Approximating Submodular Functions Everywhere

Michel X. Goemans

M.I.T.

Fields Institute, Dec. 2008

Joint with N. Harvey, S. Iwata and V. Mirrokni

Submodular Functions

► Definition

 $f: 2^{[n]} \to \mathbb{R}$ is submodular if, for all $A, B \subseteq [n]$:

$$f(A) + f(B) \ge f(A \cup B) + f(A \cap B)$$

- ▶ Discrete analogue of convex functions [Lovász '83]
- Arise in combinatorial optimization, probability, economics (diminishing returns), geometry, etc.
- Typically given by an oracle
- ► Fundamental Examples

Rank function of a matroid, cut function of a graph, ...

Optimizing Submodular Functions in Oracle Model

- Minimum (lattice of minima) of a submodular function f can be obtained with polynomially many oracle calls [GLS], [Schrijver '01], [Iwata, Fleischer, Fujishige '01], ...
 - Example of submodular fctn minimization. [Edmonds '70]. Given 2 matroids $M_1 = (E, \mathcal{I}_1)$ and $M_2 = (E, \mathcal{I}_2)$:

$$\max\{|I|:I\in\mathcal{I}_1\cap\mathcal{I}_2\}=\min\{r_1(S)+r_2(E\setminus S):S\subseteq E\}$$

- ▶ Replace r_1 , r_2 by general monotone submodular functions \longrightarrow polymatroid intersection
- ► Maximum of a nonnegative submodular function can be approximated within 2/5 [Feige et al. '07]

Submodular Max-Min Fair Allocation Problem Making kids smile

Problem

Consider m buyers and set [n] of items. Buyer j has a monotone submodular function $f_j: 2^{[n]} \to \mathbb{R}$. Goal:

$$\max_{partitions (P_1,P_2,\cdots,P_m)} \min_{j} f_j(P_j).$$

- ▶ [Golovin '05]: (n m + 1)-approximation algorithm
- ▶ [Khot and Ponnuswami '07]: (2m-1)-approx. alg.

Submodular Max-Min Fair Allocation Problem Making kids smile

Problem

Consider m buyers and set [n] of items. Buyer j has a monotone submodular function $f_j: 2^{[n]} \to \mathbb{R}$. Goal:

$$\max_{partitions (P_1,P_2,\cdots,P_m)} \min_{j} f_j(P_j).$$

- ▶ [Golovin '05]: (n m + 1)-approximation algorithm
- ▶ [Khot and Ponnuswami '07]: (2m-1)-approx. alg.

Santa Claus problem:

Special case when f_j 's are modular functions: $f_j(S) = \sum_{i \in S} c_{ij}$

- ▶ Santa Claus problem NP-hard even for m = 2 kids
- ► [Asadpour and Saberi '07]: $O(\sqrt{m}\log^3 m)$ -approximation algorithm

Approximating Submodular Functions Everywhere Positive Result

Problem

Given oracle for a monotone, submodular f, construct (implicitly) in P-time a function g such that, for all $S \subseteq V$:

$$g(S) \le f(S) \le \alpha(n)g(S)$$
.

Approximating Submodular Functions Everywhere Positive Result

Problem

Given oracle for a monotone, submodular f, construct (implicitly) in P-time a function g such that, for all $S \subseteq V$:

$$g(S) \leq f(S) \leq \alpha(n)g(S).$$

Our Positive Result

Construct in deterministic P-time a (submodular) function

$$g(S) = \sqrt{\sum_{i \in S} c_i}$$
 with

- $ightharpoonup \alpha(n) = \sqrt{n+1}$ for matroid rank functions f, or
- $ightharpoonup \alpha(n) = O(\sqrt{n} \log n)$ for general monotone submodular f

Approximating Submodular Functions Everywhere Almost Tight

Our Positive Result

Construct in deterministic P-time a (submodular) function

$$g(S) = \sqrt{\sum_{i \in S} c_i}$$
 with

- $ightharpoonup \alpha(n) = \sqrt{n+1}$ for matroid rank functions f, or
- $ightharpoonup \alpha(n) = O(\sqrt{n} \log n)$ for general monotone submodular f

Our Negative Result

With polynomially many oracle calls, $\alpha(n) = \Omega(\sqrt{n}/\log n)$ (even for randomized algs)

Improved to $\alpha(n) = \Omega(\sqrt{n/\log n})$ by Svitkina and Fleischer, 2008.

Polymatroid

Definition

Given submodular f, polymatroid

$$P_f = \left\{ x \in \mathbb{R}^n_+ : x(S) := \sum_{i \in S} x_i \le f(S) \text{ for all } S \subseteq [n] \right\}$$

A few properties [Edmonds '70]:

- ightharpoonup Can optimize over P_f with greedy algorithm
- ▶ Vertices of P_f . Take permutation $\sigma \in S_n$, and define x^{σ} $x^{\sigma}_{\sigma(i)} = f(\{\sigma(1), \sigma(2), \cdots, \sigma(i)\}) f(\{\sigma(1), \cdots, \sigma(i-1)\})$
- \triangleright Separation problem for P_f is submodular fctn minimization
- \blacktriangleright For monotone f, can reconstruct f:

$$f(S) = \max_{x \in P_f} \langle 1_S, x \rangle$$

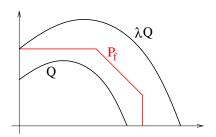
Basic Approach

If
$$Q \subseteq P_f \subseteq \lambda Q$$
 then

$$g(S) \le f(S) \le \lambda g(S)$$

where

$$g(S) = \max_{x \in Q} \langle 1_S, x \rangle$$

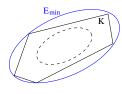


John's Theorem [1948] Circumscribed Ellipsoids

Theorem

Let K be a convex body in \mathbb{R}^n . Let E_{min} (or Löwner ellipsoid) be min volume ellipsoid circumscribed to K ($E_{min} \supseteq K$). Then

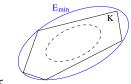
Algorithmically??



John's Theorem [1948] Circumscribed Ellipsoids

Theorem

Let K be a convex body in \mathbb{R}^n . Let E_{min} (or Löwner ellipsoid) be min volume ellipsoid circumscribed to K ($E_{min} \supseteq K$). Then



- $ightharpoonup K \supseteq \frac{1}{n} E_{min}$
- ▶ $K \supseteq \frac{1}{\sqrt{n}} E_{min}$ if K is centrally symmetric $(x \in K)$ iff $-x \in K$

Algorithmically??

Make P_f centrally symmetric:

$$K = S(P_f) = \{x : (|x_1|, |x_2|, \dots, |x_n|) \in P_f\}$$

 $S(P_f)$

Ellipsoids Basics

- Ellipsoids centered at 0
- ▶ For $A \succ 0$ (positive definite), let

$$E(A) = \{x \in \mathbb{R}^n : x^T A x \le 1\} = \{x : ||x||_A \le 1\}$$

where
$$||x||_A = \sqrt{x^T A x}$$

- ▶ Linear image of unit ball: $E(A) = A^{-1/2}(B_n)$
- $ightharpoonup \operatorname{vol}(E(A)) = \operatorname{vol}(B_n)/\det(A^{1/2})$

Definition

E is a λ -ellipsoidal approximation to centrally symmetric K if

$$\lambda \geq \frac{\inf\{\alpha: \alpha E \supseteq K\}}{\sup\{\alpha: \alpha E \subseteq K\}}$$

Min Volume Circumscribed Ellipsoids

as convex semi-infinite programs

Restrict to centrally symmetric convex bodies

Formulation for
$$E_{min} = E(A)$$

min
$$-\log \det(A)$$

s.t. $x^T A x \le 1$ $x \in K$
 $A \succ 0$

- ► Convex: det(A) log-concave over pos. def. matrices [Fan '50]
- ightharpoonup Strict log-concavity: E_{min} is unique [Löwner]
- John's theorem from optimality conditions

Maximum Volume Inscribed Ellipsoid E_{max}

aka. John ellipsoid or Löwner-John ellipsoid

By polarity $(K^* = \{y : \langle x, y \rangle \le 1 \ \forall x \in K\})$: Formulation for $E_{max} = E(A)$ (John ellipsoid or Löwner-John ellipsoid)

$$\begin{array}{ll} \max & \log \det(A^{-1}) \\ \text{s.t.} & c^T A^{-1} c \leq 1 \quad c \in K^* \\ & A^{-1} \succ 0 \end{array}$$

▶ Can restrict c to vertices of K^* (maximal faces of K)

Algorithms for Ellipsoidal Approximations

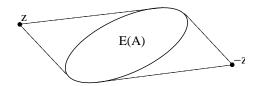
- Nestervov and Nemirovski '89 and Khachiyan and Todd '93:
 - ▶ Can find E_{min} in P-time (up to ϵ) if explicitly given as $K = \text{conv}(a_1, \dots, a_m)$
 - ▶ Can find E_{max} in P-time (up to ϵ) if explicitly given as $K = \{x : Ax \leq b\}$
- Grötschel, Lovász and Schrijver:
 - ▶ $\sqrt{n+1}$ -ellipsoidal approximation in P-time for explicitly given polytopes $K = \{x : -b \le Ax \le b\}$
 - only n + 1-ellipsoidal approximation for convex bodies given by weak separation oracle
- No (even randomized) $o(n/\log n)$ -ellipsoidal approximation for convex bodies given by a separation oracle [J. Soto] Same idea as in [BriedenGKKLS'99] for approximating diameter

Finding Larger and Larger Inscribed Ellipsoids

Theorem

If $A \succ 0$ and $z \in \mathbb{R}^n$ with $I = \|z\|_A^2 \ge n$ then E(A') is max volume ellipsoid inscribed in $\operatorname{conv}\{E(A), \{z, -z\}\}$ where

$$A' = \frac{n}{l} \frac{l-1}{n-1} A + \frac{n}{l^2} \left(1 - \frac{l-1}{n-1} \right) Azz^T A$$

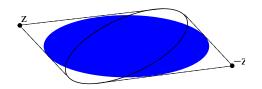


Finding Larger and Larger Inscribed Ellipsoids

Theorem

If $A \succ 0$ and $z \in \mathbb{R}^n$ with $I = \|z\|_A^2 \ge n$ then E(A') is max volume ellipsoid inscribed in $\operatorname{conv}\{E(A), \{z, -z\}\}$ where

$$A' = \frac{n}{l} \frac{l-1}{n-1} A + \frac{n}{l^2} \left(1 - \frac{l-1}{n-1} \right) Azz^T A$$



Finding Larger and Larger Inscribed Ellipsoids Volume increase

$$vol(E(A')) = k_n(I)vol(E(A))$$
 where

$$k_n(I) = \sqrt{\left(\frac{I}{n}\right)^n \left(\frac{n-1}{I-1}\right)^{n-1}}$$

Remarks

- $k_n(I) > 1$ for I > n proves (polar to) John's theorem
- Significant volume increase for $l \ge n + 1$: $k_n(n+1) = 1 + \Theta(1/n^2)$

Ellipsoidal Norm Maximization

Given $A \succ 0$, given well-bounded $(B(r) \subseteq K \subseteq B(R))$ convex body K by separation oracle, find

$$\max_{x \in K} \lVert x \rVert_A$$

- ▶ P-time α -approximation algorithm for Ellipsoidal Norm Maximization gives P-time $\alpha \sqrt{n+1}$ -ellipsoidal approximation for K (in $O(n^3 \log(R/r))$ iterations)
- ▶ Complexity

Ellipsoidal Norm Maximization NP-complete for $S(P_f)$ (same for P_f) even if f is a matroid rank function

Symmetry Invariance Automorphism Group of *K*

Definition

$$Aut(K) = \{T(x) = Cx : T(K) = K\}$$

- ▶ Uniqueness of $E_{max} \Longrightarrow Aut(K) \subseteq Aut(E_{max})$
- \triangleright Same for E_{min}
- ▶ $S(P_f)$ is axis-aligned $(\operatorname{Aut}(\cdot) \supseteq \{\operatorname{Diag}(\{\pm 1\}^n)\})$ ⇒ $E_{max} = E(A^*)$ is axis-aligned, i.e. A^* is diagonal

Keeping Ellipsoids Axis-Aligned

when K is axis-aligned

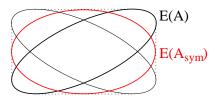
Lemma

Given $A \succ 0$ with $E(A) \subseteq K$, let

$$A_{sym} = \left(\text{Diag} \left(\text{diag} \left(A^{-1} \right) \right) \right)^{-1}$$

(zero out all non-diagonal entries of A^{-1}). Then

- 1. $\operatorname{vol}(E(A_{sym})) > \operatorname{vol}(E(A))$
- (Hadamard's ineq)
- 2. $E(A_{sym}) \subseteq \operatorname{conv}(\bigcup_{C=Diag(\{\pm 1\}^n)} C(E(A))) \subseteq K$



Maximum Ellipsoidal Norm for Diagonal A

Only need $A \succ 0$ diagonal

Squared Norm formulation

$$\max \sum_{i} d_{i} x_{i}^{2}$$
s.t. $x \in P_{f}$

- Maximizing concave function over convex set
 - ⇒ max attained at vertex

Squared Norm Maximization

when f is Matroid Rank Function

If f is matroid rank function

- ▶ P_f : matroid polytope [Edmonds]. Vertices are 0-1: $x_i^2 = x_i$. [Recall: [LS] matrix cuts]
- Squared norm maximization equivalent to

$$\max \sum_{i} d_{i} x_{i}$$
 s.t. $x \in P_{f}$

- → max weight matroid base, solved exactly by greedy alg
- ▶ In $O(n^3 \log n)$ iterations, can find axis-aligned ellipsoid $E = E(\operatorname{Diag}(1/c))$ (\sim Löwner ellipsoid E_{max}) with $E \subseteq S(P_f) \subseteq \sqrt{n+1}E$

$$o g(S) = \max_{x \in E} \langle 1_S, x \rangle = \|1_S\|_{\mathrm{Diag}(c)} = \sqrt{\sum_{i \in S} c_i}$$

Extension

Theorem

Can find $\sqrt{n+1}$ ellipsoidal approximation for any axis-symmetric $\{-1,0,1\}$ given by a separation oracle.

Ellipsoidal Norm Maximization

for general monotone submodular functions

Steps:

- $(1-\frac{1}{e})$ -approximation algorithm for Euclidean Norm Maximization, i.e. A=I
- General case reduces to Euclidean Norm Maximization over scaled polymatroid
- Scaled polymatroid approximated by polymatroid at a loss of O(log n)

Euclidean Norm Maximization (A = I) for general monotone submodular functions

Problem

$$\max_{x \in P_f} ||x||$$

Algorithm

Define permutation σ by

$$\sigma(i+1) = \arg\max_{j} f(\{\sigma(1), \sigma(2), \cdots, \sigma(i), j\})$$

Output vertex x^{σ}

Theorem

Algorithm is a 1-1/e-approximation algorithm for $\max_{x\in P_f} \lVert x \rVert$

Uses Nemhauser et al. '78 result for maximizing submodular function over cardinality constraint

for general monotone submodular functions

Rescaling

$$\max_{x \in P_f} \sqrt{\sum_i c_i^2 x_i^2} \longrightarrow \max_{y \in T(P_f)} ||y||$$

where

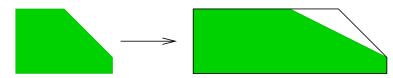
$$T: \mathbb{R}^n \to \mathbb{R}^n: x \to y = (c_1x_1, \cdots, c_nx_n)$$

 $ightharpoonup T(P_f)$ not a polymatroid

Approximating Scaled Polymatroid by Polymatroid

$$T(P_f) \subseteq P_g$$
 where

$$g(S) = \max\{\langle 1_S, y \rangle : y \in T(P_f)\} = \max\{\langle c, x \rangle : x \in P_f\}.$$



Theorem

g is submodular

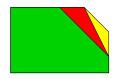
Proof.

 $f \to \mathsf{Lov}$ ász extension $\tilde{f} : \mathbb{R}^n \to \mathbb{R} : c \to \mathsf{max}\{\langle c, x \rangle : x \in P_f\}.$

 \tilde{f} is L-convex: $\tilde{f}(w_1) + \tilde{f}(w_2) \ge \tilde{f}(w_1 \lor w_2) + \tilde{f}(w_1 \land w_2)$ [\lor (resp. \land): component-wise max (resp. min)]

Sandwiching $T^{-1}(P_g)$

- ► Can approx. $\max\{\|y\|: y \in P_g\}$, or $\max\{\sqrt{\sum_i c_i^2 x_i^2}: x \in T^{-1}P_g\}$
- ▶ How close is P_f and $T^{-1}(P_g)$?
- Polymatroid approximation again: $P_f \subseteq T^{-1}(P_g) \subseteq P_h$ $h(S) = \max\{\langle c, x \rangle : x \in T^{-1}(P_g)\} = \max\{\langle 1/c, y \rangle : y \in P_g\}$ submodular (by Lovász extension)



Sandwiching $T^{-1}(P_g)$

- ► Can approx. $\max\{\|y\|: y \in P_g\}$, or $\max\{\sqrt{\sum_i c_i^2 x_i^2}: x \in T^{-1}P_g\}$
- ▶ How close is P_f and $T^{-1}(P_g)$?
- Polymatroid approximation again: $P_f \subseteq T^{-1}(P_g) \subseteq P_h$ $h(S) = \max\{\langle c, x \rangle : x \in T^{-1}(P_g)\} = \max\{\langle 1/c, y \rangle : y \in P_g\}$ submodular (by Lovász extension)

Explicit Expressions for g and h

For $S = \{1, \dots, k\}$ with $c_1 \le c_2 \le \dots \le c_k$, we have

$$g(S) = \sum_{i=1}^{k} c_i [f(i,k) - f(i+1,k)]$$

▶
$$h(S) = \sum_{l,m:1 \le l \le m \le k} (c_l - c_{l-1}) \left(\frac{1}{c_m} - \frac{1}{c_{m+1}}\right) f(l, m)$$

Theorem

For every S, $h(S) \leq O(\log n)f(S)$

Summarizing

Theorem

Construct in deterministic P-time a (submodular) function

$$g(S) = \sqrt{\sum_{i \in S} c_i}$$
 with

- $ightharpoonup \alpha(n) = \sqrt{n+1}$ for matroid rank functions f, or
- $ightharpoonup \alpha(n) = O(\sqrt{n} \log n)$ for general monotone submodular f

With polynomially many oracle calls, cannot distinguish between

- ▶ Uniform matroid U with rank $\alpha = \lceil \sqrt{n} \rceil$: $r_U(S) = \min\{|S|, \alpha\}$
- ▶ Matroid M_R parameterized by a fixed set R of cardinality α . Independent sets: $\mathcal{I} = \{I \subseteq [n] : |I| \leq \alpha \text{ and } |I \cap R| \leq \log n\}$

Theorem

With polynomially many oracle calls, $\alpha(n) = \Omega(\sqrt{n}/\log n)$ (even for randomized algs)

Back to Submodular Max-Min Fair Allocation Problem

Goal:

$$\max_{\substack{\text{partitions } (P_1, P_2, \dots, P_m) \text{ of } [n]}} \min_{j} f_j(P_j).$$

ightharpoonup Can replace f_j by

$$g_j(S) = \sqrt{\sum_{i \in S} c_{ij}}$$

- ► Reduces to Santa Claus problem (at a loss of $O(\sqrt{n} \log n)$) $\rightarrow O(n^{\frac{1}{2}} m^{\frac{1}{4}} \log n \log^{\frac{3}{2}} m)$ -approximation
- ▶ Not great, but better than previous results...

Submodular Load-Balacing

[Svitkina and Fleischer '08]:

Problem

Given submodular $f: 2^{[n]} \to \mathbb{R}$ and integer k, partition [n] into P_1, \cdots, P_k to $\min \max_k f(P_i)$

For $g(S) = \sqrt{\sum_{i \in S} c_i}$, equivalent to scheduling on unrelated parallel machines: 2-approx alg. [LenstraST90]

Can immediately get $O(\sqrt{n} \log n)$ -approximation for submodular load-balancing

Degree-Bounded MST

Definition

Minimum Degree-Bounded Spanning Tree (MST) problem:

- ▶ Given G = (V, E) with costs $c : E \longrightarrow \mathbb{R}$, integer k
- ▶ find Spanning Tree T of maximum degree $\leq k$ and of minimum total cost $\sum_{e \in T} c(e)$

Even feasibility is hard (k = 2: Hamiltonian path).

Degree-Bounded MST

Definition

Minimum Degree-Bounded Spanning Tree (MST) problem:

- ▶ Given G = (V, E) with costs $c : E \longrightarrow \mathbb{R}$, integer k
- ▶ find Spanning Tree T of maximum degree $\leq k$ and of minimum total cost $\sum_{e \in T} c(e)$

Even feasibility is hard (k = 2: Hamiltonian path).

Results:

Let OPT(k) be the cost of the optimum tree of max degree $\leq k$.

- ▶ [G. 2006]: Find a tree of cost $\leq OPT(k)$ and of max degree $\leq k+2$ (or prove that no tree of max degree $\leq k$ exists)
- ▶ [Singh and Lau 2007]: same result with k + 1

Solve natural LP relaxation (spanning tree polytope intersected with degree constraints) and get an extreme point x* of cost LP

- Solve natural LP relaxation (spanning tree polytope intersected with degree constraints) and get an extreme point x* of cost LP
- ▶ Let E^* : support of x^* . Show (by algebraic techniques) that E^* is Laman: for any $C \subseteq V$: $|E^*(C)| \le 2|C| 3$

- Solve natural LP relaxation (spanning tree polytope intersected with degree constraints) and get an extreme point x* of cost LP
- ▶ Let E^* : support of x^* . Show (by algebraic techniques) that E^* is Laman: for any $C \subseteq V$: $|E^*(C)| \le 2|C| 3$
- ▶ Hence, *E** can be oriented so that indegree of every vertex is at most 2.
 - Define matroid $M_2(x^*)$ on ground set E^* such that independent sets have at most k outgoing edges from any vertex
 - \Rightarrow any independent set has degree at most k+2

- Solve natural LP relaxation (spanning tree polytope intersected with degree constraints) and get an extreme point x* of cost LP
- ▶ Let E^* : support of x^* . Show (by algebraic techniques) that E^* is Laman: for any $C \subseteq V$: $|E^*(C)| \le 2|C| 3$
- ▶ Hence, E* can be oriented so that indegree of every vertex is at most 2.
 - Define matroid $M_2(x^*)$ on ground set E^* such that independent sets have at most k outgoing edges from any vertex
 - \Rightarrow any independent set has degree at most k+2
- Find a minimum cost spanning tree of E^* which is also independent in $M_2(x^*)$ (by matroid intersection)

- Solve natural LP relaxation (spanning tree polytope intersected with degree constraints) and get an extreme point x* of cost LP
- ▶ Let E^* : support of x^* . Show (by algebraic techniques) that E^* is Laman: for any $C \subseteq V$: $|E^*(C)| \le 2|C| 3$
- ▶ Hence, *E** can be oriented so that indegree of every vertex is at most 2.
 - Define matroid $M_2(x^*)$ on ground set E^* such that independent sets have at most k outgoing edges from any vertex
 - \Rightarrow any independent set has degree at most k+2
- ▶ Find a minimum cost spanning tree of E^* which is also independent in $M_2(x^*)$ (by matroid intersection)
- ► Argue (polyhedrally) that cost of solution obtained ≤ *LP*

D.R. Fulkerson Prize

- ► For outstanding papers in the area of discrete mathematics published between 1/2003 and 12/2008
- Prize Committee: Bill Cook (chair), Michel Goemans, Danny Kleitman
- ► To be awarded in Aug 2009
- ► Send nominations to Bill Cook (bico@isye.gatech.edu) by 1/15/2009