Credit Risk Optimization
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Overview

Objective: Re-balance a portfolio of financial instruments to
minimize the risk of losses due to credit events

SBackground

SPortfolio credit risk model
SOptimization models
SComputational results



Background



Corporate Bond Prices

27-Feb-08 27-Feb-09
Issue Price ($) Yield (%)]| Price ($) Yield (%)|A Price ($)
Ford 6.5% 8/1/18 70 11.5 16 45.6 -54
GM 7.7% 4/15/16 82 11.0 13 66.4 -69
Target 6.0% 1/15/18 103 5.6 100 6.0 -3
Walmart 5.375% 4/5/17 103 4.9 105 4.5 2

Automotive bonds lost about 80% of their value in one year
Bonds of discount retailers retained their value

Market is less confident that automative companies will be able to
make the required interest and principal payments




Credit Risk

The risk of monetary loss due to the default, or a change in the
perceived likelihood of default, of a counterparty to a contract.

Counterparties (governments, companies) are assigned a credit
rating reflecting the likelihood that they will honour their contracts

SVarious rating scales (S&P, Moody’s, Fitch, DBRS)
S Range from AAA (best) to Default (worst)

SThe lower the rating, the more compensation is required
SPay more interest
SProvide more collateral



Credit Transition Matrix

Specifies the likelihood of migrating from one credit rating (state) to
another over a fixed time horizon (usually one year)

e.g., annual transition matrix (% probability)

To

From AAA AA A BBB BB B CCC Default
AAA 92.18 7.06 0.73 0.00 0.02 0.00 0.00 0.01

AA 1.17 90.84 7.63 0.26 0.07 0.01 0.00 0.02

A 0.05 2.39 91.83 5.07 0.50 0.13 0.01 0.02

BBB 0.05 0.24 5.20 88.49 4.88 0.80 0.16 0.18

BB 0.01 0.05 0.50 5.45 85.12 7.05 0.55 1.27

B 0.01 0.03 0.13 0.43 6.52 83.20 3.04 6.64

CCC 0.00 0.00 0.00 0.58 1.74 418 68.00 25.50
Default 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00




Credit Losses

Associated with each future credit state is a change in the monetary
value of the contract

se.g., a BBB-rated bond that is worth $100 today may, one year
from now, be worth $92 if the issuer is rated BB or $104 if the
Issuer iIs rated A

SFor simplicity, assume that value depends only on credit rating

Each counterparty loss (L) has a discrete distribution (F/ )

Se.g., for a BBB-rated counterparty

AAA AA A BBB BB B CCC Default
Loss per $1 -0.07 -0.06 -0.04 0.00 0.08 0.20 0.45 1.00
Probability (%) 0.05 0.24 5.20 88.49 4.88 0.80 0.16 0.18

SNote that losses are positive and gains are negative



Credit Risk Measures

Portfolio loss distribution (F, ) is positively skewed with mode zero

“Value-at-Risk”: VaR , is the loss that is likely
to be exceeded with probability (1 — o)

VaR,, = Fy\(a)

“Expected Shortfall”: ES, is the average loss
beyond VaR,,

ES,=E[N A= VaR,]

Probability

1-a

—

I I |

0 VaR, LS,
Portfolio Loss (/)




Credit Risk Optimization

We want to adjust the composition of the portfolio to “shrink” the
right tail of the portfolio loss distribution

SLet x; denote the size of the position in counterparty j
SLet I denote the loss in value per unit of counterparty j
SThe loss for a portfolio of J counterparties IS

( ) ZU L’s are co-dependent

Minimize, o g(A(x)) where g is

SVaR,

SES,

SVariance

sSecond moment, i.e., E[A(x)?] = var[A(x)] + E[/A(x)]?




Portfolio Credit Risk Model



Structural Models of Portfolio Credit Risk

Structural models infer a counterparty’s future credit state from a
continuous random variable called a creditworthiness index (W)

Se.g., if gz < W< T, then new credit state is BBB

S Thresholds are chosen so that P(Tzz, < W <T),) is consistent with
the credit transition matrix

D CCC B BB BBB A AA AAA

/

-2.9 -2.7 -23 -1.6 1.6 28 33

"




Creditworthiness Index

Creditworthiness Index (W)

Credit Drivers |diosyncratic Factor
( (£)
Systemic Risk Specific Risk

Creditworthiness index of counterparty ; :

K
W, = ;Bjkyk t0,Z,

NQ@, 1)
K credit drivers are correlated standard Normal variates with joint

distribution function Fy




Sampling Credit Drivers

Generate samplesy,,m=1, ..., M from Fy
SEffect is to shift the transition probabilities for counterparties

AAA AA A BBB BB B CCC Default
Loss per $1 -0.07 -0.06 -0.04 0.00 0.08 0.20 0.45 1.00
Probability (%) 0.05 0.24 5.20 88.49 4.88 0.80 0.16 0.18
Probability | y (%) 0.01 0.05 1.73 83.59 10.83 2.41 0.57 0.79

§Creditworthiness indices are conditionally independent given y

The portfolio loss distribution conditional on y,, is the convolution of
the conditional counterparty loss distributions

F —F * * S

L(x)ly L'xly = Pxly L'x;ly
The unconditional portfolio loss distribution is the mixture of the
conditional portfolio loss distributions

L(x)( ) Z L(x)ly ( )




Conditional Independence Framework

L (x)ly,

: FL(x)Iym FL(x)

j Algorithmics | - 4 <




Optimization Challenges

Minimizing E[/A(x)] or var[/A(x)] is easy (compute unconditional
means and covariances of counterparty losses from £, ) but
minimizing VaR ,or ES ,is more challenging

Formulating an optimization model using convolutions is not practical

$8 credit states, J counterparties — 8/ possible portfolio losses for
eachy

Consider approximations to the conditional loss distribution F ),

SMonte Carlo sampling
SNormal distribution
sConditional mean




Monte Carlo Sampling
Approximation



Monte Carlo Sampling Approximation

J
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Estimating VaR and ES from Samples

e.g., 100 random samples (each has probability 0.01) sorted in
Increasing sequence

1

2

3

4

5

6

95

96

97

98

99

100

-400

-350

-300

-225

-150

-100

825

850

875

900

950

1100

SVaR, o5 = 850 is the fifth-largest observation

SES, ¢s = 935 is the average of the five largest observations

ES,,. =-(850+875+900+950+1100)
P s

=850+

/

VaR, ys

l(O+25 +50+100+250)
5 _

A

VaR, 4; exceedance




Monte Carlo Optimization Models

ES, can be minimized with linear programming

Rockafellar, R. T. and S. Uryasev (2000), “Optimization of conditional Value at Risk,” The Journal
of Risk 2(3), 21-41

MiNco Z+MN1 a) ZU il

Recall: ES,,; =850+ L 0+25+50+100+250)

VaR , minimization is an integer program (MN binary variables)

SUse a heuristic approach based on successive ES , optimization

Slteratively fix the samples in the tail of the distribution

Larsen, N., Mausser H., and S. Uryasev (2002), “Algorithms for Optimization of Value-at-Risk,” in
Financial Engineering, e-commerce and Supply Chain, P. Pardalos and V .K. Tsitsiringos (Eds.),

129-157.



Normal Approximation



Central Limit Theorem (CLT)

If the number of counterparties is large and contracts are relatively
small then the conditional portfolio loss distribution is close to
Normal

Lx)ly U 1. N (Zumymx Zcrzlym JE N (um(x), Gi(x))

J=1

SNeed the size restriction (Lyapunov or Lindeberg condition)
because conditional counterparty losses are independent but not
identically distributed

Portfolio loss distribution is

1 ¥ =, (x)
FL(x)(g):HZCD( : xj




(E[Lly,]
var[L'ly,]
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CLT Optimization Models

VaR , minimization is a (non-convex®) non-linear program

min o, /(x)

ot zq{f(x) “ <x>j :

g, (x)

ES , minimization is a non-linear program

. RS [ (x) (%) ((x)=H,,(x)
oo M(l—a);{um(x)(l CD( o (x) nﬂym(x)(p( g, (x) ﬂ

S.t. A;idb(f(x)_um(x)):a

g, (x)




Conditional Mean
Approximation



Conditional Mean (CM)

If the portfolio comprises an extremely large number of almost
identical contracts then the conditional portfolio loss is
approximated by the sum of the conditional mean counterparty
losses

J
L)y, =D My, X =1, (x)
j=l1

Assume: diversification eliminates all specific risk

Portfolio loss distribution is approximated by a sample of size M

SOptimization models are same as those for Monte Carlo sampling




Conditional Mean (CM) Approximation

J
THEIED N THNES
j=1

# data = MJ
Nx)
My (x)
> My, (X)
My (X))




Computational Results



Test Portfolio

3000 counterparties and 50 credit drivers (from ISDA/IACPM 2006)

SCredit drivers are industry/country indices
SEach counterparty depends on one credit driver (0.42 < 3 < 0.65)
SlInitial contract values are identical

Consider individual counterparties and groups

SCan be impractical to take action at counterparty level
SCounterparties maintain their initial weightings within groups
SGrouping is done at random

$10 groups of 300

§50 groups of 60

§300 groups of 10

$3000 groups of 1



Formulations

Variance,
Var, 499 ES.999 ond Moment
MC Sampling Linear :
(N =1, 20) (Heuristic) Linear
Normal Non-convex* Convex
Approximation Non-linear Non-linear
Cond. Mean Linear :
Approximation (Heuristic) Linear
Unconditional Q%‘;g‘::ﬁc

Constraints (Q)

SMaintain initial value of portfolio
SEarn at least the initial expected return
STrading limits [0, 2] for each counterparty

S§Can eliminate or double the initial position |




Methodology

Perform 5 trials, each with M = 10,000 credit driver samples

SReport the average over 5 trials

Evaluate optimal portfolios by computing VaR, 4o and ES 999

SOut-of-Sample
SM = 6,000,000, N =1 (assume to be the true loss distribution)

S Determine effects of systemic sampling error and model
approximation error

SIn-sample
SN = 150 (assume to be the true conditional loss distribution)
Slsolate effects of model approximation error



Out-of-Sample VaR
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Out-of-Sample ES

CLT

M C(20)
—e—CM
—A—MC()
—>¢—Variance

2nd Moment

o
=
<
@)
—
()]
=
)
O
()]
=
(@)
2y
V)o
S

1.5 2 2.5 3.5

log(# Groups)




Approximation Quality for VaR
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Approximation Quality for ES
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Granularity Effects

What happens as the portfolio becomes more granular (smallness
condition is violated)? e.g., 50 groups with wider trading limits

VaR 900 Trading limits [0, 2] Trading limits [-3, 15]
' (Out/In)-1 (In/Obj) - 1 HHI (Out/1In) -1 (In/Obj) - 1 HHI
CLT 0.90% 0.66% 0.0345 0.76% 2.709% 0.1556
MC(20) 1.22% 2.25% 0.0322 1.15% 3.77% 0.1311
CM 0.92% 9.54% 0.0385 -0.27% 267.81% 0.7456
MC(1) 1.15% 16.38% 0.0345 0.25% 35.63% 0.1712
N—
ES Trading limits [0, 2] Trading limits [-3, 15]
0999 1 (©Out/In)-1 (In/Obj) - 1 HHI (Out/In)-1 (In/Obj) - 1 HHI
CLT 0.82% 0.61% 0.0342 0.65% 3.10% 0.1624
MC(20) 0.95% 0.83% 0.0338 0.94% 3.14% 0.1296
CM 0.53% 9.37% 0.0399 -0.13% 294.00% 0.7482
MC(1) 0.71% 16.48% 0.0363 0.09% 52 47% 0.1729

Approximations to the conditional distribution get worse, especially
for CM

SHHI is the Herfindahl-Hirschman Index |




Systemic Sampling Effects

How does the number of systemic samples affect out-of-sample
performance?

VaR 10,000 Systemic Samples 50,000 Systemic Samples
0.999 10 Groups 50 Groups 300 Groups | 10 Groups 50 Groups 300 Groups
CLT 96.5% 88.4% 80.0% 96.3% 88.3% 79.6%
MC(20), (4) 96.7% 89.2% 81.4% 96.6% 89.2% 81.3%
CM 98.2% 90.0% 83.4% 97.4% 89.5% 82.1%
MC(1) 97.9% 93.2% 85.8% 97.1% 90.4% 82.9%
ES 10,000 Systemic Samples 50,000 Systemic Samples
0.999 10 Groups 50 Groups 300 Groups | 10 Groups 50 Groups 300 Groups
CLT 96.5% 88.1% 78.8% 96.4% 87.9% 78.4%
MC(20), (4) 96.7% 88.4% 79.7% 96.6% 88.5% 79.3%
CM 97.8% 89.1% 80.4% 97.6% 89.4% 79.7%
MC(1) 98.6% 92.8% 85.6% 96.9% 89.5% 80.8%

Slight improvement for MC(1), negligible for others

SCLT with 10,000 systemic samples does better than other
models with 50,000 systemic samples |




Performance

ES (.999
Model Solver 10 grp 50 grp 300 grp 3000 grp
CLT IPOPT 4-8 6-8 14 - 83 181 - 1090
CM CPLEX 1 1-2 6-8 73 - 86
MC(1) CPLEX 1 1-2 6-10 14 - 115
MC(20) CPLEX| 137-155 233 - 279 461 - 578 1050 - 1280
VaR (999
Model Solver 10 grp 50 grp 300 grp 3000 grp
CLT IPOPT 4-25 5-7 14 - 55 400 - 1643
CM CPLEX 2-3 6-8 46 - 50 791 - 1025
MC(1) CPLEX 2-3 8-10 46 - 69 2436 - 3312
MC(20)* CPLEX| 3620 -4080 2382-2777 6522-8563 39273 -86383
Variance
Model Solver 10 grp 50 grp 300 grp 3000 grp
Uncond MOSEK <1 <1 1 682 - 719

Elapsed time (sec)

Server : 8 x Opteron
885 CPU, 16 cores
(jobs run on 1 core),
64 Gb RAM

* VaR optimization for
MC(20) was run in
parallel mode on 4
threads



Conclusions

Normal approximation is attractive for optimization

SConsistently better than Monte Carlo sampling with only 10% of
the data

SAcceptable performance solving non-linear model
SRelatively robust to violations of smallness condition

Testls with more realistic counterparty groupings yield consistent
results

Further work:

SImprove VaR for Monte Carlo sampling
SVary credit driver sensitivities, quantiles







Integrated Market-Credit Loss Model
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Creditworthiness Index and Transitions

CCC B BB BBB A
Probability (%) 0.16 0.80 4.88 88.49 5.20
Value of $1 0.55 0.80 0.92 1.00 1.04
Loss per $1 0.45 0.20 0.08 0.00 -0.04
D CCC B BB BBB A AA AAA

—

-2.9 -2.7 -2.3 -1.6 1.6 28 33

ow




Conditional Transition Probabilities for BBB

D CCC B BB BBB A AA  AAA

I EANE

Favourable systemic

Unfavourable systemic

Unconditional (calibrate
CWI thresholds)

o




Number of Samples

For a close to 1, we need a lot of samples to get good estimates of
VaR_and ES

Sa = 0.995 is common for credit risk

1,000 samples 10,000 samples

Probability
Probability

Loss Loss

Possible to reduce the number of samples by “careful” selection?



Monte Carlo Sampling Optimization Models

min ., 2
S.t.
J .
VCZRG Z:,lijxj —2z—Bd,; <0 for i=1,...,MN
=
Y d,<MN(1-a)
i=1
d.0{0,1}  for i=1,..,MN
Ly
min ., z+ y.
ESG MN (I—G) i=1
S.t.
J .
leijxj_z_yiso for i=1,...,MN
=




VaR Minimization Heuristic

Step 0. Initialization
1. Setagp=a, k=0, Hy={s : s=1,...,M}.

2. Assign value to the parameter for discarding scenarios ¢, 0 < ¢ < 1.
Step 1. Optimization sub-problem
1. Minimize o,-CVaR

min £+ v Z MsZs

z,2,,7y

SEH},

s.t. Yo tis%i S U425, 24 >0 s € Hy,
Zi,u'i,sxi <~ s € Hy,
Ziﬂi,sxi 27 S ¢ Hk:a
>iri=1
z; — 29 <y, i=1,...,N
x?—xigyi, 1=1,....,N
gzgngiza Z:1’7N

where v, = 1/((1 — a)M). Denote the optimal solution of this
problem by zj.

2. Order the scenarios y,x7, s = 1,..., M in ascending order and denote
ordered scenarios by s;, j =1,...,M.

Step 2. Estimating VaR
Calculate VaR estimate ji = y;(q) T, Where j(a) = min{j : j/M > a}.

Step 3. Stopping and re-initialization
1. k=k+ 1
2. bp=a+(1—-a)(l—¢)* and ap = a/bg.
3. Hy = {Sj € Hp_1 j/M < bk}
4. If Hy = Hy_1 then stop the algorithm and return the estimate of the

VaR-optimal portfolio 2} and VaR /, otherwise go to Step 1. A|gorithmics




VaR Optimization Alternatives

Convex Approximations

SAssume some structure in the uncertainty
Bertsimas, D. and M. Sim (2004), “The Price of Robustness,” Operations Research 52(1), 35-53.

b

Nemirovski, A. and A. Shapiro (2006), “Convex Approximations of Chance Constrained Programs,’
Siam Journal on Optimization 17(4), 969-996.

Worst-Case Scenario

SNo assumptions about uncertainty structure

Calafiore, G. and M.C. Campi (2006), “The Scenario Approach to Robust Control Design,” IEEE
Transactions on Automatic Control 51(5), 742-753.



ES, Objective for Normal Approximation
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Conditional Mean Motivation

Chebyshev inequality (basis of LLN)

Sn
— —H

o’ o’
<Ej21—g - P(|S —nu|<n8)21——

ldea: as the number of counterparties increases, the contribution of
the variances to the sum becomes small relative to that of the
means

Suppose My, % =H O, X; =0

From CLT:
L(x)ly, =Ju+JJoZ, Z~N (0,1)




Out-of-Sample VaR
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Out-of-Sample ES
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Approximation Quality for VaR
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Approximation Quality for ES
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CLT Gradients and Hessians

Calculating gradients
Via(z) = f(la(2))
VES.(z) = f(la(z), ESa(2))

Calculating Hessians
Vila(z) = f(la(z), Via(z))
VZES.(2) = f(la(x),ESa(x), VES, (7))

Non-linear optimization algorithm
pFH = 2P — (V2 f (") IV f (=)




Other Test Results

Model Ri sk 20 Ggps 500 500 500 500
Measure | [nit 201 G&PS 1 0P 201 G&PS 20 Ggps | 20 Ggps | 20 Ggps | 50 Ggps 5100 GgFE’SS Ggps Gps Gps Ggps ngopos
Het er og 60 CPs [ 150 CPs | 150 CPs | 10 CPs 1cCP 1cCP 1cCP 1cCP
portf | Heterog Budget Heter og Heterog | Heterog | Homog | Heterog Heterog Heterog | Heterog | Heterog | Heterog 6 CPs
Budget 99% Qt Def aul t Budget 50000sc | Budget | Default Het er og
CLT ES 99.9% | 100%| 59.93%| 83.39%| 61.95%| 88.32%| 92.93%| 86.43%| 87.61%| 70.49%| 67.23%| 67.05% | 53.98%| 34.66%| 76.97%
VaR 99.9% | 100%| 125.04%| 79.75%| 45.38%| 87.38%| 92.98%| 87.38%| 86.33%| 70.09%| 68.61%| 68.60% | 56.48%| 35.61%| 77.82%
LLN ES 99.9% | 100%| 95.58%| 91.64%| 77.34%| 89.59%| 93.69% | 88.48%| 113.19%| 115.14%| 87.09%| 87.04% | 114.96% | 45.07%| 78.66%
VaR 99.9% | 100%| 144.06%| 46.37%| 64.72%| 89.53%| 94.74%| 91.26% | 115.91%| 111.74%| 87.09%| 87.13%| 118.93%| 44.28%| 81.00%
MCs ES 99.9% | 100%| 63.23%| 72.17%| 49.73%| 91.26%| 96.82% | 89.29%| 91.25%| 78.09%| 72.44%| 68.42% | 65.66%| 40.61%| 83.44%

VaR 99.9% | 100%| 89.04%| 47.75%| 44.35%| 91.02%| 96.30%| 90.83%| 90.06%| 74.81%| 73.14%| 70.73%| 65.44%| 40.93%| 84.09%
MCs (x5) | ES 99.9% | 100% | 47.23%| 69.62%| 44.55%| 89.10%| 94.14%| 86.95%| 88.52%| 70.22%| 68.75% | 67.04% | 57.74%| 35.93%| 79.08%
VaR 99.9% | 100%] 102.22% | 49.36%| 41.28%| 88.72%| 94.22%| 87.97%| 87.58%| 71.22%| 70.65%| 69.11% | 60.05%| 36.41%| 81.39%
WMCs ES 99.9% | 100%| 63.93%| 75.07%| 50.30%| 93.31%| 98.59% | 91.10%| 92.61%| 78.79%| 72.45%| 69.08%| 65.66% | 40.69%| 83.79%
VaR 99.9% | 100%| 90.68%| 53.78%| 45.93%| 91.15%| 97.50%| 91.02%| 91.37%| 77.07%| 73.06%| 70.89% | 65.66%| 41.30%| 85.17%
W (CLT) | ES 99.9% | 100%| 93.03% | 87.60%| 76.43%| 91.15%| 96.88%| 87.59%| 115.38%| 138.29%| 91.90% | 92.31% | 136.88% | 40.77%| 83.24%
VaR 99.9% | 100%] 129.89% | 45.23%| 65.64%| 89.80%| 96.12%| 88.27%| 111.55%| 143.04%| 91.91%| 92.29%| 141.99%| 40.96% | 83.05%
W (MCs) | ES 99.9% | 100%| 73.88%| 78.80%| 56.56%| 90.87%| 95.60%| 87.87%| 92.16%| 80.20%| 78.69% | 77.10% | 64.71%| 38.29%| 83.68%
VaR 99.9% | 100%| 117.20%| 72.99%| 44.72%| 89.17%| 95.03%| 88.41%| 90.15%| 79.07%| 77.94%| 76.43% | 64.18%| 38.23%| 83.15%




Performance (50,000 Systemic Samples)

VaR (999
Model Solver 10 grp 50 grp 300 grp 3000 grp
CLT IPOPT 24 - 30 30-35 72 - 443
CM CPLEX 22 - 24 66 - 80 500 - 748
MC(1) CPLEX 34 - 59 107 - 188 646 - 780
MC(20)* CPLEX 3579 - 3715 2393 -2945 6820 - 8990
ES ¢.999
Model Solver 10 grp 50 grp 300 grp 3000 grp
CLT IPOPT 22 - 29 29 - 53 73 - 161
CM CPLEX 4-10 11-14 57 -76
MC(1) CPLEX 9-13 20 - 28 58 - 66
MC(20) CPLEX 138 -179 270 - 315 437 - 582
Variance
Model Solver 10 grp 50 grp 300 grp 3000 grp
Uncond MOSEK <1 <1 1

Elapsed time (sec)

Server : 8 x Opteron
885 CPU, 16 cores
(jobs run on 1 core),
64 Gb RAM

* VaR optimization for
MC(20) was run in
parallel mode on 4
threads



Detailed Performance Data

Credit-Risk Model with Credit-State Migrations
3000 Groups, Wide Budget, 10000 Scenarios, 99.9% Quantile
Problem dimension: 3000 groups - 6000 variables, 6003 constraints
Minimizing Value-at-Risk or Expected Shortfall
The Hessian Matrix is Computed or Approximated

Solution Relative Number of Number of | Number of | Number of
Solver / Model Solution status time difference in . . function gradient Hessian
. . iterations . . .
(seconds) | optimal solution evaluations | evaluations | evaluations
MOSEK S .
Objective: VaR The Optimization Problem is 2185 ) . ) )
. Nonconvex
Hessian: computed
IPOPT Optimal Solution Found
Objective: VaR (Overall /max solution error: 11484 64 65 65 64
Hessian: computed 8.0e-09)
IPOPT Solved To Acceptable Level
Objective: VaR (Overall /max solution error: 1408 438 1197 441 0
Hessian: approximation 9.1e-07)
MOSEK Optimal -0.00037%
Objective: Expected Shortfall | (Overall /max solution error: 8058 (vs I'POPT P(IJes) 36 39 75 37
Hessian: computed 1.6e-08) )
MOSEK Optimal
Obj ective: Expected Shortfall (Overall /max solution error: 1672 36 39 75 37
Hessian: computed 1.66-08)
Parallel — 8 CPUs )
IPOPT Optimal Solution Found 0.00037%
Objective: Expected Shortfall | (Overall /max solution error: 11554 (vs MOSEKOHes) 65 66 66 65
Hessian: computed 2.5e-09) )
IPOPT Optimal Solution Found 0.00076%
Objective: Expected Shortfall | (Overall /max solution error: 979 ) ? 260 465 261 0

Hessian: approximation

1.5e-09)

(vs. MOSEK Hes)




Industry Practice (March 2009)

Typical portfolio size: 5,000 counterparties
Typical no. credit drivers per counterparty: 1
Typical beta: 0.4 — 0.5

Typical no. systemic samples: 10,000

Typical no. specific samples: 1,000 (for risk measurement, not
optimization)



