N(0,1)}+\sigma_{j} Z_{j}
$$

K credit drivers are correlated standard Normal variates with joint distribution function F_{Y}

Sampling Credit Drivers

Generate samples $\boldsymbol{y}_{m}, m=1, \ldots, M$ from $F_{\boldsymbol{Y}}$
§Effect is to shift the transition probabilities for counterparties

	AAA	AA	A	BBB	BB	B	CCC	Default
Loss per \$1	-0.07	-0.06	-0.04	0.00	0.08	0.20	0.45	1.00
Probability (\%)	0.05	0.24	5.20	88.49	4.88	0.80	0.16	0.18
Probability \| y (\%)	0.01	0.05	1.73	83.59	10.83	2.41	0.57	0.79

§Creditworthiness indices are conditionally independent given \boldsymbol{y}
The portfolio loss distribution conditional on \boldsymbol{y}_{m} is the convolution of the conditional counterparty loss distributions

$$
F_{\mathrm{L}(x) \mid y}=F_{L^{\prime} x_{1} \mid y} * F_{L^{2} x_{2} \mid y} * \quad \ldots \quad * F_{L^{\prime} x_{j} \mid y}
$$

The unconditional portfolio loss distribution is the mixture of the conditional portfolio loss distributions

$$
F_{\mathrm{L}(\boldsymbol{x})}(\ell)=\frac{1}{M} \sum_{m=1}^{M} F_{\mathrm{L}(\boldsymbol{x}) \mid \boldsymbol{y}}(\ell)
$$

Conditional Independence Framework

Optimization Challenges

Minimizing $\mathrm{E}[\Lambda(\boldsymbol{x})]$ or $\operatorname{var}[\Lambda(\boldsymbol{x})]$ is easy (compute unconditional means and covariances of counterparty losses from $F_{L y}$) but minimizing $\operatorname{Va}_{\alpha}$ or $E S_{\alpha}$ is more challenging

Formulating an optimization model using convolutions is not practical
$\$ 8$ credit states, J counterparties $\rightarrow 8^{J}$ possible portfolio losses for each y

Consider approximations to the conditional loss distribution $F_{\Lambda(x) y}$ §Monte Carlo sampling
§Normal distribution
§Conditional mean

Monte Carlo Sampling Approximation

Monte Carlo Sampling Approximation

Estimating VaR and ES from Samples

e.g., 100 random samples (each has probability 0.01) sorted in increasing sequence

$\mathbf{1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$		$\mathbf{9 5}$	$\mathbf{9 6}$	$\mathbf{9 7}$	$\mathbf{9 8}$	$\mathbf{9 9}$
-400	-350	-300	-225	-150	-100	\ldots	825	850	875	900	950	1100

$\$ V a R_{0.95}=850$ is the fifth-largest observation
$\S E S_{0.95}=935$ is the average of the five largest observations

$$
\begin{aligned}
E S_{0.95} & =\frac{1}{5}(850+875+900+950+1100) \\
= & 850+\frac{1}{5}(\underbrace{0+25+50+100+250}_{V a R_{0.95} \text { exceedance }})
\end{aligned}
$$

Monte Carlo Optimization Models

$E S_{\alpha}$ can be minimized with linear programming
Rockafellar, R. T. and S. Uryasev (2000), "Optimization of conditional Value at Risk," The Journal of Risk 2(3), 21-41

$$
\begin{gathered}
\min _{x \in \Omega} \quad z+\frac{1}{M N(1-\alpha)} \sum_{i=1}^{M N}\left[\ell_{i}(\boldsymbol{x})-z\right]^{+} \\
\text {Recall: } \quad E S_{0.95}=850+\frac{1}{5}(0+25+50+100+250)
\end{gathered}
$$

$V a R_{\alpha}$ minimization is an integer program (MN binary variables)
§Use a heuristic approach based on successive $E S_{\alpha}$ optimization slteratively fix the samples in the tail of the distribution
Larsen, N., Mausser H., and S. Uryasev (2002), "Algorithms for Optimization of Value-at-Risk," in Financial Engineering, e-commerce and Supply Chain, P. Pardalos and V.K. Tsitsiringos (Eds.), 129-157.

Normal Approximation

Central Limit Theorem (CLT)

If the number of counterparties is large and contracts are relatively small then the conditional portfolio loss distribution is close to Normal
$\mathrm{L}(\boldsymbol{x}) \mid \boldsymbol{y}_{m} \xrightarrow{D} \mathrm{~N}\left(\sum_{j=1}^{J} \mu_{L^{j} \mid \boldsymbol{y}_{m}} x_{j}, \sum_{j=1}^{J} \sigma_{\left.L^{j}\right|_{m}}^{2} x_{j}^{2}\right) \equiv \mathrm{N}\left(\mu_{m}(\boldsymbol{x}), \sigma_{m}^{2}(\boldsymbol{x})\right)$
§Need the size restriction (Lyapunov or Lindeberg condition) because conditional counterparty losses are independent but not identically distributed

Portfolio loss distribution is

$$
F_{\mathrm{L}(x)}(\ell)=\frac{1}{M} \sum_{m=1}^{M} \Phi\left(\frac{\ell-\mu_{m}(\boldsymbol{x})}{\sigma_{m}(\boldsymbol{x})}\right)
$$

Normal (CLT) Approximation

CLT Optimization Models

$V a R_{\alpha}$ minimization is a (non-convex*) non-linear program

$$
\begin{array}{ll}
\min _{\boldsymbol{x} \in \Omega} & \ell(\boldsymbol{x}) \\
\text { s.t. } & \frac{1}{M} \sum_{m=1}^{M} \Phi\left(\frac{\ell(\boldsymbol{x})-\mu_{m}(\boldsymbol{x})}{\sigma_{m}(\boldsymbol{x})}\right)=\alpha
\end{array}
$$

$E S_{\alpha}$ minimization is a non-linear program
$\min _{x \in \Omega} \frac{1}{M(1-\alpha)} \sum_{m=1}^{M}\left[\mu_{m}(\boldsymbol{x})\left(1-\Phi\left(\frac{\ell(\boldsymbol{x})-\mu_{m}(\boldsymbol{x})}{\sigma_{m}(\boldsymbol{x})}\right)\right)+\sigma_{m}(\boldsymbol{x}) \phi\left(\frac{\ell(\boldsymbol{x})-\mu_{m}(\boldsymbol{x})}{\sigma_{m}(\boldsymbol{x})}\right)\right]$
s.t. $\quad \frac{1}{M} \sum_{m=1}^{M} \Phi\left(\frac{\ell(\boldsymbol{x})-\mu_{m}(\boldsymbol{x})}{\sigma_{m}(\boldsymbol{x})}\right)=\alpha$

Conditional Mean Approximation

Conditional Mean (CM)

If the portfolio comprises an extremely large number of almost identical contracts then the conditional portfolio loss is approximated by the sum of the conditional mean counterparty losses

$$
\mathrm{L}(\boldsymbol{x}) \mid \boldsymbol{y}_{m} \approx \sum_{j=1}^{J} \mu_{L^{j} \mid y_{m}} x_{j} \equiv \mu_{m}(\boldsymbol{x})
$$

Assume: diversification eliminates all specific risk

Portfolio loss distribution is approximated by a sample of size M
§Optimization models are same as those for Monte Carlo sampling

Conditional Mean (CM) Approximation

Computational Results

Test Portfolio

3000 counterparties and 50 credit drivers (from ISDA/IACPM 2006)
§Credit drivers are industry/country indices
§Each counterparty depends on one credit driver ($0.42 \leq \beta \leq 0.65$)
§Initial contract values are identical

Consider individual counterparties and groups
§Can be impractical to take action at counterparty level
§Counterparties maintain their initial weightings within groups
§Grouping is done at random
$\$ 10$ groups of 300
$\$ 50$ groups of 60
$\$ 300$ groups of 10
$\$ 3000$ groups of 1

Formulations

	VaR $_{0.999}$	$E S_{0.999}$	Variance, 2nd Moment
MC Sampling $(N=1,20)$	Linear (Heuristic)	Linear	
Normal Approximation	Non-convex* Non-linear	Convex Non-linear	
Cond. Mean Approximation	Linear (Heuristic)	Linear	
Unconditional			Convex Quadratic

Constraints (Ω)

§Maintain initial value of portfolio
§Earn at least the initial expected return
§Trading limits [0, 2] for each counterparty
§Can eliminate or double the initial position

Methodology

Perform 5 trials, each with $M=10,000$ credit driver samples
§Report the average over 5 trials

Evaluate optimal portfolios by computing $V a R_{0.999}$ and $E S_{0.999}$
§Out-of-Sample
$\$ M=6,000,000, N=1$ (assume to be the true loss distribution)
\$Determine effects of systemic sampling error and model approximation error
sln-sample
$\$ N=150$ (assume to be the true conditional loss distribution)
slsolate effects of model approximation error

Out-of-Sample VaR

Out-of-Sample ES

Algorithmics

Approximation Quality for VaR

Approximation Quality for ES

Granularity Effects

What happens as the portfolio becomes more granular (smallness condition is violated)? e.g., 50 groups with wider trading limits

$V a R_{0.999}$	Trading limits [0, 2]			Trading limits [-3, 15]		
	(Out / In) - 1	$(\ln / \mathrm{Obj})-1$	HHI	(Out / In) - 1	$(\ln / \mathrm{Obj})-1$	HHI
CLT	0.90\%	0.66\%	0.0345	0.76\%	2.70\%	0.1556
$\mathrm{MC}(20)$	1.22\%	2.25\%	0.0322	1.15\%	3.77\%	0.1311
CM	0.92\%	9.54\%	0.0385	-0.27\%	267.81\%	0.7456
$\mathrm{MC}(1)$	1.15\%	16.38\%	0.0345	0.25\%	35.63\%	0.1712

$E S_{0.999}$	Trading limits [0, 2]			Trading limits [-3, 15]		
	(Out / In) - 1	(ln / Obj) - 1	HHI	(Out / In) - 1	$(\ln / \mathrm{Obj})-1$	HHI
CLT	0.82\%	0.61\%	0.0342	0.65\%	3.10\%	0.1624
$\mathrm{MC}(20)$	0.95\%	0.83\%	0.0338	0.94\%	3.14\%	0.1296
CM	0.53\%	9.37\%	0.0399	-0.13\%	294.00\%	0.7482
$\mathrm{MC}(1)$	0.71\%	16.48\%	0.0363	0.09\%	52.47\%	0.1729

Approximations to the conditional distribution get worse, especially for CM

§HHI is the Herfindahl-Hirschman Index

Systemic Sampling Effects

How does the number of systemic samples affect out-of-sample performance?

$V a R_{0.999}$	10,000 Systemic Samples			50,000 Systemic Samples		
	10 Groups	50 Groups	300 Groups	10 Groups	50 Groups	300 Groups
CLT	96.5\%	88.4\%	80.0\%	96.3\%	88.3\%	79.6\%
MC(20), (4)	96.7\%	89.2\%	81.4\%	96.6\%	89.2\%	81.3\%
CM	98.2\%	90.0\%	83.4\%	97.4\%	89.5\%	82.1\%
MC(1)	97.9\%	93.2\%	85.8\%	97.1\%	90.4\%	82.9\%

$E S_{0.999}$	10,000			Systemic Samples		
	10 Groups	50 Groups	300 Groups	10 Groups	50 Groups	300 Groups
CLT	96.5%	88.1%	78.8%	96.4%	87.9%	78.4%
MC(20), (4)	96.7%	88.4%	79.7%	96.6%	88.5%	79.3%
CM	97.8%	89.1%	80.4%	97.6%	89.4%	79.7%
MC(1)	98.6%	92.8%	85.6%	96.9%	89.5%	80.8%

Slight improvement for MC(1), negligible for others
§CLT with 10,000 systemic samples does better than other models with 50,000 systemic samples

Performance

	$E S_{0.999}$				
Model	Solver	10 grp	50 grp	300 grp	3000 grp
CLT	IPOPT	$4-8$	$6-8$	$14-83$	$181-1090$
CM	CPLEX	1	$1-2$	$6-8$	$73-86$
MC(1)	CPLEX	1	$1-2$	$6-10$	$14-115$
MC(20)	CPLEX	$137-155$	$233-279$	$461-578$	$1050-1280$

Elapsed time (sec)
Server: $8 \times$ Opteron 885 CPU, 16 cores (jobs run on 1 core), 64 Gb RAM

* VaR optimization for MC(20) was run in parallel mode on 4 threads

	Variance				
Model	Solver	10 grp	50 grp	300 grp	3000 grp
Uncond	MOSEK	<1	<1	1	$682-719$

Conclusions

Normal approximation is attractive for optimization
§Consistently better than Monte Carlo sampling with only 10% of the data
§Acceptable performance solving non-linear model \&Relatively robust to violations of smallness condition

Tests with more realistic counterparty groupings yield consistent results

Further work:
slmprove VaR for Monte Carlo sampling
§Vary credit driver sensitivities, quantiles

$$
A^{i}
$$

Integrated Market-Credit Loss Model

Exposure
Creditworthiness (W)

Market Factors $(X) \quad$ Credit Drivers $(Y) \quad$ Specific Factors (Z)

Systemic Risk

Creditworthiness Index and Transitions

	Default	CCC	B	BB	BBB	A	AA	AAA
Probability (\%)	0.18	0.16	0.80	4.88	88.49	5.20	0.24	0.05
Value of $\$ 1$	0.00	0.55	0.80	0.92	1.00	1.04	1.06	1.07
Loss per $\$ 1$	1.00	0.45	0.20	0.08	0.00	-0.04	-0.06	-0.07

Conditional Transition Probabilities for BBB

Favourable systemic

Unfavourable systemic

Unconditional (calibrate CWI thresholds)

Number of Samples

For α close to 1 , we need a lot of samples to get good estimates of $V a R_{\alpha}$ and $E S_{\alpha}$
$\$ \alpha \geq 0.995$ is common for credit risk

Possible to reduce the number of samples by "careful" selection?

Monte Carlo Sampling Optimization Models

$$
\begin{array}{|ll}
\min _{x \in \Omega} & z \\
\text { s.t. } & \\
& \sum_{j=1}^{J} l_{i}^{j} x_{j}-z-B d_{i} \leq 0 \quad \text { for } i=1, \ldots, M N \\
& \sum_{i=1}^{m} d_{i} \leq M N(1-\alpha) \\
& d_{i} \in\{0,1\} \quad \text { for } \quad i=1, \ldots, M N \\
\hline
\end{array}
$$

$$
\begin{array}{|ll}
\min _{x \in \Omega} & z+\frac{1}{M N(1-\alpha)} \sum_{i=1}^{M N} y_{i} \\
\text { s.t. } & \\
& \sum_{j=1}^{J} l_{i}^{j} x_{j}-z-y_{i} \leq 0 \quad \text { for } i=1, \ldots, M N
\end{array}
$$

VaR Minimization Heuristic

Step 0. Initialization

1. Set $\alpha_{0}=\alpha, k=0, H_{0}=\{s: s=1, \ldots, M\}$.
2. Assign value to the parameter for discarding scenarios $\varepsilon, 0<\varepsilon<1$.

Step 1. Optimization sub-problem

1. Minimize α_{k} - CVaR

$$
\begin{array}{llr}
\min _{x, z, \ell, \gamma} & \ell+\nu_{k} \sum_{s \in H_{k}} \pi_{s} z_{s} & \\
\text { s.t. } & \sum_{i} \mu_{i, s} x_{i} \leq \ell+z_{s}, z_{s} \geq 0 & s \in H_{k}, \\
& \sum_{i} \mu_{i, s} x_{i} \leq \gamma & s \in H_{k}, \\
& \sum_{i} \mu_{i, s} x_{i} \geq \gamma & s \notin H_{k}, \\
& \sum_{i} x_{i}=1 & \\
& \sum_{i} r_{i} x_{i} \geq R & i=1, \ldots, N \\
& x_{i}-x_{i}^{0} \leq y_{i}, & i=1, \ldots, N \\
& x_{i}^{0}-x_{i} \leq y_{i}, & i=1, \ldots, N \\
& \sum_{i} y_{i} \leq \triangle x & x_{i} \leq x_{i} \leq \bar{x}_{i},
\end{array}
$$

where $\nu_{k}=1 /\left(\left(1-\alpha_{k}\right) M\right)$. Denote the optimal solution of this problem by x_{k}^{*}.
2. Order the scenarios $y_{s} x_{k}^{*}, s=1, \ldots, M$ in ascending order and denote ordered scenarios by $s_{j}, j=1, \ldots, M$.

Step 2. Estimating VaR
Calculate VaR estimate $j_{k}=y_{j(\alpha)} x_{k}^{*}$, where $j(\alpha)=\min \{j: j / M \geq \alpha\}$.
Step 3. Stopping and re-initialization

1. $k=k+1$.
2. $b_{k}=\alpha+(1-\alpha)(1-\varepsilon)^{k}$ and $\alpha_{k}=\alpha / b_{k}$.
3. $H_{k}=\left\{s_{j} \in H_{k-1}: j / M \leq b_{k}\right\}$.
4. If $H_{k}=H_{k-1}$ then stop the algorithm and return the estimate of the VaR-optimal portfolio x_{k}^{*} and $\operatorname{VaR} \ell_{k}$, otherwise go to Step 1.

VaR Optimization Alternatives

Convex Approximations

§Assume some structure in the uncertainty
Bertsimas, D. and M. Sim (2004), "The Price of Robustness," Operations Research 52(1), 35-53.
Nemirovski, A. and A. Shapiro (2006), "Convex Approximations of Chance Constrained Programs," Siam Journal on Optimization 17(4), 969-996.

Worst-Case Scenario

§No assumptions about uncertainty structure
Calafiore, G. and M.C. Campi (2006), "The Scenario Approach to Robust Control Design," IEEE Transactions on Automatic Control 51(5), 742-753.

$E S_{\alpha}$ Objective for Normal Approximation

$$
\begin{aligned}
& \mathrm{L}(\boldsymbol{x}) \mid \boldsymbol{y}_{m} \equiv \mathrm{~L}_{m}(\boldsymbol{x}) \sim \mathrm{N}\left(\mu_{m}(\boldsymbol{x}), \sigma_{m}^{2}(\boldsymbol{x})\right) \\
& \mathrm{E}\left[\mathrm{~L}(\boldsymbol{x}) \mid \mathrm{L}(\boldsymbol{x}) \geq V a R_{\alpha}\right]=\frac{1}{M(1-\alpha)} \sum_{m=1}^{M} \mathrm{E}\left[\mathrm{~L}_{m}(\boldsymbol{x}) \times 1\left\{\mathrm{~L}_{m}(\boldsymbol{x}) \geq V a R_{\alpha}\right\}\right] \\
& \mathrm{E}\left[\mathrm{~L}_{m}(\boldsymbol{x}) \mid \mathrm{L}_{m}(\boldsymbol{x}) \geq \ell\right] \\
& =\mathrm{E}\left[\left(\mu_{m}(\boldsymbol{x})+\sigma_{m}(\boldsymbol{x}) Z\right) \times 1\left\{Z \geq \frac{\ell-\mu_{m}(\boldsymbol{x})}{\sigma_{m}(\boldsymbol{x})}\right\}\right] \\
& =\mu_{m}(\boldsymbol{x})\left(1-\Phi\left(\frac{\ell-\mu_{m}(\boldsymbol{x})}{\sigma_{m}(\boldsymbol{x})}\right)\right)+\sigma_{m}(\boldsymbol{x}) \int_{\frac{\ell-\mu_{m}(\boldsymbol{x})}{\sigma_{m}(\boldsymbol{x})}}^{\infty} Z \frac{e^{-Z^{2} / 2}}{\sqrt{2 \pi}} d Z \\
& =\mu_{m}(\boldsymbol{x})\left(1-\Phi\left(\frac{\ell-\mu_{m}(\boldsymbol{x})}{\sigma_{m}(\boldsymbol{x})}\right)\right)+\sigma_{m}(\boldsymbol{x})\left[-\frac{e^{-Z^{2} / 2}}{\sqrt{2 \pi}}\right]_{\frac{\ell-\mu_{m}(\boldsymbol{x})}{\sigma_{m}}}^{\infty} \\
& =\mu_{m}(\boldsymbol{x})\left(1-\Phi\left(\frac{\ell-\mu_{m}(\boldsymbol{x})}{\sigma_{m}(\boldsymbol{x})}\right)\right)+\sigma_{m}(\boldsymbol{x}) \phi\left(\frac{\ell-\mu_{m}(\boldsymbol{x})}{\sigma_{m}(\boldsymbol{x})}\right)
\end{aligned}
$$

Conditional Mean Motivation

Chebyshev inequality (basis of LLN)

$$
P\left(\left|\frac{S_{n}}{n}-\mu\right|<\varepsilon\right) \geq 1-\frac{\sigma^{2}}{n \varepsilon^{2}} \rightarrow P\left(\left|S_{n}-n \mu\right|<n \varepsilon\right) \geq 1-\frac{\sigma^{2}}{n \varepsilon^{2}}
$$

For non-iid, Kolmogorov criterion requires $\sum_{n=1}^{\infty} \frac{\sigma_{n}^{2}}{n}<\infty$

Idea: as the number of counterparties increases, the contribution of the variances to the sum becomes small relative to that of the means

Suppose $\quad \mu_{L^{j} \mid y_{m}} x_{j} \approx \mu, \quad \sigma_{L^{j} \mid y_{m}} x_{j} \approx \sigma$
From CLT:

$$
\mathrm{L}(\boldsymbol{x}) \mid \boldsymbol{y}_{m} \approx J \mu+\sqrt{J} \sigma Z, \quad Z \sim \mathrm{~N}(0,1)
$$

Out-of-Sample VaR

Out-of-Sample ES

Approximation Quality for VaR

Approximation Quality for $E S$

CLT Gradients and Hessians

Calculating gradients

$$
\begin{aligned}
& \nabla \ell_{\alpha}(x)=f\left(\ell_{\alpha}(x)\right) \\
& \nabla \mathrm{ES}_{\alpha}(x)=f\left(\ell_{\alpha}(x), \mathrm{ES}_{\alpha}(x)\right)
\end{aligned}
$$

Calculating Hessians

$$
\begin{aligned}
& \nabla^{2} \ell_{\alpha}(x)=f\left(\ell_{\alpha}(x), \nabla \ell_{\alpha}(x)\right) \\
& \nabla^{2} \operatorname{ES}_{\alpha}(x)=f\left(\ell_{\alpha}(x), \operatorname{ES}_{\alpha}(x), \nabla \mathrm{ES}_{\alpha}(x)\right)
\end{aligned}
$$

Non-linear optimization algorithm

$$
x^{k+1}=x^{k}-\left(\nabla^{2} f\left(x^{k}\right)\right)^{-1} \nabla f\left(x^{k}\right)
$$

Other Test Results

Model	Risk Measure	Init portf	$\begin{gathered} 20 \mathrm{Ggps} \\ 1 \mathrm{CP} \\ \text { Heterog } \\ \text { Budget } \end{gathered}$	20 Ggps Heterog Budget 99\% Qt	20 Ggps 1 CP Heterog Default	20 Ggps 60 CPs Heterog	20 Ggps 150 CPs Heterog	20 Ggps 150 CPs Homog	50 Ggps 10 CPs Heterog	50 Ggps 10 CPs Heterog Budget	$\begin{gathered} \hline 500 \\ \text { Ggps } \\ 1 \mathrm{CP} \\ \text { Heterog } \end{gathered}$	$\begin{gathered} 500 \\ \text { Ggps } \\ 1 \mathrm{CP} \end{gathered}$	$\begin{gathered} 500 \\ \text { Ggps } \\ 1 \mathrm{CP} \\ \text { Heterog } \\ \text { Budget } \\ \hline \end{gathered}$	500 Ggps 1 CP Heterog Default	$\begin{gathered} 500 \\ \text { Ggps } \\ 6 \mathrm{CPs} \\ \text { Heterog } \end{gathered}$
CLT	ES 99.9\%	100\%	59.93\%	83.39\%	61.95\%	88.32\%	92.93\%	86.43\%	87.61\%	70.49\%	67.23\%	67.05\%	53.98\%	34.66\%	76.97\%
	VaR 99.9\%	100\%	125.04\%	79.75\%	45.38\%	87.38\%	92.98\%	87.38\%	86.33\%	70.09\%	68.61\%	68.60\%	56.48\%	35.61\%	77.82\%
LLN	ES 99.9\%	100\%	95.58\%	91.64\%	77.34\%	89.59\%	93.69\%	88.48\%	113.19\%	115.14\%	87.09\%	87.04\%	114.96\%	45.07\%	78.66\%
	VaR 99.9\%	100\%	144.06\%	46.37\%	64.72\%	89.53\%	94.74\%	91.26\%	115.91\%	111.74\%	87.09\%	87.13\%	118.93\%	44.28\%	81.00\%
MCs	ES 99.9\%	100\%	63.23\%	72.17\%	49.73\%	91.26\%	96.82\%	89.29\%	91.25\%	78.09\%	72.44\%	68.42\%	65.66\%	40.61\%	83.44\%
	VaR 99.9\%	100\%	89.04\%	47.75\%	44.35\%	91.02\%	96.30\%	90.83\%	90.06\%	74.81\%	73.14\%	70.73\%	65.44\%	40.93\%	84.09\%
MCs (x5)	ES 99.9\%	100\%	47.23\%	69.62\%	44.55\%	89.10\%	94.14\%	86.95\%	88.52\%	70.22\%	68.75\%	67.04\%	57.74\%	35.93\%	79.08\%
	VaR 99.9\%	100\%	102.22\%	49.36\%	41.28\%	88.72\%	94.22\%	87.97\%	87.58\%	71.22\%	70.65\%	69.11\%	60.05\%	36.41\%	81.39\%
WMCs	ES 99.9\%	100\%	63.93\%	75.07\%	50.30\%	93.31\%	98.59\%	91.10\%	92.61\%	78.79\%	72.45\%	69.08\%	65.66\%	40.69\%	83.79\%
	VaR 99.9\%	100\%	90.68\%	53.78\%	45.93\%	91.15\%	97.50\%	91.02\%	91.37\%	77.07\%	73.06\%	70.89\%	65.66\%	41.30\%	85.17\%
MV (CLT)	ES 99.9\%	100\%	93.03\%	87.60\%	76.43\%	91.15\%	96.88\%	87.59\%	115.38\%	138.29\%	91.90\%	92.31\%	136.88\%	40.77\%	83.24\%
	VaR 99.9\%	100\%	129.89\%	45.23\%	65.64\%	89.80\%	96.12\%	88.27\%	111.55\%	143.04\%	91.91\%	92.29\%	141.99\%	40.96\%	83.05\%
MV (MCs)	ES 99.9\%	100\%	73.88\%	78.80\%	56.56\%	90.87\%	95.60\%	87.87\%	92.16\%	80.20\%	78.69\%	77.10\%	64.71\%	38.29\%	83.68\%
	VaR 99.9\%	100\%	117.20\%	72.99\%	44.72\%	89.17\%	95.03\%	88.41\%	90.15\%	79.07\%	77.94\%	76.43\%	64.18\%	38.23\%	83.15\%

Performance (50,000 Systemic Samples)

	VaR $_{0.999}$				
Model	Solver	10 grp	50 grp	300 grp	3000 grp
CLT	IPOPT	$24-30$	$30-35$	$72-443$	
CM	CPLEX	$22-24$	$66-80$	$500-748$	
MC(1)	CPLEX	$34-59$	$107-188$	$646-780$	
MC(20)*	CPLEX	$3579-3715$	$2393-2945$	$6820-8990$	

Elapsed time (sec)
Server : $8 \times$ Opteron 885 CPU, 16 cores (jobs run on 1 core), 64 Gb RAM

* VaR optimization for $M C(20)$ was run in parallel mode on 4 threads

	Variance				
Model	Solver	10 grp	50 grp	300 grp	3000 grp
Uncond	MOSEK	<1	<1	1	

Detailed Performance Data

Credit-Risk Model with Credit-State Migrations

3000 Groups, Wide Budget, 10000 Scenarios, 99.9\% Quantile
Problem dimension: 3000 groups - 6000 variables, 6003 constraints
Minimizing Value-at-Risk or Expected Shortfall The Hessian Matrix is Computed or Approximated

Solver / Model	Solution status	$\begin{gathered} \hline \text { Solution } \\ \text { time } \\ \text { (seconds) } \\ \hline \end{gathered}$	Relative difference in optimal solution	Number of iterations	Number of function evaluations	Number of gradient evaluations	Number of Hessian evaluations
MOSEK Objective: VaR Hessian: computed	The Optimization Problem is Nonconvex	2185		-	-	-	-
IPOPT Objective: VaR Hessian: computed	Optimal Solution Found (Overall /max solution error: 8.0e-09)	11484		64	65	65	64
IPOPT Objective: VaR Hessian: approximation	Solved To Acceptable Level (Overall /max solution error: 9.1e-07)	1408		438	1197	441	0
MOSEK Objective: Expected Shortfall Hessian: computed	Optimal (Overall /max solution error: $1.6 \mathrm{e}-08)$	8058	$\begin{gathered} -0.00037 \% \\ \text { (vs. IPOPT Hes) } \end{gathered}$	36	39	75	37
MOSEK Objective: Expected Shortfall Hessian: computed Parallel - 8 CPUs	Optimal (Overall /max solution error: 1.6e-08)	1672		36	39	75	37
IPOPT Objective: Expected Shortfall Hessian: computed	Optimal Solution Found (Overall /max solution error: $2.5 \mathrm{e}-09$)	11554	$\begin{gathered} 0.00037 \% \\ \text { (vs. MOSEK Hes) } \end{gathered}$	65	66	66	65
IPOPT Objective: Expected Shortfall Hessian: approximation	Optimal Solution Found (Overall /max solution error: $1.5 \mathrm{e}-09)$	979	$\begin{gathered} 0.00076 \% \\ \text { (vs. MOSEK Hes) } \end{gathered}$	260	465	261	0

Industry Practice (March 2009)

Typical portfolio size: 5,000 counterparties
Typical no. credit drivers per counterparty: 1
Typical beta: 0.4-0.5
Typical no. systemic samples: 10,000
Typical no. specific samples: 1,000 (for risk measurement, not optimization)

