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Submodular Functions

I Definition
f : 2[n] → R is submodular if, for all A,B ⊆ [n]:

f (A) + f (B) ≥ f (A ∪ B) + f (A ∩ B)

I Discrete analogue of convex functions [Lovász ’83]

I Arise in combinatorial optimization, probability, economics
(diminishing returns), geometry, etc.

I Typically given by an oracle

I Fundamental Examples

Rank function of a matroid, cut function of a graph, ...
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Optimizing Submodular Functions in Oracle Model

I Minimum (lattice of minima) of a submodular function f can
be obtained with polynomially many oracle calls
[GLS], [Schrijver ’01], [Iwata, Fleischer, Fujishige ’01], ...

I Example of submodular fctn minimization. [Edmonds ’70].
Given 2 matroids M1 = (E , I1) and M2 = (E , I2):

max{|I | : I ∈ I1 ∩ I2} = min{r1(S) + r2(E \ S) : S ⊆ E}

I Replace r1, r2 by general monotone submodular functions
−→ polymatroid intersection

I Maximum of a nonnegative submodular function can be
approximated within 2/5
[Feige et al. ’07]
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Submodular Max-Min Fair Allocation Problem
Making kids smile

Problem
Consider m buyers and set [n] of items. Buyer j has a monotone
submodular function fj : 2[n] → R. Goal:

max
partitions (P1,P2,··· ,Pm) of [n]

min
j

fj(Pj).

I [Golovin ’05]: (n −m + 1)-approximation algorithm
I [Khot and Ponnuswami ’07]: (2m − 1)-approx. alg.

Santa Claus problem:

Special case when fj ’s are modular functions: fj(S) =
∑

i∈S cij

I Santa Claus problem NP-hard even for m = 2 kids
I [Asadpour and Saberi ’07]: O(

√
m log3 m)-approximation

algorithm
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Approximating Submodular Functions Everywhere
Positive Result

Problem
Given oracle for a monotone, submodular f , construct (implicitly)
in P-time a function g such that, for all S ⊆ V :

g(S) ≤ f (S) ≤ α(n)g(S).
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Approximating Submodular Functions Everywhere
Positive Result

Problem
Given oracle for a monotone, submodular f , construct (implicitly)
in P-time a function g such that, for all S ⊆ V :

g(S) ≤ f (S) ≤ α(n)g(S).

Our Positive Result
Construct in deterministic P-time a (submodular) function

g(S) =

√∑
i∈S

ci with

I α(n) =
√

n + 1 for matroid rank functions f , or

I α(n) = O(
√

n log n) for general monotone submodular f
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Approximating Submodular Functions Everywhere
Almost Tight

Our Positive Result
Construct in deterministic P-time a (submodular) function

g(S) =

√∑
i∈S

ci with

I α(n) =
√

n + 1 for matroid rank functions f , or

I α(n) = O(
√

n log n) for general monotone submodular f

Our Negative Result

With polynomially many oracle calls, α(n) = Ω(
√

n/ log n) (even
for randomized algs)

Improved to α(n) = Ω(
√

n/ log n) by Svitkina and Fleischer, 2008.
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Polymatroid

Definition
Given submodular f , polymatroid

Pf =

{
x ∈ Rn

+ : x(S) :=
∑
i∈S

xi ≤ f (S) for all S ⊆ [n]

}

A few properties [Edmonds ’70]:

I Can optimize over Pf with greedy algorithm

I Vertices of Pf . Take permutation σ ∈ Sn, and define xσ

xσ
σ(i) = f ({σ(1), σ(2), · · · , σ(i)})− f ({σ(1), · · · , σ(i − 1)})

I Separation problem for Pf is submodular fctn minimization

I For monotone f , can reconstruct f :

f (S) = max
x∈Pf

〈1S , x〉
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Basic Approach

If Q ⊆ Pf ⊆ λQ then

g(S) ≤ f (S) ≤ λg(S)

where
g(S) = max

x∈Q
〈1S , x〉

f

Q

λQ

P
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John’s Theorem [1948]
Circumscribed Ellipsoids

Theorem
Let K be a convex body in Rn. Let Emin (or Löwner
ellipsoid) be min volume ellipsoid circumscribed to K
(Emin ⊇ K). Then

I K ⊇ 1
nEmin

I K ⊇ 1√
n
Emin if K is centrally symmetric (x ∈ K iff

−x ∈ K)

K
minE

Algorithmically??

Make Pf centrally symmetric:
K = S(Pf ) = {x : (|x1|, |x2|, · · · , |xn|) ∈ Pf }

S(P )f
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Ellipsoids Basics

I Ellipsoids centered at 0

I For A � 0 (positive definite), let

E (A) = {x ∈ Rn : xTAx ≤ 1} = {x : ‖x‖A ≤ 1}

where ‖x‖A =
√

xTAx

I Linear image of unit ball: E (A) = A−1/2(Bn)

I vol(E (A)) = vol(Bn)/ det(A1/2)

I maxx∈E(A)〈c , x〉 = ‖c‖A−1

Definition
E is a λ-ellipsoidal approximation to centrally symmetric K if

λ ≥ inf{α : αE ⊇ K}
sup{α : αE ⊆ K}
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Min Volume Circumscribed Ellipsoids
as convex semi-infinite programs

Restrict to centrally symmetric convex bodies

Formulation for Emin = E (A)

min − log det(A)
s.t. xTAx ≤ 1 x ∈ K

A � 0

I Convex: det(A) log-concave over pos. def. matrices [Fan ’50]

I Strict log-concavity: Emin is unique [Löwner]

I John’s theorem from optimality conditions

Michel X. Goemans Approximating Submodular Functions Everywhere



Maximum Volume Inscribed Ellipsoid Emax
aka. John ellipsoid or Löwner-John ellipsoid

By polarity (K ∗ = {y : 〈x , y〉 ≤ 1 ∀x ∈ K}):

Formulation for Emax = E (A) (John ellipsoid or Löwner-John
ellipsoid)

max log det(A−1)
s.t. cTA−1c ≤ 1 c ∈ K ∗

A−1 � 0

I Can restrict c to vertices of K ∗ (maximal faces of K )
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Algorithms for Ellipsoidal Approximations

I Nestervov and Nemirovski ’89 and Khachiyan and Todd ’93:
I Can find Emin in P-time (up to ε) if explicitly given as

K = conv(a1, · · · , am)
I Can find Emax in P-time (up to ε) if explicitly given as

K = {x : Ax ≤ b}
I Grötschel, Lovász and Schrijver:

I
√

n + 1-ellipsoidal approximation in P-time for explicitly given
polytopes K = {x : −b ≤ Ax ≤ b}

I only n + 1-ellipsoidal approximation for convex bodies given by
weak separation oracle

I No (even randomized) o(n/ log n)-ellipsoidal approximation
for convex bodies given by a separation oracle [J. Soto]
Same idea as in [BriedenGKKLS’99] for approximating
diameter
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Finding Larger and Larger Inscribed Ellipsoids

Theorem
If A � 0 and z ∈ Rn with l = ‖z‖2

A ≥ n then E (A′) is max volume
ellipsoid inscribed in conv{E (A), {z ,−z}} where

A′ =
n

l

l − 1

n − 1
A +

n

l2

(
1− l − 1

n − 1

)
AzzTA

−z

z

E(A)

Michel X. Goemans Approximating Submodular Functions Everywhere



Finding Larger and Larger Inscribed Ellipsoids

Theorem
If A � 0 and z ∈ Rn with l = ‖z‖2

A ≥ n then E (A′) is max volume
ellipsoid inscribed in conv{E (A), {z ,−z}} where

A′ =
n

l

l − 1

n − 1
A +

n

l2

(
1− l − 1

n − 1

)
AzzTA

z

−z

Michel X. Goemans Approximating Submodular Functions Everywhere



Finding Larger and Larger Inscribed Ellipsoids
Volume increase

vol(E (A′)) = kn(l)vol(E (A)) where

kn(l) =

√(
l

n

)n (
n − 1

l − 1

)n−1

Remarks

I kn(l) > 1 for l > n proves (polar to) John’s theorem

I Significant volume increase for l ≥ n + 1:
kn(n + 1) = 1 + Θ(1/n2)
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Ellipsoidal Norm Maximization
for Ellipsoidal Approximations

I Ellipsoidal Norm Maximization

Given A � 0, given well-bounded (B(r) ⊆ K ⊆ B(R)) convex body
K by separation oracle, find

max
x∈K

‖x‖A

I P-time α-approximation algorithm for Ellipsoidal Norm
Maximization gives P-time α

√
n + 1-ellipsoidal approximation

for K (in O(n3 log(R/r)) iterations)

I Complexity

Ellipsoidal Norm Maximization NP-complete for S(Pf ) (same for
Pf ) even if f is a matroid rank function
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Symmetry Invariance
Automorphism Group of K

Definition
Aut(K ) = {T (x) = Cx : T (K ) = K}

I Uniqueness of Emax =⇒ Aut(K ) ⊆ Aut(Emax)

I Same for Emin

I S(Pf ) is axis-aligned (Aut(·) ⊇ {Diag({±1}n)})
⇒ Emax = E (A∗) is axis-aligned, i.e. A∗ is diagonal
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Keeping Ellipsoids Axis-Aligned
when K is axis-aligned

Lemma
Given A � 0 with E (A) ⊆ K, let

Asym =
(
Diag

(
diag

(
A−1

)))−1

(zero out all non-diagonal entries of A−1). Then

1. vol(E (Asym)) > vol(E (A)) (Hadamard’s ineq)

2. E (Asym) ⊆ conv(
⋃

C=Diag({±1}n) C (E (A))) ⊆ K

sym

E(A)

E(A     )
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Maximum Ellipsoidal Norm for Diagonal A

Only need A � 0 diagonal

Squared Norm formulation

max
∑

i dix
2
i

s.t. x ∈ Pf

I Maximizing concave function over convex set
⇒ max attained at vertex
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Squared Norm Maximization
when f is Matroid Rank Function

If f is matroid rank function

I Pf : matroid polytope [Edmonds]. Vertices are 0− 1: x2
i = xi .

[Recall: [LS] matrix cuts]

I Squared norm maximization equivalent to

max
∑

i dixi

s.t. x ∈ Pf

→ max weight matroid base, solved exactly by greedy alg

I In O(n3 log n) iterations, can find axis-aligned ellipsoid
E = E (Diag(1/c)) (∼ Löwner ellipsoid Emax) with
E ⊆ S(Pf ) ⊆

√
n + 1E

→ g(S) = max
x∈E

〈1S , x〉 = ‖1S‖Diag(c) =

√∑
i∈S

ci
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Extension

Theorem
Can find

√
n + 1 ellipsoidal approximation for any axis-symmetric

{−1, 0, 1} given by a separation oracle.
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Ellipsoidal Norm Maximization
for general monotone submodular functions

Steps:

I (1− 1
e )-approximation algorithm for Euclidean Norm

Maximization, i.e. A = I

I General case reduces to Euclidean Norm Maximization over
scaled polymatroid

I Scaled polymatroid approximated by polymatroid at a loss of
O(log n)
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Euclidean Norm Maximization (A = I )
for general monotone submodular functions

Problem
maxx∈Pf

‖x‖

Algorithm

Define permutation σ by

σ(i + 1) = arg max
j

f ({σ(1), σ(2), · · · , σ(i), j})

Output vertex xσ

Theorem
Algorithm is a 1− 1/e-approximation algorithm for maxx∈Pf

‖x‖
Uses Nemhauser et al. ’78 result for maximizing submodular
function over cardinality constraint
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Ellipsoidal Norm Maximization
for general monotone submodular functions

Rescaling

max
x∈Pf

√∑
i

c2
i x2

i −→ max
y∈T (Pf )

‖y‖

where
T : Rn → Rn : x → y = (c1x1, · · · , cnxn)

I T (Pf ) not a polymatroid
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Approximating Scaled Polymatroid by Polymatroid

T (Pf ) ⊆ Pg where

g(S) = max{〈1S , y〉 : y ∈ T (Pf )} = max{〈c , x〉 : x ∈ Pf }.

Theorem
g is submodular

Proof.
f → Lovász extension f̃ : Rn → R : c → max{〈c , x〉 : x ∈ Pf }.

f̃ is L-convex: f̃ (w1) + f̃ (w2) ≥ f̃ (w1 ∨ w2) + f̃ (w1 ∧ w2)
[∨ (resp. ∧): component-wise max (resp. min)]
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Sandwiching T−1(Pg)

I Can approx. max{‖y‖ : y ∈ Pg}, or

max{
√∑

i c
2
i x2

i : x ∈ T−1Pg}
I How close is Pf and T−1(Pg )?
I Polymatroid approximation again: Pf ⊆ T−1(Pg ) ⊆ Ph

h(S) = max{〈c , x〉 : x ∈ T−1(Pg )} = max{〈1/c , y〉 : y ∈ Pg}
submodular (by Lovász extension)

Explicit Expressions for g and h

For S = {1, · · · , k} with c1 ≤ c2 ≤ · · · ≤ ck , we have

I g(S) =
∑k

i=1 ci [f (i , k)− f (i + 1, k)]

I h(S) =
∑

l ,m:1≤l≤m≤k(cl − cl−1)
(

1
cm
− 1

cm+1

)
f (l ,m)

Theorem
For every S, h(S) ≤ O(log n)f (S)
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Summarizing

Theorem
Construct in deterministic P-time a (submodular) function

g(S) =

√∑
i∈S

ci with

I α(n) =
√

n + 1 for matroid rank functions f , or

I α(n) = O(
√

n log n) for general monotone submodular f
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Ω(
√

n/ log n) Lower Bound
for matroid rank functions

With polynomially many oracle calls, cannot distinguish between

I Uniform matroid U with rank α = d
√

ne:
rU(S) = min{|S |, α}

I Matroid MR parameterized by a fixed set R of cardinality α.
Independent sets: I = {I ⊆ [n] : |I | ≤ α and |I ∩R| ≤ log n}

Theorem
With polynomially many oracle calls, α(n) = Ω(

√
n/ log n) (even

for randomized algs)
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Back to Submodular Max-Min Fair Allocation Problem

Goal:
max

partitions (P1,P2,··· ,Pm) of [n]
min

j
fj(Pj).

I Can replace fj by

gj(S) =

√∑
i∈S

cij

I Reduces to Santa Claus problem (at a loss of O(
√

n log n))

→ O(n
1
2 m

1
4 log n log

3
2 m)-approximation

I Not great, but better than previous results...
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Submodular Load-Balacing

[Svitkina and Fleischer ’08]:

Problem
Given submodular f : 2[n] → R and integer k, partition [n] into
P1, · · · ,Pk to

min max
k

f (Pi )

For g(S) =
√∑

i∈S ci , equivalent to scheduling on unrelated
parallel machines: 2-approx alg. [LenstraST90]

Can immediately get O(
√

n log n)-approximation for submodular
load-balancing
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Degree-Bounded MST

Definition
Minimum Degree-Bounded Spanning Tree (MST) problem:

I Given G = (V ,E ) with costs c : E −→ R, integer k

I find Spanning Tree T of maximum degree ≤ k and of
minimum total cost

∑
e∈T c(e)

Even feasibility is hard (k = 2: Hamiltonian path).

Results:
Let OPT (k) be the cost of the optimum tree of max degree ≤ k.

I [G. 2006]: Find a tree of cost ≤ OPT (k) and of max degree
≤ k + 2
(or prove that no tree of max degree ≤ k exists)

I [Singh and Lau 2007]: same result with k + 1
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Our Algorithm

I Solve natural LP relaxation (spanning tree polytope
intersected with degree constraints) and get an extreme point
x∗ of cost LP

I Let E ∗: support of x∗. Show (by algebraic techniques) that
E ∗ is Laman: for any C ⊆ V : |E ∗(C )| ≤ 2|C | − 3

I Hence, E ∗ can be oriented so that indegree of every vertex is
at most 2.
Define matroid M2(x

∗) on ground set E ∗ such that
independent sets have at most k outgoing edges from any
vertex
⇒ any independent set has degree at most k + 2

I Find a minimum cost spanning tree of E ∗ which is also
independent in M2(x

∗) (by matroid intersection)

I Argue (polyhedrally) that cost of solution obtained ≤ LP
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D.R. Fulkerson Prize
2009 Call for Nominations

I For outstanding papers in the area of discrete mathematics
published between 1/2003 and 12/2008

I Prize Committee: Bill Cook (chair), Michel Goemans, Danny
Kleitman

I To be awarded in Aug 2009

I Send nominations to Bill Cook (bico@isye.gatech.edu) by
1/15/2009
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