Managerial flexibility in incomplete markets and systems of RBSDEs

M. R. Grasselli, C. Gomez

Mathematics and Statistics
McMaster University
Industrial Optimization Seminar
Fields Institute, March 03, 2009

Strategic decision making

We are interested in assigning monetary values to strategic decisions. Traditionally, these include the decision to:

- create a new firm;
- invest in a new project;
- start a real estate development;
- finance R\&D;
- abandon a non-profitable project;
- temporarily suspend operations under adverse conditions.

Options in incomplete markets

- We treat a strategic decision as an option on a non-traded asset and price it using the framework of indifference pricing.
- For investments with a fixed exercise date (European option), this problem was treated, for instance, in Hobson and Henderson (2002).
- For early exercise investment (American option), the problem was solved in Herderson (2005) for the case of infinite time horizon.
- A different utility-based framework (not using indifference pricing), was treated in Hugonnier and Morellec (2004), using the effect of shareholders control on the wealth of a risk averse manager.
- For finite time horizons, a different version of the problem was solved Porchet, Touzi and Warin (2008) using the reflected BSDEs approach introduced in complete markets by Hamadène and Jeanblanc (2007).

A gentle introduction to BSDEs in Finance

- Given a terminal random variable $\xi \in \mathcal{F}_{T}$ and a generator function $f(t, y, z)$, a solution of a backward SDE is a pair of adapted processes (Y, Z) satisfying

$$
\begin{equation*}
Y_{t}=\xi-\int_{t}^{T} f\left(s, Y_{s}, Z_{s}\right) d s-\int_{t}^{T} Z_{s}^{\prime} d W_{s} \tag{1}
\end{equation*}
$$

or equivalently

$$
\begin{align*}
d Y_{t} & =f\left(t, Y_{t}, Z_{t}\right) d t+Z_{t}^{\prime} d W_{t} \tag{2}\\
Y_{T} & =\xi \tag{3}
\end{align*}
$$

- Theorem (Pardoux/Peng 1990): If ξ is square-integrable and f is uniformly Lipschitz, then the BSDE has a unique square-integrable solution.

First example: pricing and hedging in a complete market

- Consider the market

$$
\begin{align*}
& d B_{t}=B_{t} r_{r} d t \tag{4}\\
& d S_{t}^{i}=S_{t}^{i}\left[\mu_{t} d t+\sum_{j=1}^{n} \sigma_{t}^{i j} d W_{t}^{j}\right] \tag{5}
\end{align*}
$$

- Given a claim $\xi \geq 0$, we look for a portfolio (X, π) satisfying

$$
\begin{align*}
d X_{t} & =r_{t} X_{t} d t+\pi_{t}^{\prime} \sigma\left(d W_{t}+\lambda_{t} d t\right) \tag{6}\\
X_{T} & =\xi \tag{7}
\end{align*}
$$

where $\mu_{t}-r 1_{d}=\sigma \lambda_{t}$

- We see that this corresponds to a linear BSDE with

$$
\begin{align*}
Y_{t} & =X_{t} \tag{8}\\
Z_{t} & =\sigma^{\prime} \pi_{t} \tag{9}\\
f\left(t, Y_{t}, Z_{t}\right) & =r Y_{t}+\lambda_{t}^{\prime} Z_{t} \tag{10}
\end{align*}
$$

The Markovian Case

- For given (t, x), let $S_{s}^{t, x}$ be the solution of the forward SDE

$$
\begin{equation*}
S_{s}=x+\int_{t}^{s} \mu\left(u, S_{u}\right) d u+\int_{t}^{s} \sigma\left(u, S_{u}\right) d W u, \quad t \leq s \leq T \tag{11}
\end{equation*}
$$

- Consider than the associated BSDE

$$
\begin{equation*}
Y_{s}=\Phi\left(S_{T}^{t, x}\right)-\int_{s}^{T} f\left(u, S_{u}^{t, x}, Y_{u}, Z_{u}\right) d u-\int_{s}^{T} Z_{u}^{\prime} d W_{u} \tag{12}
\end{equation*}
$$

- When the coefficients satisfy certain Lipschitz and growth conditions, it can be shown that the solution can be written as $Y_{s}^{t, x}=u\left(s, S^{t, x}\right)$ and $Z_{s}^{t, x}=\sigma^{\prime} v\left(s, S_{s}^{t, x}\right)$ for deterministic Borel functions $u(\cdot, \cdot)$ and $v(\cdot, \cdot)$.
- Under additional regularity conditions on f and Φ (such as uniform continuity in x), it can be shown that the function $u(t, x)=Y_{t}^{t, x}$ is a viscosity solution of the PDE

$$
\begin{equation*}
u_{t}+\mathcal{L} u-f\left(t, x, u, \sigma^{\prime} u_{x}\right)=0 \tag{13}
\end{equation*}
$$

where \mathcal{L} is the generator of S_{t}.

Second example: utility maximization

- Now let $r_{t}=0$ and consider the market

$$
\begin{equation*}
d S_{t}^{i}=S_{t}^{i}\left[\mu_{t}^{i} d t+\sum_{j=1}^{n} \sigma_{t}^{i j} d W_{t}^{j}\right], \quad i=1, \ldots, d \leq n \tag{14}
\end{equation*}
$$

where $\mu_{t}^{i}, \sigma_{t}^{i j}$ are predictable uniformly bounded, σ_{t} is uniformly elliptic and let λ_{t} be a solution of

$$
\begin{equation*}
\sigma_{t} \lambda_{t}=\mu_{t} \tag{15}
\end{equation*}
$$

- As before, the wealth in a self-financing portfolio satisfies

$$
\begin{equation*}
X_{t}^{\pi}=x+\int_{0}^{t} \pi_{s}^{\prime} \sigma_{s}\left(d W_{s}+\lambda_{s} d s\right) \tag{16}
\end{equation*}
$$

- We are then interested in the optimization problem

$$
\begin{equation*}
u(x):=\sup _{\pi \in \mathcal{A}} E\left[-e^{-\gamma\left(X_{T}^{\pi}+B\right)}\right] \tag{17}
\end{equation*}
$$

Second example (continued): supermartingales

- To solve (17), we follow Hu/Imkeller/Muller (2004) and look for a family of processes R^{π} such that
- $R_{T}^{\pi}=U\left(X_{T}^{\pi}+B\right)$
- $R_{0}^{\pi}=R_{0}$ for all $\pi \in \mathcal{A}$.
- R_{t}^{π} is a supermartingale for all $\pi \in \mathcal{A}$.
- There exists a $\pi^{*} \in \mathcal{A}$ such that $R_{t}^{\pi^{*}}$ is a martingale.
- To construct such family we set

$$
\begin{equation*}
R_{t}^{\pi}:=-e^{-\gamma\left(X_{t}^{\pi}+Y_{t}^{B}\right)}, \tag{18}
\end{equation*}
$$

- Here $\left(Y^{B}, Z\right)$ is a solution of the BSDE

$$
\begin{equation*}
Y_{t}^{B}=B-\int_{t}^{T} f\left(s, Z_{s}\right) d s-\int_{t}^{T} Z_{s}^{\prime} d W_{s}, \tag{19}
\end{equation*}
$$

for a function f to be determined.

Second example (continued): the generator

- To determine f, we write R_{t}^{π} as the product of a local martingale and a decreasing process.
- Using the definitions of X^{π} and Y_{t} we find

$$
\begin{aligned}
R_{t}^{\pi} & =-e^{\gamma\left(x-Y_{0}\right)} e^{-\gamma\left[\int_{0}^{t}\left(\pi_{s}^{\prime} \sigma_{s}+Z_{s}^{\prime}\right) d W+\int_{0}^{t}\left(\pi_{s}^{\prime} \sigma_{s} \lambda+f\left(s, Y_{s}, Z_{s}\right) d s\right)\right]} \\
& =-e^{\gamma\left(x-Y_{0}\right)} e^{-\gamma \int_{0}^{t}\left(\pi_{s}^{\prime} \sigma_{s}+Z_{s}^{\prime}\right) d W-\frac{1}{2} \int_{0}^{t} \gamma^{2}\left\|\pi_{s}^{\prime} \sigma_{s}+Z_{s}^{\prime}\right\|^{2} d s} e^{\int_{0}^{t} v\left(s, \pi_{s}, Z_{s}\right) d s}
\end{aligned}
$$

where $v(t, \pi, z)=-\gamma \pi^{\prime} \sigma_{t} \lambda_{t}-\gamma f(t, z)+\frac{1}{2} \gamma^{2}\left\|\pi^{\prime} \sigma_{t}+z^{\prime}\right\|^{2}$.

- We therefore seek for f such that $v\left(t, \pi_{t}, Z_{t}\right) \geq 0$ for all $\pi_{t} \in \mathcal{A}$ and $v\left(t, \pi_{t}^{*}, Z_{t}\right)=0$ for some $\pi_{t}^{*} \in \mathcal{A}$.
- Rearranging terms in v, we see that it suffices to take

$$
\begin{align*}
f(t, z) & =z \lambda_{t}-\frac{1}{2 \gamma}\left\|\lambda_{t}\right\|^{2} \tag{20}\\
\pi_{t}^{*} \sigma_{t} & =\frac{\lambda_{t}}{\gamma}-Z_{t} \tag{21}
\end{align*}
$$

- This can be extended for the case of constrained portfolios.

Reflected BSDEs

- Given a terminal condition ξ, a generator function $f(t, y, z)$ and an obstacle C_{t} with $C_{T} \leq \xi$, a solution of a reflected BSDE is a triple $\left(Y_{t}, Z_{t}, A_{t}\right)$ satisfying

1. $Y_{t}=\xi-\int_{t}^{T} f\left(s, Y_{s}, Z_{s}\right) d s-\int_{t}^{T} Z_{s}^{\prime} d W_{s}+\left(A_{T}-A_{t}\right)$,
2. $Y_{t} \geq C_{t}$
3. A_{t} is continuous, increasing, $A_{0}=0$, and $\int_{0}^{T}\left(Y_{t}-C_{t}\right) d A_{t}=0$.

- Proposition (El Karoui et al - 1997): Under further square-integrability conditions on $\left(Y_{t}, Z_{t}, A_{t}\right)$ we have that

$$
Y_{t}=\underset{\tau}{\operatorname{ess} \sup } E\left[-\int_{t}^{\tau} f\left(s, Y_{s}, Z_{s}\right) d s+C_{\tau} 1_{\{\tau<T\}}+\xi 1_{\{\tau=T\}} \mid \mathcal{F}_{t}\right]
$$

The obstacle problem for PDEs

- Consider again the solution $S_{s}^{t, x}$ for the forward SDE (11) and let

$$
\begin{aligned}
\xi & =\Phi\left(S_{T}^{t, x}\right) \\
C_{s} & =g\left(s, S_{s}^{t, x}\right) \\
f(s, y, z) & =f\left(s, S_{s}^{t, x}, y, z\right)
\end{aligned}
$$

- Then, under certain continuity, integrability and growth conditions for Φ, g, f, it can be shown that the function $u(t, x)=Y_{t}^{t, x}$ is a viscosity solution of the obstacle problem

$$
\begin{gathered}
\min \left[-u_{t}-\mathcal{L} u-f\left(t, x, u, \sigma^{\prime} u_{x}\right), u(t, x)-h(t, x)\right]=0 \\
u(T, x)=\Phi(x)
\end{gathered}
$$

Third example: American options in a complete market

- Let $d S_{t}=r S_{t} d t+\sigma S_{t} d W_{t}^{Q}$.
- It is well-known that the price of an American put option on S_{t} is given by the Snell envelope

$$
P_{t}=\operatorname{ess} \sup E^{Q}\left[e^{-r(\tau-t)}\left(K-S_{\tau}\right)^{+} \mid \mathcal{F}_{t}\right]
$$

- We can see that this corresponds to a reflected BSDE with

$$
\begin{aligned}
Y_{t} & =e^{-r t} P_{t}, \quad f(t, y, z)=0 \\
\xi & =e^{-r T}\left(K-S_{T}\right)^{+}, \quad C_{t}=e^{-r t}\left(K-S_{t}\right)^{+}
\end{aligned}
$$

- Moreover, setting $u\left(t, S_{t}\right)=e^{-r t} P_{t}$, we have that

$$
\begin{gathered}
\max \left[u_{t}+\mathcal{L} u, e^{-r t}(K-x)^{+}-u(t, x)\right]=0 \\
u(T, x)=e^{-r T}\left(K-S_{T}\right)^{+}
\end{gathered}
$$

The option to invest in an incomplete market

- Again let $r_{t}=0$ and consider a two-factor model where discounted prices are given by

$$
\begin{aligned}
& d S_{t}=\mu_{1} S_{t} d t+\sigma_{1} S_{t} d W_{t}^{1} \\
& d V_{t}=\mu_{2} V_{t} d t+\sigma_{2} V_{t}\left(\rho d W_{t}^{1}+\sqrt{1-\rho^{2}} d W_{t}^{2}\right)
\end{aligned}
$$

- In our previous notation this corresponds to

$$
\sigma=\left(\begin{array}{cc}
\sigma_{1} & 0 \\
\sigma_{2} \rho & \sigma_{2} \sqrt{1-\rho^{2}}
\end{array}\right), \quad \lambda=\binom{\mu_{1} / \sigma_{1}}{\frac{1}{\sqrt{1-\rho^{2}}}\left[\mu_{2} / \sigma_{2}-\rho \mu_{1} / \sigma_{1}\right]}
$$

- Here S_{t} represents the price of a traded asset, whereas V_{t} is the current value of a project.
- We then model investment in the project as an American call option on V with strike price equals to the sunk cost.

Preferences

- Consider then an agent trying to solve the Merton problem

$$
u^{0}(t, x)=\sup _{\pi} \mathbb{E}\left[-e^{-\gamma X_{T}^{\pi}} \mid X_{t}=x\right]
$$

- Here π_{t} is the amount invested in the stock at time t and

$$
d X_{t}=\pi_{t} \frac{d S_{t}}{S_{t}}=\pi_{t} \sigma\left(d W_{t}^{1}+\lambda_{1} d s\right)
$$

- We denote the solution to this Merton problem by

$$
M(t, x)=-e^{-\gamma x} e^{-\frac{\mu^{2}}{2 \sigma^{2}}(T-t)}
$$

- Finally, consider the modified problem

$$
u(t, x, v)=\sup _{\pi, \tau} \mathbb{E}\left[M\left(\tau, X_{\tau}^{\pi}+\left(V_{\tau}-I\right)^{+}\right) \mid X_{t}=x, V_{t}=v\right]
$$

- The indifference price for the option to invest in the project is the value p satisfying

$$
u^{0}(x)=u(x-p, v)
$$

System of reflected BSDEs

- From our previous example $u^{0}(x)=-e^{-\gamma\left(x+Y_{0}^{1}\right)}$ where

$$
\begin{equation*}
Y_{t}^{1}=-\int_{t}^{T} f^{1}\left(Z_{t}^{1}\right) d t-\int_{t}^{T} Z_{t}^{1} \cdot d W_{t} \tag{22}
\end{equation*}
$$

for $f^{1}\left(z_{1}, z_{2}\right)=z_{1} \lambda_{1}-\frac{\lambda_{1}^{2}}{2 \gamma}$.

- Similarly, we will show that $u(x, v)=-e^{-\gamma\left(x+Y_{0}^{2}\right)}$ where

$$
\begin{aligned}
& Y_{t}^{2}=\left(V_{T}-I\right)^{+}-\int_{t}^{T} f^{2}\left(Z_{t}^{2}\right) d t-\int_{t}^{T} Z_{t}^{2} \cdot d W_{t}+\left(A_{T}-A_{t}\right) \\
& Y_{t}^{2} \geq\left(V_{t}-I\right)^{+}+Y_{t}^{1} \\
& A_{0}=0, \quad \int_{0}^{T}\left(Y_{t}^{2}-\left(V_{t}-I\right)^{+}-Y_{t}^{1}\right) d A_{t}=0 .
\end{aligned}
$$

for $f^{2}\left(z_{1}, z_{2}\right)=z_{1} \lambda_{1}-\frac{\lambda_{1}^{2}}{2 \gamma}-\frac{\gamma}{2} z_{2}$.

Sketch of the proof

- For this choices, it follows that $R_{t}^{\pi}=-e^{\gamma\left(X_{t}^{\pi}+Y_{t}^{2}\right)}$ is a supermartingale for any π.
- Now let $0 \leq \tau \leq T$ be an arbitrary stopping time, $\pi \in \mathcal{A}_{[0, \tau]}$ and $\bar{\pi} \in \mathcal{A}(\tau, T]$. From the dynamic principle satisfied by Y_{t}^{1} it follows that

$$
\mathbb{E}\left[-e^{-\gamma\left(X_{\tau}^{\pi}+\left(V_{\tau}-l\right)^{+}+\int_{\tau}^{T} \bar{\pi} \frac{d S}{S}\right)}\right] \leq-e^{-\gamma\left(X_{\tau}^{\pi}+\left(V_{\tau}-l\right)^{+}+Y_{\tau}^{1}\right)}
$$

- On the other hand, because $-e^{-\gamma x}$ is increasing we have that

$$
\begin{aligned}
\mathbb{E}\left[-e^{-\gamma\left(X_{\tau}^{\pi}+\left(V_{\tau}-l\right)^{+}+Y_{\tau}^{1}\right)}\right] & \leq \mathbb{E}\left[-e^{-\gamma\left(X_{\tau}^{\pi}+Y_{\tau}^{2}\right)}\right] \\
& \leq-e^{-\gamma\left(x+Y_{0}^{2}\right)}
\end{aligned}
$$

- We obtain equalities by setting

$$
\begin{aligned}
\tau^{*} & =\inf \left\{0 \leq t \leq T: Y_{t}^{2}=\left(V_{t}-I\right)^{+}+Y_{t}^{1}\right\} \\
\pi_{t}^{*} \sigma & = \begin{cases}\lambda_{1} / \gamma-Z_{1, t}^{2} & 0 \leq t \leq \tau^{*} \\
\lambda_{1} / \gamma-Z_{1, t}^{1} & \tau<t \leq T\end{cases}
\end{aligned}
$$

The indifference price process

- From the definition it is then clear that $p=Y_{0}^{2}-Y_{0}^{1}$.
- Moreover, we have that the process $p_{t}:=Y_{t}^{2}-Y_{t}^{1}$ satisfies the reflected BSDE

$$
\begin{aligned}
& p_{t}=\left(V_{T}-I\right)^{+}-\int_{t}^{T} f\left(Z_{t}\right) d t-\int_{t}^{T} Z_{t} \cdot d W_{t}+\left(A_{T}-A_{t}\right) \\
& p_{t} \geq\left(V_{t}-I\right)^{+}, \quad A_{0}=0, \quad \int_{0}^{T}\left(p_{t}-\left(V_{t}-I\right)^{+}\right) d A_{t}=0 \\
& \text { where } f\left(z_{1}, z_{2}\right)=z_{1} \lambda_{1}+\frac{\gamma}{2}\left(z_{2}\right)^{2}
\end{aligned}
$$

- We can then characterize the indifference price as the initial value of the viscosity solution of an obstacle problem and calculate it numerically.

Sensitivities of indifference price

- Using comparison results for solutions of reflected BSDEs we can deduce the following properties for both the indifference price and the investment threshold.
- If $\left|\rho_{1}\right| \leq\left|\rho_{2}\right|$ then $p\left(\rho_{1}\right) \leq p\left(\rho_{2}\right)$.
- If $\gamma_{1} \leq \gamma_{2}$ then $p\left(\gamma_{1}\right) \geq p\left(\gamma_{2}\right)$.
- Define $\delta:=\bar{\mu}_{2}-\mu_{2}$, where $\bar{\mu}_{2}$ is the equilibrium rate for a financial asset with volatility σ_{2}.
- If $-\frac{\sigma_{2}^{2}}{2} \leq \delta_{1} \leq \delta_{2}$ then $p\left(\delta_{1}\right) \geq p\left(\delta_{2}\right)$.
- p is an increasing function of σ_{2} for $\delta>0$, but it is decreasing in σ_{2} when $\delta<0$.

Dependence with Correlation and Risk Aversion

Dependence with Dividend Rate

Dependence with Volatility

Dependence with Time to Maturity

Depreciation

- Instead of the project value itself, we can model the output cash-flow rate

$$
d P_{t}=\mu_{2} P_{t} d t+\sigma_{2} P_{t}\left(\rho d W_{t}^{1}+\sqrt{1-\rho^{2}} d W_{t}^{2}\right)
$$

- If the project has fixed lifetime \bar{T} from moment of investment, then

$$
V\left(P_{t}\right)=E\left[\int_{0}^{\bar{T}} e^{-\bar{\mu}_{2} t} P_{s} d s\right]=\frac{P_{t}}{\delta}\left[1-e^{-\delta \bar{T}}\right]
$$

- If the project expires at an exponentially distributed time τ, then

$$
V\left(P_{t}\right)=E\left[\int_{0}^{\tau} e^{-\bar{\mu}_{2} t} P_{s} d s\right]=\frac{P_{t}}{\lambda+\delta}
$$

The abandonment option

- The previous framework ignores the possibility of negative cash flows arising from the active project, for instance, when operating costs exceed the revenue.
- For a constant operating cost rate C (and no depreciation), we have that

$$
V\left(P_{t}\right)=E\left[\int_{t}^{\infty} e^{-\bar{\mu}_{2} s} P_{s} d s\right]-\int_{t}^{\infty} e^{-r s} C d s=\frac{P_{t}}{\delta}-\frac{C}{r} .
$$

- We now suppose that the active project can be abandoned for a fixed cost E and later restarted at a fixed cost l.
- Notice that E can be somewhat negative if there is some scrap value to the project, as long as $-I<E<0$.
- How can we value the combine entry/exit options ?

Investment strategies and stopping times

- An entry/exit strategy in this setting is a process

$$
\xi_{t}=\sum_{n \geq 1} \mathbf{1}_{\left\{\tau_{2 n-1} \leq t<\tau_{2 n}\right\}}
$$

where $\tau_{0}=0, \tau_{2 n-1}$ are investment times and $\tau_{2 n}$ are abandonment time.

- For a given ξ, we consider the wealth process

$$
\begin{equation*}
X_{t}^{\pi, \xi}=x+\int_{0}^{t} \pi \sigma\left(d W_{t}^{1}+\lambda_{1} d t\right)+\int_{0}^{t} \xi_{t}\left(P_{t}-C\right) d t \tag{23}
\end{equation*}
$$

Utility valuation

- We can then show that

$$
u(t, x, P)=\sup _{\pi, \xi} E\left[-e^{-\gamma\left(X^{\pi, \xi}+\chi^{\xi}\right.} \mid X_{t}^{\pi, \xi}=x\right]=-e^{x+Y_{0}^{2}}
$$

where $\chi^{\xi}=\xi \max \left(V_{T},-E\right)+(1-\xi) \max \left(V_{T}-I, 0\right)$

- Here Y_{0}^{2} is the solution of the following system of reflected BSDE

$$
\begin{aligned}
& Y_{t}^{1}=\max \left(V_{T}-I, 0\right)-\int_{t}^{T} f^{1}\left(Z_{t}^{1}\right) d t-\int_{t}^{T} Z_{t}^{1} \cdot d W_{t}+\left(A_{T}^{1}-A_{t}^{1}\right) \\
& Y_{t}^{2}=\max \left(V_{T},-E\right)-\int_{t}^{T} f^{2}\left(Z_{t}^{2}\right) d t-\int_{t}^{T} Z_{t}^{2} \cdot d W_{t}+\left(A_{T}^{2}-A_{t}^{2}\right) \\
& Y_{t}^{2} \geq Y_{t}^{1}-I, \quad Y_{t}^{1} \geq Y_{t}^{2}-E, \quad A_{0}^{1}=A_{0}^{2}=0 \\
& \quad \int_{0}^{T}\left(Y_{t}^{1}-Y_{t}^{1}+E\right) d A_{t}^{1}=0 \quad \int_{0}^{T}\left(Y_{t}^{2}-Y_{t}^{1}+I\right) d A_{t}^{2}=0
\end{aligned}
$$

