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several individual researchers at many institutions

Two main thrusts
◮ MINLP: Mixed-Integer Nonlinear Programming

⋆ Concentrating on practical algorithms, instantiated and released as
open-source software on COIN-OR

⋆ Bonmin: Basic Open-source Nonlinear Mixed INteger programming
(Convex)

⋆ Couenne: Convex Over and Under ENvelopes for Nonlinear
Estimation (Non-convex)

◮ Nonlinear Combinatorial Optimization
⋆ Concentrating on sharpening the boundary between theoretically

tractable and intractable
⋆ Focus of this talk
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Theorem (see e.g., M. Cut)

Pure continuous polynomial optimization over polytopes in varying
dimension is NP-hard. Moreover (Hastad), there does not exist a fully
polynomial-time approximation scheme (FPTAS) (unless P = NP)

Theorem (see De Loera, Hemmecke, Köppe, Weismantel)

The problem of minimizing a degree-4 polynomial over the lattice points
of a convex polygon is NP-hard.

Theorem (Jeroslow)

The problem of minimizing a linear form in integer variables over
quadratic constraints is not computable by a recursive function.

Theorem (see De Loera, Hemmecke, Köppe, Weismantel)

The problem of minimizing a linear form in at most 10 integer variables
over polynomial constraints is not computable by a recursive function.
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Problem statement
Given finite F ⊂ Z

n , weight matrix W ∈ Z
d×n and function

f : R
d → R , solve

P(F , f ,W ) : min /max {f (Wx) : x ∈ F}

Motivation is multi-objective optimization, where f trades off

the linear functions describes by the rows of W
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Problem statement
Given finite F ⊂ Z

n , weight matrix W ∈ Z
d×n and function

f : R
d → R , solve

P(F , f ,W ) : min /max {f (Wx) : x ∈ F}

Motivation is multi-objective optimization, where f trades off

the linear functions describes by the rows of W
Assumptions:

fixed d (d ≤ n , d = 0 is the ordinary linear case)

f given by a ‘comparison oracle’
encoding of W :

◮ Wi,j ∈ {a1, . . . , ap} (p fixed, ai binary-encoded positive integers)
◮ unary encoded
◮ generalized unary:

∑p

i=1
λiai , with λi unary encoded

F given via different oracles:
◮ (poly)matroids,
◮ multiknapsacks
◮ matchings

F ⊂ {x ∈ Z n
+ : 1⊤x ≤ β}, unary encoded β
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Definition
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linear optimization over F can be done efficiently
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Theorem (BLOW ’08)

When F is well described, f is convex (or even quasiconvex def ),
and W has a fixed number of rows and is unary encoded or with
entries in a fixed set, we give an efficient deterministic algorithm
for maximization.

When F is well described, f is a norm, and W is binary-encoded
and nonnegative, we give an efficient deterministic
constant-approximation algorithm for maximization.

When F is well described, f is “ray concave” def and
non-decreasing, and W has a fixed number of rows and is unary
encoded or with entries in a fixed set, we give an efficient
deterministic constant-approximation algorithm for minimization.
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Independence systems def : A positive result

Theorem (LOW ’08)

For every primitive p-tuple a = (a1, . . . , ap) , there is a constant r(a)
and an algorithm that, given any well-described independence system
F ⊆ {0, 1}n , a single weight vector w ∈ {a1, . . . , ap}

n , and function
f : Z→ R presented by a comparison oracle, we give an efficient
deterministic algorithm for finding an “r(a)-best solution” (to the
one-dimensional optimization problem max /min{f (wx) : x ∈ F}).

Jon Lee (IBM) Fields Institute 2 December 2008 7 / 40



Independence systems def : A positive result

Theorem (LOW ’08)

For every primitive p-tuple a = (a1, . . . , ap) , there is a constant r(a)
and an algorithm that, given any well-described independence system
F ⊆ {0, 1}n , a single weight vector w ∈ {a1, . . . , ap}

n , and function
f : Z→ R presented by a comparison oracle, we give an efficient
deterministic algorithm for finding an “r(a)-best solution” (to the
one-dimensional optimization problem max /min{f (wx) : x ∈ F}).
Moreover:

If ai divides ai+1 for i = 1, . . . , p − 1 , then the algorithm provides
an optimal solution.

For p = 2 , that is, for a = (a1, a2) , the algorithm provides an
Fr(a)-best solution.

In fact, we give an explicit upper bound on r(a) in terms of the
Frobenius numbers def of certain subtuples derived from a .
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Independence systems: An intractability result

Because Fr(2, 3) = 1 , we can efficiently compute a 1-best solution in
that case. It is natural to wonder then whether, in this case, an
optimal (i.e., 0-best) solution can be calculated in polynomial time.
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Independence systems: An intractability result

Because Fr(2, 3) = 1 , we can efficiently compute a 1-best solution in
that case. It is natural to wonder then whether, in this case, an
optimal (i.e., 0-best) solution can be calculated in polynomial time.

Theorem (LOW ’08)

There is no efficient algorithm for computing an optimal (i.e., 0-best)
solution of the one-dimensional nonlinear optimization problem
min{f (wx) : x ∈ F} over a well-described independence system, with f
presented by a comparison oracle, and single weight vector w ∈ {2, 3}n .
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Matroids: Introduction/Review and Axioms

References
◮ Hassler Whitney On the abstract properties of linear dependence,

Amer. J. Math. 57, 509–533 (1935). (also, Saunders MacLane,
Ernst Steinitz, Bartel van der Waerden).

◮ Theory: James Oxley, Matroid theory. Oxford Univ. Press (1992).
◮ Applications: Jon Lee and Jennifer Ryan, Matroid applications and

algorithms, ORSA J. Comput. 4, No.1, 70-98 (1992).
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◮ Theory: James Oxley, Matroid theory. Oxford Univ. Press (1992).
◮ Applications: Jon Lee and Jennifer Ryan, Matroid applications and

algorithms, ORSA J. Comput. 4, No.1, 70-98 (1992).

Definition of matroid M : finite ground set E(M ), set of

independent sets I(M ) ⊂ 2E(M) satisfying

(I1) ∅ ∈ I(M )
(I1) X ⊂ Y ∈ I(M ) =⇒ X ∈ I(M )
(I3) X ,Y ∈ I(M ), |X | > |Y | =⇒ ∃ i ∈ X \Y with Y ∪ {i} ∈ I(M )

Jon Lee (IBM) Fields Institute 2 December 2008 9 / 40



Matroids: Introduction/Review and Axioms

References
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Amer. J. Math. 57, 509–533 (1935). (also, Saunders MacLane,
Ernst Steinitz, Bartel van der Waerden).

◮ Theory: James Oxley, Matroid theory. Oxford Univ. Press (1992).
◮ Applications: Jon Lee and Jennifer Ryan, Matroid applications and

algorithms, ORSA J. Comput. 4, No.1, 70-98 (1992).

Definition of matroid M : finite ground set E(M ), set of bases

B(M ) ⊂ 2E(M) satisfying

(B1) B(M ) 6= ∅
(B2) ∀ B,B′ ∈ B(M ) and i ∈ B \ B′ , ∃ i ′ ∈ B′ such that

B \ {i} ∪ {i ′} ∈ B(M )
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Matroids: Examples

Oracle (independent set? base?)
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Matroids: Examples

Oracle (independent set? base?)

Uniform (Ur ,n)

Partition (direct sum of uniform matroids)

Graphic (independent sets = forests)

Vectorial (linear independence; a basis is a base)
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Matroids: Algorithms

(Single) matroid optimization (linear objective)
◮ Can be viewed as a powerful generalization of modeling as a

min-weight forest/tree
◮ Greedy and variations provide very efficient algorithms
◮ Rado (1957): correctness. Gale (1968) and Edmonds (1971):

characterizes matroids

Jon Lee (IBM) Fields Institute 2 December 2008 11 / 40



Matroids: Algorithms

(Single) matroid optimization (linear objective)
◮ Can be viewed as a powerful generalization of modeling as a

min-weight forest/tree
◮ Greedy and variations provide very efficient algorithms
◮ Rado (1957): correctness. Gale (1968) and Edmonds (1971):

characterizes matroids

(Two) matroid intersection (linear objective)
◮ Can be viewed as a powerful generalization of modeling as a

min-weight bipartite matching
◮ Many applications
◮ Efficient algorithms generalize techniques for bipartite matching
◮ Edmonds (1970), and many others published variations

Jon Lee (IBM) Fields Institute 2 December 2008 11 / 40



Matroids: Algorithms

(Single) matroid optimization (linear objective)
◮ Can be viewed as a powerful generalization of modeling as a

min-weight forest/tree
◮ Greedy and variations provide very efficient algorithms
◮ Rado (1957): correctness. Gale (1968) and Edmonds (1971):

characterizes matroids

(Two) matroid intersection (linear objective)
◮ Can be viewed as a powerful generalization of modeling as a

min-weight bipartite matching
◮ Many applications
◮ Efficient algorithms generalize techniques for bipartite matching
◮ Edmonds (1970), and many others published variations

Many other variations, etc
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Matroids

Theorem

(BL(M-A)ORWW ’08) When F is the set of characteristic vectors
of bases of a single matroid presented by an independence oracle, f
is arbitrary and given by a comparison oracle, and d × n matrix W
has a fixed number of rows and has entries in fixed {a1, . . . , ap},
we give an efficient deterministic algorithm for optimization.
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Matroids

Theorem

(BL(M-A)ORWW ’08) When F is the set of characteristic vectors
of bases of a single matroid presented by an independence oracle, f
is arbitrary and given by a comparison oracle, and d × n matrix W
has a fixed number of rows and has entries in fixed {a1, . . . , ap},
we give an efficient deterministic algorithm for optimization.

(BL(M-A)ORWW ’08) When F is the set of characteristic vectors
of bases of a single vectorial matroid (over an ordered field), f is
arbitrary and given by a comparison oracle, and W has a fixed
number of rows and is unary encoded, we give an efficient
deterministic algorithm for optimization.

(BLOW ’08) When F is the set of characteristic vectors of
common bases of a pair of vectorial matroids on a common ground
set, f is arbitrary and given by a comparison oracle, and W has a
fixed number of rows and is unary encoded, we give an efficient
randomized algorithm def for optimization.
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Matroids
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(BL(M-A)ORWW ’08) When F is the set of characteristic vectors
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An example application: Model fitting

We wish to learn an unknown system whose output y is an
unknown function Φ of a multivariate input x = (x1, . . . , xd) ∈ R

d.
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An example application: Model fitting

We wish to learn an unknown system whose output y is an
unknown function Φ of a multivariate input x = (x1, . . . , xd) ∈ R

d.

It is customary to call the input variables xi factors of the system.

We perform several experiments. Each experiment i is determined
by a design point pi = (pi,1, . . . , pi,d) and consists of feeding the
system with input x := pi ∈ R

d and measuring the corresponding
output yi := Φ(pi) ∈ R.

Based on these experiments, we wish to fit a model for the
system, namely, determine an estimation Φ̂ of Φ, that:

◮ Lies in a prescribed class of functions;
◮ Is consistent with the outcomes of the experiments;
◮ Minimizes the aberration - a suitable criterion - among models in

the class.
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Polynomial models

We concentrate on (multivariate) polynomial models defined as follows

Each nonnegative integer vector α ∈ Z
d
+ serves as an exponent

(vector) of a corresponding monomial xα :=
∏d

h=1 xαh

h in the
system input x ∈ R

d .
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Polynomial models

We concentrate on (multivariate) polynomial models defined as follows

Each nonnegative integer vector α ∈ Z
d
+ serves as an exponent

(vector) of a corresponding monomial xα :=
∏d

h=1 xαh

h in the
system input x ∈ R

d .

Each finite subset B ⊂ Z
d
+ of exponents provides a model for the

system, namely a polynomial supported on B, i.e. having
monomials with exponents in B only,

ΦB(x) =
∑

α∈B

cαx
α,

where the cα are real coefficients that need to be determined from
the measurements by interpolation
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Identifiable models

We assume that the set of design points {p1, . . . , pm} ⊂ R
d is

prescribed.
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Identifiable models

We assume that the set of design points {p1, . . . , pm} ⊂ R
d is

prescribed.

We collect the design points in an m × d design matrix P : The
i-th row of this matrix is the i-th design point pi

A model B ⊂ Z
d
+ is identifiable by a design P if for every possible

measurement values yi = Φ(pi) at the design points, there is a
unique polynomial ΦB(x) supported on B that interpolates Φ, that
is, satisfies ΦB(pi) = yi = Φ(pi) for every design point
pi = (pi,1, . . . , pi,d)
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Minimum-Aberration Model-Fitting Problem

Given a design P = {p1, . . . , pm} of m points in R
d , a set

N = {β1, . . . , βn} of n potential exponents in Z
d
+, and a function

f : R
d → R, find a model B ⊆ N that is identifiable by P and is of

minimum aberration

A(B) := f





∑

βj∈B

βj



 .

E.g., Minimize the lq-norm of the (weighted) total-degree vector of
monomials supported on B.
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Identifiable models and matroids

Let A be defined by

ai,j := p
βj

i =
d
∏

h=1

p
βj,h

i,h , i = 1, . . . ,m , j = 1, . . . ,n .

(i.e., evaluate each monomial determined by βj at each design point pi)

Let M be the vectorial matroid of A . Then

B(M ) := {B ⊆ N : B is identifiable by P} .

Define weight matrix W ∈ Z
d×n
+ by wi,j := βj,i for i = 1, . . . , d,

j = 1, . . . ,n.
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Example

Pm×d =

x1 x2

p1 0 0
p2 1 0
p3 0 2
p4 1 1

Am×n =

1 x1 x2
1 x2 x2

2 x1x2

p1 1 0 0 0 0 0
p2 1 1 1 0 0 0
p3 1 0 0 2 4 0
p4 1 1 1 1 1 1

=⇒ Bm×m =

1 x2
1 x2 x1x2

1 0 0 0
1 1 0 0
1 0 2 0
1 1 1 1

Wd×n =

1 x1 x2
1 x2 x2

2 x1x2

0 1 2 0 0 1
0 0 0 1 2 1

=⇒
W (B) =

(

3
2

)

f (W (B)) := ‖W (B)‖22 = 13
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Let A be an m × n integer matrix of full row rank, and let M be the
vectorial matroid of A . Let W ∈ Z

d×n
+ be the weight matrix, and let

ω := max Wi,j . Then, we have

U = {W (B) : B ∈ B(M )}

⊆ {W (B) : B ⊆ N , |B| = m}

⊆ Z := {0, 1, . . . ,mω}d ⊆ Z
d
+ .
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Let A be an m × n integer matrix of full row rank, and let M be the
vectorial matroid of A . Let W ∈ Z

d×n
+ be the weight matrix, and let

ω := max Wi,j . Then, we have

U = {W (B) : B ∈ B(M )}

⊆ {W (B) : B ⊆ N , |B| = m}

⊆ Z := {0, 1, . . . ,mω}d ⊆ Z
d
+ .

We will show how to filter the set U out of the above superset Z of
potential W -images of bases.
For each base B ∈ B(M ) , let A·B denote the nonsingular m ×m
submatrix of A consisting of those columns indexed by B ⊆ N . Define
the following polynomial in d variables y1, . . . , yd :

g = g(y) :=
∑

u∈Z

guyu :=
∑

u∈Z

gu

d
∏

k=1

yuk

k ,

where the coefficient gu corresponding to u ∈ Z is the nonnegative
integer

gu :=
∑

{

det2(A·B) : B ∈ B(M ), W (B) = u
}

> 0 if “fiber”(u) 6= ∅ .
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Now, det2(A·B) is positive for every base B ∈ B(M ) . Thus, the
coefficient gu corresponding to u ∈ Z is nonzero if and only if there
exists a matroid base B ∈ B(M ) with W (B) = u .
So the desired set U is precisely the set of exponents of monomials yu

having nonzero coefficient gu in g . We record this for later use:

Proposition

Let M be the vectorial matroid of an m × n matrix A of rank m , let
W ∈ Z

d×n
+ , and let g(y) be the polynomial defined above. Then

U := {W (B) : B ∈ B(M )} = {u ∈ Z : gu 6= 0}
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coefficient gu corresponding to u ∈ Z is nonzero if and only if there
exists a matroid base B ∈ B(M ) with W (B) = u .
So the desired set U is precisely the set of exponents of monomials yu

having nonzero coefficient gu in g . We record this for later use:

Proposition

Let M be the vectorial matroid of an m × n matrix A of rank m , let
W ∈ Z

d×n
+ , and let g(y) be the polynomial defined above. Then

U := {W (B) : B ∈ B(M )} = {u ∈ Z : gu 6= 0}

To compute U , it suffices to compute all coefficients gu .
Unfortunately, they cannot be computed directly from their definition
since this involves again checking exponentially many B ∈ B(M ) —
precisely what we are trying to avoid! Instead, we will compute the gu

by interpolation. However, in order to do so, we need a way of
evaluating g(y) under numerical substitutions.
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Let Y be the n × n diagonal matrix whose j-th diagonal component is

the monomial
∏d

i=1 y
Wi,j

i in the variables y1, . . . , yd ; that is, the matrix
of monomials defined by

Y := diag

(

d
∏

i=1

y
Wi,1

i , . . . ,
d
∏

i=1

y
Wi,n

i

)

.

The following lemma will enable us to compute the value of g(y) under
numerical substitutions.

Lemma

For any m × n matrix A of rank m and W ∈ Z
d×n
+ , we have

g(y) = det(AYA⊤) .
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Let Y be the n × n diagonal matrix whose j-th diagonal component is

the monomial
∏d

i=1 y
Wi,j

i in the variables y1, . . . , yd ; that is, the matrix
of monomials defined by

Y := diag

(

d
∏

i=1

y
Wi,1

i , . . . ,
d
∏

i=1

y
Wi,n

i

)

.

The following lemma will enable us to compute the value of g(y) under
numerical substitutions.

Lemma

For any m × n matrix A of rank m and W ∈ Z
d×n
+ , we have

g(y) = det(AYA⊤) .

Proof.

By the classical Binet-Cauchy identity, for any pair of full row-rank
m × n matrices C ,D , we have

det(CD⊤) =
∑

{det(C·B) det(D·B) : B ∈ B(M )} .

Applying this to C := AY and D := A , we can obtain the result.
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We will choose suitable points on the moment curve in R
Z , substitute

each point into y , and evaluate g(y) using the lemma. We then solve
the system of linear equations for the coefficients gu .

Lemma

For every fixed d , there is an algorithm that, given any m×n matrix A
of rank m and weight matrix W ∈ Z

d×n
+ , computes all coefficients gu of

g(y) in time polynomial in max Wi,j and length of binary encoding of A
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We will choose suitable points on the moment curve in R
Z , substitute

each point into y , and evaluate g(y) using the lemma. We then solve
the system of linear equations for the coefficients gu .

Lemma

For every fixed d , there is an algorithm that, given any m×n matrix A
of rank m and weight matrix W ∈ Z

d×n
+ , computes all coefficients gu of

g(y) in time polynomial in max Wi,j and length of binary encoding of A

Proof.

Let ω := max Wi,j and s := mω + 1 . Then a superset of potential
W -images of bases is Z := {0, 1, . . . ,mω}d and satisfies |Z | = sd . For
t = 1, 2, . . . , sd , let Y (t) be the numerical matrix obtained from Y by
substituting tsi−1

for yi , i = 1, . . . , d . By a lemma we have
g(y) = det(AYA⊤) , and so we have the following system of sd linear
equations in the sd variables gu , u ∈ Z :

det(AY (t)A⊤) = det
(

A diagj

(

∏d
i=1 tWi,js

i−1
)

A⊤
)

=
∑

u∈Z gu

∏d
i=1 tuis

i−1
=
∑

u∈Z t
∑d

i=1
uis

i−1
gu , t = 1, . . . , sd
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Proof, continued.

As u runs through Z , the sum 1 +
∑d

i=1 uis
i−1 attains precisely all

|Z | = sd distinct values 1, 2, . . . , sd . This implies that, under the total
order of the points u in Z by increasing value of 1 +

∑d
i=1 uis

i−1 , the
vector of coefficients of the gu in the equation corresponding to t is
precisely the point (t0, t1, . . . , tsd−1)⊤ on the moment curve in

R
Z ∼= R

sd

. Therefore, the equations are linearly independent, and
hence the system can be uniquely solved for the gu .

Details in the paper:
Y. Berstein, J. Lee, H. Maruri-Aguilar, S. Onn, E. Riccomagno, R.
Weismantel and H. Wynn. Nonlinear matroid optimization and
experimental design. SIAM Journal on Discrete Mathematics.
22(3):901-919, 2008.

These observations justify the following algorithm to compute the gu ,
u ∈ Z :
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Compute g by interpolation

Compute m := rank(A);

let ω := max Wi,j , and let s := mω + 1 ;

let Y := diagj

(

∏d

i=1
y

Wi,j

i

)

;

for t = 1, 2, . . . , sd do

let Y (t) be the numerical matrix obtained by substituting tsi−1

for each
yi in Y (i = 1, 2, . . . , d) ;

Compute det(AY (t)A⊤) ;

end

Compute and return the unique solution gu , u ∈ Z , of the linear system:

det(AY (t)A⊤) =
∑

u∈Z

t
∑

d

i=1
uis

i−1

gu , t = 1, . . . , sd .
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Time out for a commercial...

Scientific computing has made enormous strides in recent years
◮ massively-parallel platforms, grid computing
◮ tuned floating-point matrix-algebra libraries
◮ multi/many-core revolution
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◮ tuned floating-point matrix-algebra libraries
◮ multi/many-core revolution

Not withstanding some notable exceptions (e.g., TSP, QAP), the
practice of (discrete) optimization has largely ignored these trends

◮ sequential nature of many optimization algorithms
◮ master/slave paradigm does not map well
◮ sparse data structures and sparse (vs. dense) matrix algebra
◮ integer vs. floating-point arithmetic
◮ unavailability of high-performance platforms

Jon Lee (IBM) Fields Institute 2 December 2008 25 / 40



Time out for a commercial...

Scientific computing has made enormous strides in recent years
◮ massively-parallel platforms, grid computing
◮ tuned floating-point matrix-algebra libraries
◮ multi/many-core revolution

Not withstanding some notable exceptions (e.g., TSP, QAP), the
practice of (discrete) optimization has largely ignored these trends

◮ sequential nature of many optimization algorithms
◮ master/slave paradigm does not map well
◮ sparse data structures and sparse (vs. dense) matrix algebra
◮ integer vs. floating-point arithmetic
◮ unavailability of high-performance platforms

Develop and revisit matrix-based algorithms for
discrete-optimization problems — emphasizing problems and
methods involving nonlinearity
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The Blue Gene/L machine
was designed and built in
collaboration with the
DoE’s NNSA/LLNL. The
LLNL system has a peak
speed of 596 Teraflops.
BG systems occupy the
#1 and a total of 4 of the
top 10 positions in the
TOP500 supercomputer
list of 11/2007

BG architecture
◮ Trade processor speed for

lower power consumption
◮ Dual processors per node

with two working modes
◮ Large number of nodes

(scalable in increments of
1024 up to at least 65,536)

◮ Three-dimensional torus
interconnect with auxiliary
network for global
communication

Super-computing architecture
trends

◮ multi/many-core
◮ same or less memory per

core
◮ non-homogeneous (e.g.,

Roadrunner)
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ARPREC

C++/Fortran-90 arbitrary precision package.

David H. Bailey, Lawrence Berkeley National Laboratory

“This package supports a flexible, arbitrarily high level of
numeric precision – the equivalent of hundreds or even
thousands of decimal digits (up to approximately ten million
digits if needed). Special routines are provided for extra-high
precision (above 1000 digits). The entire library is written in
C++. High-precision real, integer and complex datatypes are
supported. Both C++ and Fortran-90 translation modules
modules are also provided that permit one to convert an
existing C++ or Fortran-90 program to use the library with
only minor changes to the source code. In most cases only the
type statements and (in the case of Fortran-90 programs)
read/write statements need be changed.”
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Vandermonde Inverse

Let N × N matrix V be defined by

Vi,j := j i−1 , for 1 ≤ i, j ≤ N .

(in our application, we have N := sd).
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Vandermonde Inverse

Let N × N matrix V be defined by

Vi,j := j i−1 , for 1 ≤ i, j ≤ N .

(in our application, we have N := sd).

This is a very special Vandermonde matrix.

We wish to solve a so-called “dual problem” of the form

V Tg = b ,

simply by evaluating V−1 and letting g := V−Tb .
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Vandermonde Inverse

Let N × N matrix V be defined by

Vi,j := j i−1 , for 1 ≤ i, j ≤ N .

(in our application, we have N := sd).

This is a very special Vandermonde matrix.

We wish to solve a so-called “dual problem” of the form

V Tg = b ,

simply by evaluating V−1 and letting g := V−Tb .

Vandermonde matrices are very difficult to work with, but ours is
a very special one, so it even has a closed form for its inverse.
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Closed form for the inverse V−1

V−1
i,j :=











(−1)i+N 1
(i−1)!(N−i)! , j = N ;

i V−1
i,j+1 +

[

N+1
j+1

]

V−1
i,N , 1 ≤ j < N ,

where
[

N+1
j+1

]

denotes a Stirling number of the first kind.
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
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[
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j+1

]

V−1
i,N , 1 ≤ j < N ,

where
[

N+1
j+1

]

denotes a Stirling number of the first kind.

The form for V−1
i,j indicates how each row of V−1 can be calculated

independently, with individual entries calculated from right to left.
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The form for V−1
i,j indicates how each row of V−1 can be calculated

independently, with individual entries calculated from right to left.
Note that the Stirling number used for V−1

i,j does not depend on
the row i , so the needed number can be computed once for each
column j .
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Closed form for the inverse V−1

V−1
i,j :=











(−1)i+N 1
(i−1)!(N−i)! , j = N ;

i V−1
i,j+1 +

[

N+1
j+1

]

V−1
i,N , 1 ≤ j < N ,

where
[

N+1
j+1

]

denotes a Stirling number of the first kind.

The form for V−1
i,j indicates how each row of V−1 can be calculated

independently, with individual entries calculated from right to left.
Note that the Stirling number used for V−1

i,j does not depend on
the row i , so the needed number can be computed once for each
column j .
The Stirling numbers can be calculated in a “triangular manner”
(à la Pascal). For −1 ≤ j ≤ N ,

[

N + 1

j + 1

]

:=















0 , N ≥ 0 , j = −1 ;
1 , N ≥ −1 , j = N ;
[

N
j

]

− N
[

N
j+1

]

, N > j ≥ −1 .
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Computational results

Table: Performance on 8192 cores of the Blue Gene/L Supercomputer for
various matrix sizes. The decrease in time when going from 3,025 to 4,096
appears to be due to the simple bit representation of 4,096 and the manner in
which ARPREC takes advantage of that representation. The largest run was
measured at approximately 884 GF.

d ω n m
(n

m

)

N prec time

2 9 100 4 3.92123 × 106 1,369 10000 39.893
2 9 100 5 7.52875 × 107 2,116 10000 55.9402
2 9 100 6 1.19205 × 109 3,025 10000 76.6629
2 9 100 7 1.60076 × 1010 4,096 10000 74.4021
2 9 100 8 1.86088 × 1011 5,329 10000 128.941
2 9 100 9 1.90223 × 1012 6,724 10000 160.191
2 9 100 10 1.73103 × 1013 8,281 10000 372.479
2 9 100 11 1.41630 × 1014 10,000 10000 451.132
2 9 100 12 1.05042 × 1015 11,881 11000 545.739
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Computational results

Table: Performance on 8192 cores of the Blue Gene/L Supercomputer for
various matrix sizes. The decrease in time when going from 3,025 to 4,096
appears to be due to the simple bit representation of 4,096 and the manner in
which ARPREC takes advantage of that representation. The largest run was
measured at approximately 884 GF.

d ω n m
(n

m

)

N prec time

2 9 100 4 3.92123 × 106 1,369 10000 39.893
2 9 100 5 7.52875 × 107 2,116 10000 55.9402
2 9 100 6 1.19205 × 109 3,025 10000 76.6629
2 9 100 7 1.60076 × 1010 4,096 10000 74.4021
2 9 100 8 1.86088 × 1011 5,329 10000 128.941
2 9 100 9 1.90223 × 1012 6,724 10000 160.191
2 9 100 10 1.73103 × 1013 8,281 10000 372.479
2 9 100 11 1.41630 × 1014 10,000 10000 451.132
2 9 100 12 1.05042 × 1015 11,881 11000 545.739
2 9 100 39 9.01392 × 1027 123,904 ? ?
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Sparse solutions?

Variables are numbered 1, 2, ..., (mw + 1)d , where the numbering
comes from the potential total-degree vectors.
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Sparse solutions?

Variables are numbered 1, 2, ..., (mw + 1)d , where the numbering
comes from the potential total-degree vectors.

If the largest number in β is ω , then the largest coordinate in a
total-degree vector is mω (because we are adding m rows of β).

So the total-degree vector is in {0, 1, ...,mω}d .

There are certainly (mω + 1)d of these vectors, and they are
numbered in an elegant way:

◮ The vector u ∈ {0, 1, ...,mω}d gets the number

1 +
∑d

k=1
uk(mw + 1)k−1 .

◮ for example, the vector u = (0, 0, ..., 0) gets numbered 1 , and the
vector u = (mω,mω, ...,mω) gets numbered by (mω + 1)d .
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Sparse solutions?

Variables are numbered 1, 2, ..., (mw + 1)d , where the numbering
comes from the potential total-degree vectors.

If the largest number in β is ω , then the largest coordinate in a
total-degree vector is mω (because we are adding m rows of β).

So the total-degree vector is in {0, 1, ...,mω}d .

There are certainly (mω + 1)d of these vectors, and they are
numbered in an elegant way:

◮ The vector u ∈ {0, 1, ...,mω}d gets the number

1 +
∑d

k=1
uk(mw + 1)k−1 .

◮ for example, the vector u = (0, 0, ..., 0) gets numbered 1 , and the
vector u = (mω,mω, ...,mω) gets numbered by (mω + 1)d .

But u = (0, 0, ..., 0) and u = (mω,mω, ...,mω) are actually not
achievable from adding up m distinct rows of β (after all, β itself
has distinct rows).
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Sparse solutions!

1000 2000 3000 4000 5000 6000 7000

1.´1066

2.´1066

3.´1066

4.´1066
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Calculate where the zero tails are

So consider

Imin := 1 + min yT (βc)

subject to

det(Ay) 6= 0

yT e = m

y ∈ {0, 1}n

where c = ((mω + 1)0, (mω + 1)1, ..., (mω + 1)d−1) .
(Similarly Imax)
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Calculate where the zero tails are

So consider

Imin := 1 + min yT (βc)

subject to

det(Ay) 6= 0

yT e = m

y ∈ {0, 1}n

where c = ((mω + 1)0, (mω + 1)1, ..., (mω + 1)d−1) .
(Similarly Imax)

This is a linear minimum-weight matroid base problem — exactly
solvable by the greedy algorithm!

◮ We simply select variables to include into the solution, in a greedy
manner, starting from the minimum objective-coefficient value
(βc)j , working up through the larger values.

◮ In fact, this amounts to considering the rows of β in lexical order.
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Definition

The Frobenius number is the largest value b for which the Frobenius
equation a1x1 + a2x2 + · · · apxp = b has no solution in nonnegative
integers.
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Definition

The Frobenius number is the largest value b for which the Frobenius
equation a1x1 + a2x2 + · · · apxp = b has no solution in nonnegative
integers.

Coinage as reformed by Augustus c. 23 BCE (1 gold aureus=25 silver
denarii; 1 denarius=4 bronze sestertii; 1 sestertius=2 brass dupondii; 1
dupondius=2 copper asses; 1 as=2 bronze semisses; 1 semis=2 copper
quadrantes) return
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Definition

F ⊆ {0, 1}n is an independence system if for x, y ∈ {0, 1}n ,

x ≤ y ∈ F =⇒ x ∈ F .

Example

forests of a graph, independent sets of a matroid

polymatroids

matchings of a graph

multiknapsacks
◮ well described if small

stable sets of a graph
◮ well described for: perfect ⊃ bipartite
◮ well described for: claw-free: ⊃ quasi-line ⊃ line

return
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Definition

A function f : R
d
+ → R is ray concave if

λf (u) ≤ f (λu) for u ∈ R
d
+ , 0 ≤ λ ≤ 1
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A function f : R
d
+ → R is ray concave if

λf (u) ≤ f (λu) for u ∈ R
d
+ , 0 ≤ λ ≤ 1

Ordinary concavity of a function f has the special case:

λf (u) + (1− λ)f (0) ≤ f (λu + (1− λ)0) , for u ∈ R
d
+ , 0 ≤ λ ≤ 1 ,

so if f is concave with f (0) = 0 , then it is ray-concave.
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Definition

A function f : R
d
+ → R is ray concave if

λf (u) ≤ f (λu) for u ∈ R
d
+ , 0 ≤ λ ≤ 1

Ordinary concavity of a function f has the special case:

λf (u) + (1− λ)f (0) ≤ f (λu + (1− λ)0) , for u ∈ R
d
+ , 0 ≤ λ ≤ 1 ,

so if f is concave with f (0) = 0 , then it is ray-concave.

Example

every norm is both ray concave and ray convex on R
d
+ .

f (u) :=
∏d

i=1 ui is ray convex on R
d
+ .

f (u) := min(u1, u2) is ray concave on R
2
+ .

return
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Definition

A function f : R
d → R is quasi convex if

f (λx + (1− λ)y) ≤ max(f (x), f (y)) for x, y ∈ R
d , 0 ≤ λ ≤ 1

return
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Equivalently, the inverse image of any set of the form (−∞, a) is a
convex set. That is, the “lower level sets” are convex.
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Definition

For a maximization problem, we say that algorithm A (which has
access to random bits) is a randomized δ-approximation

algorithm if on every problem instance I with optimal solution value
OPT (I )

E [A(I )] ≥ δ ·OPT (I ) ,

where A(I ) is the value of the solution produced by algorithm A on
instance I .

return
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