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Overview

§Background

§Portfolio credit risk model

§Optimization models

§Computational results

Objective: Re-balance a portfolio of financial instruments to 
minimize the risk of losses due to credit events
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Background
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Corporate Bond Prices

Automotive bonds lost about 80% of their value in one year

Bonds of discount retailers retained their value

Market is less confident that automative companies will be able to 
make the required interest and principal payments

Issue Price ($) Yield (%) Price ($) Yield (%) ∆ Price ($)

Ford 6.5% 8/1/18 70 11.5 16 45.6 -54

GM 7.7% 4/15/16 82 11.0 13 66.4 -69

Target 6.0% 1/15/18 103 5.6 100 6.0 -3

Walmart 5.375% 4/5/17 103 4.9 105 4.5 2

27-Feb-08 27-Feb-09
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Credit Risk

The risk of monetary loss due to the default, or a change in the
perceived likelihood of default, of a counterparty to a contract.

Counterparties (governments, companies) are assigned a credit 
rating reflecting the likelihood that they will honour their contracts

§Various rating scales (S&P, Moody’s, Fitch, DBRS)

§Range from AAA (best) to Default (worst)

§The lower the rating, the more compensation is required

§Pay more interest

§Provide more collateral
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Credit Transition Matrix

Specifies the likelihood of migrating from one credit rating (state) to 
another over a fixed time horizon (usually one year)

e.g., annual transition matrix (% probability)

AAA AA A BBB BB B CCC Default

AAA 92.18 7.06 0.73 0.00 0.02 0.00 0.00 0.01

AA 1.17 90.84 7.63 0.26 0.07 0.01 0.00 0.02

A 0.05 2.39 91.83 5.07 0.50 0.13 0.01 0.02

BBB 0.05 0.24 5.20 88.49 4.88 0.80 0.16 0.18

BB 0.01 0.05 0.50 5.45 85.12 7.05 0.55 1.27

B 0.01 0.03 0.13 0.43 6.52 83.20 3.04 6.64

CCC 0.00 0.00 0.00 0.58 1.74 4.18 68.00 25.50

Default 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00

From
To
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Credit Losses

Associated with each future credit state is a change in the monetary 
value of the contract

§e.g., a BBB-rated bond that is worth $100 today may, one year 
from now, be worth $92 if the issuer is rated BB or $104 if the 
issuer is rated A

§For simplicity, assume that value depends only on credit rating 

Each counterparty loss (L) has a discrete distribution (FL )

§e.g., for a BBB-rated counterparty

§Note that losses are positive and gains are negative

AAA AA A BBB BB B CCC Default

Loss per $1 -0.07 -0.06 -0.04 0.00 0.08 0.20 0.45 1.00

Probability (%) 0.05 0.24 5.20 88.49 4.88 0.80 0.16 0.18
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Portfolio Loss (Λ)
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Credit Risk Measures

Portfolio loss distribution (FΛ ) is positively skewed with mode zero

“Expected Shortfall”: ESα is the average loss 

beyond VaRα

ESα = E[Λ| Λ ≥ VaRα ]

ESα

“Value-at-Risk”: VaRα is the loss that is likely 

to be exceeded with probability (1 – α)

VaRα = FΛ
–1(α)

VaRα

1 − α
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Credit Risk Optimization

We want to adjust the composition of the portfolio to “shrink” the 
right tail of the portfolio loss distribution

§Let xj denote the size of the position in counterparty j

§Let L
j
denote the loss in value per unit of counterparty j

§The loss for a portfolio of J counterparties is 

Minimizex∈ Ω g(Λ(x)) where g is 

§VaRα
§ESα
§Variance

§Second moment, i.e., E[Λ(x)2] = var[Λ(x)] + E[Λ(x)]2

( )
1

J
j

j

j

L x
=

=∑xL ← L
j
’s are co-dependent
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Portfolio Credit Risk Model
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Structural Models of Portfolio Credit Risk

Structural models infer a counterparty’s future credit state from a 
continuous random variable called a creditworthiness index (W) 

§e.g., if TBBB ≤ W < TA then new credit state is BBB

§Thresholds are chosen so that P(TBBB ≤ W < TA) is consistent with 
the credit transition matrix

CCCD AA AAAB BB BBB A

–2.9 –2.7 –2.3 –1.6 1.6 2.8 3.3

W
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Creditworthiness Index

Creditworthiness Index (W)

Credit Drivers 

(Y)
Idiosyncratic Factor 

(Z)

Systemic Risk Specific Risk

Creditworthiness index of counterparty j :

K credit drivers are correlated standard Normal variates with joint 
distribution function FY

1

K

j jk k j j

k

W Y Z
=

= β + σ∑

N(0, 1)
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Sampling Credit Drivers

Generate samples ym, m = 1, …, M from FY

§Effect is to shift the transition probabilities for counterparties

§Creditworthiness indices are conditionally independent given y

The portfolio loss distribution conditional on ym is the convolution of 
the conditional counterparty loss distributions

The unconditional portfolio loss distribution is the mixture of the 
conditional portfolio loss distributions

AAA AA A BBB BB B CCC Default

Loss per $1 -0.07 -0.06 -0.04 0.00 0.08 0.20 0.45 1.00

Probability (%) 0.05 0.24 5.20 88.49 4.88 0.80 0.16 0.18

Probability | y  (%) 0.01 0.05 1.73 83.59 10.83 2.41 0.57 0.79

( )
1 2

| | | |
* * ... *1 2 J

JL x L x L x
F F F F=

x y y y yL

( ) ( )( ) ( )|

1

1 M

m

F F
M =

= ∑l lx x yL L



© 2009 Algorithmics Incorporated. All rights reserved. 14

Conditional Independence Framework
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Optimization Challenges

Minimizing E[Λ(x)] or var[Λ(x)] is easy (compute unconditional 
means and covariances of counterparty losses from FL|y) but 
minimizing VaRα or ESα is more challenging

Formulating an optimization model using convolutions is not practical

§8 credit states, J counterparties → 8J possible portfolio losses for 
each y

Consider approximations to the conditional loss distribution FΛ(x)|y

§Monte Carlo sampling

§Normal distribution

§Conditional mean
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Monte Carlo Sampling 
Approximation
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Monte Carlo Sampling Approximation
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Estimating VaR and ES from Samples

e.g., 100 random samples (each has probability 0.01) sorted in 
increasing sequence

§VaR0.95 = 850 is the fifth-largest observation

§ES0.95 = 935 is the average of the five largest observations

1100950900875850825…-100-150-225-300-350-400

1009998979695654321

1
(850 875 900 950 1100)

5
1

850 (0 25 50 100 250)
5

0.95ES = + + + +

= + + + + +

VaR0.95 VaR0.95 exceedance
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Monte Carlo Optimization Models

ESα can be minimized with linear programming

Rockafellar, R. T. and S. Uryasev (2000), “Optimization of conditional Value at Risk,” The Journal 
of Risk 2(3), 21-41

VaRα minimization is an integer program (MN binary variables)

§Use a heuristic approach based on successive ESα optimization

§Iteratively fix the samples in the tail of the distribution
Larsen, N., Mausser H., and S. Uryasev (2002), “Algorithms for Optimization of Value-at-Risk,” in 
Financial Engineering, e-commerce and Supply Chain, P. Pardalos and V.K. Tsitsiringos (Eds.), 
129-157.

( ) ( )
1

1
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1
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i

z z
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 + − − α ∑ lx x
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5
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Normal Approximation
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Central Limit Theorem (CLT)

If the number of counterparties is large and contracts are relatively 
small then the conditional portfolio loss distribution is close to 
Normal

§Need the size restriction (Lyapunov or Lindeberg condition) 
because conditional counterparty losses are independent but not 
identically distributed

Portfolio loss distribution is

( )2 2 2

| |
1 1

( ) | , ( ), ( )j j
m m

J J
D

m j j m mL L
j j

x x
= =

 
→ µ σ ≡ µ σ 

 
∑ ∑y y

x y x xL N N

( )( )

1

( )1

( )

M
m

m m

F
M =

 − µ= Φ  σ 
∑

l
lx

x

x
L



© 2009 Algorithmics Incorporated. All rights reserved. 22

Normal (CLT) Approximation
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CLT Optimization Models

VaRα minimization is a (non-convex*) non-linear program

ESα minimization is a non-linear program
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Conditional Mean 
Approximation
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Conditional Mean (CM)

If the portfolio comprises an extremely large number of almost 
identical contracts then the conditional portfolio loss is 
approximated by the sum of the conditional mean counterparty
losses

Assume: diversification eliminates all specific risk

Portfolio loss distribution is approximated by a sample of size M

§Optimization models are same as those for Monte Carlo sampling

|
1

( ) | ( )j
m

J

m j mL
j

x
=

≈ µ ≡ µ∑ y
x y xL
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Conditional Mean (CM) Approximation
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Computational Results
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Test Portfolio

3000 counterparties and 50 credit drivers (from ISDA/IACPM 2006)

§Credit drivers are industry/country indices 

§Each counterparty depends on one credit driver (0.42 ≤ β ≤ 0.65)

§Initial contract values are identical

Consider individual counterparties and groups

§Can be impractical to take action at counterparty level

§Counterparties maintain their initial weightings within groups

§Grouping is done at random

§10 groups of 300

§50 groups of 60

§300 groups of 10

§3000 groups of 1
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Formulations

Constraints (Ω)

§Maintain initial value of portfolio

§Earn at least the initial expected return

§Trading limits [0, 2] for each counterparty

§Can eliminate or double the initial position

Convex 
Quadratic

Unconditional

Linear
Linear 

(Heuristic)
Cond. Mean 
Approximation

Convex      
Non-linear

Non-convex* 
Non-linear

Normal 
Approximation

Linear
Linear 

(Heuristic)
MC Sampling 
(N = 1, 20)

Variance,     
2nd Moment

ES0.999VaR0.999
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Methodology

Perform 5 trials, each with M = 10,000 credit driver samples

§Report the average over 5 trials

Evaluate optimal portfolios by computing VaR0.999 and ES0.999

§Out-of-Sample

§M = 6,000,000, N =1 (assume to be the true loss distribution)

§Determine effects of systemic sampling error and model 
approximation error

§In-sample 

§N = 150 (assume to be the true conditional loss distribution)

§Isolate effects of model approximation error
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Out-of-Sample VaR
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Out-of-Sample ES
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Approximation Quality for VaR
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Approximation Quality for ES
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(Out / In) - 1 (In / Obj) - 1 HHI (Out / In) - 1 (In / Obj) - 1 HHI

CLT 0.90% 0.66% 0.0345 0.76% 2.70% 0.1556

MC(20) 1.22% 2.25% 0.0322 1.15% 3.77% 0.1311

CM 0.92% 9.54% 0.0385 -0.27% 267.81% 0.7456

MC(1) 1.15% 16.38% 0.0345 0.25% 35.63% 0.1712

(Out / In) - 1 (In / Obj) - 1 HHI (Out / In) - 1 (In / Obj) - 1 HHI

CLT 0.82% 0.61% 0.0342 0.65% 3.10% 0.1624

MC(20) 0.95% 0.83% 0.0338 0.94% 3.14% 0.1296

CM 0.53% 9.37% 0.0399 -0.13% 294.00% 0.7482

MC(1) 0.71% 16.48% 0.0363 0.09% 52.47% 0.1729

VaR 0.999

ES 0.999

Trading limits [0, 2] Trading limits [-3, 15]

Trading limits [0, 2] Trading limits [-3, 15]

Granularity Effects

What happens as the portfolio becomes more granular (smallness 
condition is violated)? e.g., 50 groups with wider trading limits

Approximations to the conditional distribution get worse, especially 
for CM

§HHI is the Herfindahl-Hirschman Index



© 2009 Algorithmics Incorporated. All rights reserved. 36

Systemic Sampling Effects

How does the number of systemic samples affect out-of-sample 
performance?

Slight improvement for MC(1), negligible for others

§CLT with 10,000 systemic samples does better than other 
models with 50,000 systemic samples

10 Groups 50 Groups 300 Groups 10 Groups 50 Groups 300 Groups

CLT 96.5% 88.4% 80.0% 96.3% 88.3% 79.6%

MC(20), (4) 96.7% 89.2% 81.4% 96.6% 89.2% 81.3%

CM 98.2% 90.0% 83.4% 97.4% 89.5% 82.1%

MC(1) 97.9% 93.2% 85.8% 97.1% 90.4% 82.9%

10 Groups 50 Groups 300 Groups 10 Groups 50 Groups 300 Groups

CLT 96.5% 88.1% 78.8% 96.4% 87.9% 78.4%

MC(20), (4) 96.7% 88.4% 79.7% 96.6% 88.5% 79.3%

CM 97.8% 89.1% 80.4% 97.6% 89.4% 79.7%

MC(1) 98.6% 92.8% 85.6% 96.9% 89.5% 80.8%

10,000 Systemic Samples
VaR 0.999

50,000 Systemic Samples

ES 0.999
10,000 Systemic Samples 50,000 Systemic Samples
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Model Solver 10 grp 50 grp 300 grp 3000 grp

CLT IPOPT 4 - 25 5 - 7 14 - 55 400 - 1643

CM CPLEX 2 - 3 6 - 8 46 - 50 791 - 1025

MC(1) CPLEX 2 - 3 8 - 10 46 - 69 2436 - 3312

MC(20)* CPLEX 3620 - 4080 2382 - 2777 6522 - 8563 39273 - 86383

VaR 0.999

Performance

Elapsed time (sec)

Server : 8 x Opteron
885 CPU, 16 cores 
(jobs run on 1 core), 
64 Gb RAM

* VaR optimization for 
MC(20) was run in 
parallel mode on 4 
threads

Model Solver 10 grp 50 grp 300 grp 3000 grp

CLT IPOPT 4 - 8 6 - 8 14 - 83 181 - 1090

CM CPLEX 1 1 - 2 6 - 8 73 - 86

MC(1) CPLEX 1 1 - 2 6 - 10 14 - 115

MC(20) CPLEX 137 - 155 233 - 279 461 - 578 1050 - 1280

ES 0.999

Model Solver 10 grp 50 grp 300 grp 3000 grp

Uncond MOSEK < 1 < 1 1 682 - 719

Variance
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Conclusions

Normal approximation is attractive for optimization

§Consistently better than Monte Carlo sampling with only 10% of 
the data

§Acceptable performance solving non-linear model

§Relatively robust to violations of smallness condition

Tests with more realistic counterparty groupings yield consistent 
results

Further work:

§Improve VaR for Monte Carlo sampling

§Vary credit driver sensitivities, quantiles
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Integrated Market-Credit Loss Model

Loss (Λ)

Exposure Creditworthiness (W)

Market Factors (X) Credit Drivers (Y) Specific Factors (Z)

Systemic Risk Specific Risk
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Creditworthiness Index and Transitions

Default CCC B BB BBB A AA AAA

Probability (%) 0.18 0.16 0.80 4.88 88.49 5.20 0.24 0.05

Value of $1 0.00 0.55 0.80 0.92 1.00 1.04 1.06 1.07

Loss per $1 1.00 0.45 0.20 0.08 0.00 -0.04 -0.06 -0.07

CCCD AA AAA

CWI

B BB BBB A

–2.9 –2.7 –2.3 –1.6 1.6 2.8 3.3
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Conditional Transition Probabilities for BBB

Unconditional (calibrate 
CWI thresholds)

Unfavourable systemic

Favourable systemic

BBBBBBCCCD A AA AAA

CWI



© 2009 Algorithmics Incorporated. All rights reserved. 43

Number of Samples

For α close to 1, we need a lot of samples to get good estimates of 
VaRα and ESα

§α ≥ 0.995 is common for credit risk

Possible to reduce the number of samples by “careful” selection?

Loss
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1,000 samples 10,000 samples
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Monte Carlo Sampling Optimization Models
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VaR Minimization Heuristic
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VaR Optimization Alternatives

Convex Approximations

§Assume some structure in the uncertainty
Bertsimas, D. and M. Sim (2004), “The Price of Robustness,” Operations Research 52(1), 35-53.

Nemirovski, A. and A. Shapiro (2006), “Convex Approximations of Chance Constrained Programs,”
Siam Journal on Optimization 17(4), 969-996.

Worst-Case Scenario

§No assumptions about uncertainty structure
Calafiore, G. and M.C. Campi (2006), “The Scenario Approach to Robust Control Design,” IEEE 
Transactions on Automatic Control 51(5), 742-753. 
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ESα Objective for Normal Approximation
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Conditional Mean Motivation

Chebyshev inequality (basis of LLN)

For non-iid, Kolmogorov criterion requires

Idea: as the number of counterparties increases, the contribution of 
the variances to the sum becomes small relative to that of the 
means

Suppose

From CLT: 
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Out-of-Sample VaR
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CLT Gradients and Hessians

Calculating gradients

Calculating Hessians

Non-linear optimization algorithm
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Other Test Results

 
Model Risk 

Measure Init 
portf 

20 Ggps 
1 CP 

Heterog 
Budget 

20 Ggps 
1 CP 

Heterog 
Budget 
99% Qt 

20 Ggps 
1 CP 

Heterog 
Default 

20 Ggps 
60 CPs 
Heterog 

20 Ggps 
150 CPs 
Heterog 

20 Ggps 
150 CPs 
Homog 

50 Ggps 
10 CPs 
Heterog 

50 Ggps 
10 CPs 
Heterog 
Budget 

500 
Ggps 
1 CP 

Heterog 
 

500 
Ggps 
1 CP 

Heterog 
50000sc 

500 
Ggps 
1 CP 

Heterog 
Budget 

500 
Ggps 
1 CP 

Heterog 
Default 

500 
Ggps 
6 CPs 

Heterog 

ES  99.9% 100% 59.93% 83.39% 61.95% 88.32% 92.93% 86.43% 87.61% 70.49% 67.23% 67.05% 53.98% 34.66% 76.97% CLT 
VaR 99.9% 100% 125.04% 79.75% 45.38% 87.38% 92.98% 87.38% 86.33% 70.09% 68.61% 68.60% 56.48% 35.61% 77.82% 

ES  99.9% 100% 95.58% 91.64% 77.34% 89.59% 93.69% 88.48% 113.19% 115.14% 87.09% 87.04% 114.96% 45.07% 78.66% LLN 
VaR 99.9% 100% 144.06% 46.37% 64.72% 89.53% 94.74% 91.26% 115.91% 111.74% 87.09% 87.13% 118.93% 44.28% 81.00% 

ES  99.9% 100% 63.23% 72.17% 49.73% 91.26% 96.82% 89.29% 91.25% 78.09% 72.44% 68.42% 65.66% 40.61% 83.44% MCs 
VaR 99.9% 100% 89.04% 47.75% 44.35% 91.02% 96.30% 90.83% 90.06% 74.81% 73.14% 70.73% 65.44% 40.93% 84.09% 

ES  99.9% 100% 47.23% 69.62% 44.55% 89.10% 94.14% 86.95% 88.52% 70.22% 68.75% 67.04% 57.74% 35.93% 79.08% MCs (x5) 
VaR 99.9% 100% 102.22% 49.36% 41.28% 88.72% 94.22% 87.97% 87.58% 71.22% 70.65% 69.11% 60.05% 36.41% 81.39% 

ES  99.9% 100% 63.93% 75.07% 50.30% 93.31% 98.59% 91.10% 92.61% 78.79% 72.45% 69.08% 65.66% 40.69% 83.79% WMCs 
VaR 99.9% 100% 90.68% 53.78% 45.93% 91.15% 97.50% 91.02% 91.37% 77.07% 73.06% 70.89% 65.66% 41.30% 85.17% 

ES  99.9% 100% 93.03% 87.60% 76.43% 91.15% 96.88% 87.59% 115.38% 138.29% 91.90% 92.31% 136.88% 40.77% 83.24% MV (CLT) 
VaR 99.9% 100% 129.89% 45.23% 65.64% 89.80% 96.12% 88.27% 111.55% 143.04% 91.91% 92.29% 141.99% 40.96% 83.05% 

ES  99.9% 100% 73.88% 78.80% 56.56% 90.87% 95.60% 87.87% 92.16% 80.20% 78.69% 77.10% 64.71% 38.29% 83.68% MV (MCs) 
VaR 99.9% 100% 117.20% 72.99% 44.72% 89.17% 95.03% 88.41% 90.15% 79.07% 77.94% 76.43% 64.18% 38.23% 83.15% 
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Performance (50,000 Systemic Samples)

Elapsed time (sec)

Server : 8 x Opteron
885 CPU, 16 cores 
(jobs run on 1 core), 
64 Gb RAM

* VaR optimization for 
MC(20) was run in 
parallel mode on 4 
threads

Model Solver 10 grp 50 grp 300 grp 3000 grp

CLT IPOPT 24 - 30 30 - 35 72 - 443

CM CPLEX 22 - 24 66 - 80 500 - 748

MC(1) CPLEX 34 - 59 107 - 188 646 - 780

MC(20)* CPLEX 3579 - 3715 2393 - 2945 6820 - 8990

Model Solver 10 grp 50 grp 300 grp 3000 grp

CLT IPOPT 22 - 29 29 - 53 73 - 161

CM CPLEX 4 - 10 11 - 14 57 - 76

MC(1) CPLEX 9 - 13 20 - 28 58 - 66

MC(20) CPLEX 138 - 179 270 - 315 437 - 582

Model Solver 10 grp 50 grp 300 grp 3000 grp

Uncond MOSEK < 1 < 1 1

VaR 0.999

ES 0.999

Variance
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Detailed Performance Data

 

Solver / Model Solution status 

Solution 

time 

(seconds) 

Relative 

difference in 

optimal solution  

Number of 

iterations 

Number of 

function 

evaluations 

Number of 

gradient 

evaluations 

Number of 

Hessian 

evaluations 

MOSEK 
Objective: VaR 

Hessian: computed 

The Optimization Problem is 

Nonconvex 
2185  - - - - 

IPOPT 

Objective: VaR 

Hessian: computed 

Optimal Solution Found 

(Overall /max solution error: 

8.0e-09) 

11484  64 65 65 64 

IPOPT 

Objective: VaR 

Hessian: approximation 

Solved To Acceptable Level 

(Overall /max solution error: 

9.1e-07) 

1408  438 1197 441 0 

MOSEK 
Objective: Expected Shortfall 

Hessian: computed 

Optimal 

(Overall /max solution error: 

1.6e-08) 

8058 
-0.00037% 

(vs. IPOPT Hes) 
36 39 75 37 

MOSEK 

Objective: Expected Shortfall 

Hessian: computed 

Parallel – 8 CPUs 

Optimal 

(Overall /max solution error: 

1.6e-08) 

1672  36 39 75 37 

IPOPT 
Objective: Expected Shortfall 

Hessian: computed 

Optimal Solution Found 

(Overall /max solution error: 

2.5e-09) 

11554 
0.00037% 

(vs. MOSEK Hes) 
65 66 66 65 

IPOPT 
Objective: Expected Shortfall 

Hessian: approximation 

Optimal Solution Found 

(Overall /max solution error: 

1.5e-09) 

979 
0.00076% 

(vs. MOSEK Hes) 
260 465 261 0 

Credit-Risk Model with Credit-State Migrations

3000 Groups, Wide Budget, 10000 Scenarios, 99.9% Quantile
Problem dimension: 3000 groups - 6000 variables, 6003 constraints

Minimizing Value-at-Risk or Expected Shortfall
The Hessian Matrix is Computed or Approximated 
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Industry Practice (March 2009)

Typical portfolio size: 5,000 counterparties

Typical no. credit drivers per counterparty: 1

Typical beta: 0.4 – 0.5

Typical no. systemic samples: 10,000

Typical no. specific samples: 1,000 (for risk measurement, not 
optimization)


