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Submodular Functions

» Definition
f 22l - R is submodular if, for all A, B C [n]:

f(A)+ f(B) > f(AUB) + f(AN B)

» Discrete analogue of convex functions [Lovasz '83]

» Arise in combinatorial optimization, probability, economics
(diminishing returns), geometry, etc.

» Typically given by an oracle

» Fundamental Examples
Rank function of a matroid, cut function of a graph, ...
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Optimizing Submodular Functions in Oracle Model

» Minimum (lattice of minima) of a submodular function f can
be obtained with polynomially many oracle calls
[GLS], [Schrijver '01], [lwata, Fleischer, Fujishige '01], ...

» Example of submodular fctn minimization. [Edmonds '70].
Given 2 matroids My = (E,Z;) and My = (E, T,):

max{|/| : I € Ty NI} = min{rn(S)+ n(E\S): S C E}

» Replace r, r; by general monotone submodular functions
— polymatroid intersection

» Maximum of a nonnegative submodular function can be
approximated within 2/5
[Feige et al. '07]
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Submodular Max-Min Fair Allocation Problem

Making kids smile

Problem
Consider m buyers and set [n] of items. Buyer j has a monotone
submodular function f; : 2l R, Goal:

. max min £;(P).
partitions (Py,P,, - Pm) Of [n] J

» [Golovin '05]: (n — m + 1)-approximation algorithm
» [Khot and Ponnuswami '07]: (2m — 1)-approx. alg.
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Submodular Max-Min Fair Allocation Problem

Making kids smile

Problem
Consider m buyers and set [n] of items. Buyer j has a monotone
submodular function f; : 2l R, Goal:

. max min £;(P).
partitions (Py,P,, - Pm) Of [n] J

» [Golovin '05]: (n — m + 1)-approximation algorithm
» [Khot and Ponnuswami '07]: (2m — 1)-approx. alg.

Santa Claus problem:
Special case when f;'s are modular functions: f;(S) = > ¢jj

» Santa Claus problem NP-hard even for m = 2 kids
» [Asadpour and Saberi '07]: O(y/mlog® m)-approximation
algorithm
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Approximating Submodular Functions Everywhere

Positive Result

Problem
Given oracle for a monotone, submodular f, construct (implicitly)
in P-time a function g such that, for all S C V:

g(5) < f(5) < an)g(S).
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Approximating Submodular Functions Everywhere

Positive Result

Problem
Given oracle for a monotone, submodular f, construct (implicitly)
in P-time a function g such that, for all S C V:

g(5) < £(5) < afn)g(S).

Our Positive Result
Construct in deterministic P-time a (submodular) function

g(S) = Z ¢i with
ieS

» a(n) = /n+ 1 for matroid rank functions f, or
» a(n) = O(y/nlog n) for general monotone submodular £
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Approximating Submodular Functions Everywhere

Almost Tight

Our Positive Result
Construct in deterministic P-time a (submodular) function

g(S) = /Z ¢i with
ieS

» a(n) = /n+ 1 for matroid rank functions f, or
» a(n) = O(y/nlog n) for general monotone submodular £

Our Negative Result

With polynomially many oracle calls, a(n) = Q(+/n/ log n) (even
for randomized algs)

Improved to a(n) = Q(1/n/ log n) by Svitkina and Fleischer, 2008.
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Polymatroid

Definition
Given submodular f, polymatroid

Pr = {XE]R"Jr :x(S) = ZX,’ < f(S) forall S C [n]}

i€eS

A few properties [Edmonds '70]:
» Can optimize over Pr with greedy algorithm
» Vertices of Pr. Take permutation o € S,,, and define x°
% = F({o(1),0(2), - . o()}) - F({o(1), - .ol — 1)})
» Separation problem for Py is submodular fctn minimization
» For monotone f, can reconstruct f:

f(S) = max(1ls, x)

x€Ps
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Basic Approach

If QC Pr C AQ then
g(S) < f(S) < Ag(9)

where
S) = max(1s,
g(5) X635<< S, X)
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John's Theorem [1948]

Circumscribed Ellipsoids

Theorem
Let K be a convex body in R". Let En, (or Léwner
ellipsoid) be min volume ellipsoid circumscribed to K
(Emin 2 K). Then

» K2 %Emin

» KD ﬁEm,-,, if K is centrally symmetric (x € K iff
—x € K)
Algorithmically??
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John's Theorem [1948]

Circumscribed Ellipsoids

Theorem
Let K be a convex body in R". Let En, (or Léwner
ellipsoid) be min volume ellipsoid circumscribed to K
(Emin 2 K). Then

» K2 %Emin

» KD ﬁEm,-,, if K is centrally symmetric (x € K iff

—x€K)
Algorithmically??

S(Py)
Make Pr centrally symmetric:
KZS(Pf):{X:(|X1‘7|X2‘7"’7’Xn|)€Pf} |\ J
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Ellipsoids Basics

» Ellipsoids centered at 0
» For A >~ 0 (positive definite), let

E(A)={xeR": xTAx <1} = {x: ||x]|la <1}

where |[x|[a = VxT Ax
» Linear image of unit ball: E(A) = A~Y/2(B,)
> vol(E(A)) = vol(B,)/ det(A'/?)
> maXer(A)<C>X> = [lc[la

Definition
E is a A-ellipsoidal approximation to centrally symmetric K if

inf{a : aE 2O K}
~ sup{a:aE C K}
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Min Volume Circumscribed Ellipsoids

as convex semi-infinite programs

Restrict to centrally symmetric convex bodies

Formulation for E,;, = E(A)

min — log det(A)
st. xTAx<1 xeK
A=20

» Convex: det(A) log-concave over pos. def. matrices [Fan '50]
» Strict log-concavity: Enj, is unique [Lowner]

» John's theorem from optimality conditions
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Maximum Volume Inscribed Ellipsoid E,,.

aka. John ellipsoid or Lowner-John ellipsoid

By polarity (K* ={y : (x,y) <1 ¥x € K}):
Formulation for E., = E(A) (John ellipsoid or Léwner-John
ellipsoid)

max logdet(A~1)
st. cTAlce<1l ceK*
Als-0

» Can restrict c to vertices of K* (maximal faces of K)
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Algorithms for Ellipsoidal Approximations

» Nestervov and Nemirovski '89 and Khachiyan and Todd '93:
» Can find Epj, in P-time (up to €) if explicitly given as
K = conv(ay, -+ ,am)
» Can find Epax in P-time (up to ¢€) if explicitly given as
K={x:Ax < b}
» Grotschel, Lovasz and Schrijver:
» /n+ 1-ellipsoidal approximation in P-time for explicitly given
polytopes K = {x : —b < Ax < b}
» only n+ 1-ellipsoidal approximation for convex bodies given by
weak separation oracle
» No (even randomized) o(n/ log n)-ellipsoidal approximation
for convex bodies given by a separation oracle [J. Soto]
Same idea as in [BriedenGKKLS'99] for approximating
diameter
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Finding Larger and Larger Inscribed Ellipsoids

Theorem
If A= 0 and z € R" with | = ||z||3 > n then E(A’) is max volume
ellipsoid inscribed in conv{E(A),{z,—z}} where

-1 I
A = ﬁanju B <1 - _1> Azz" A
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Finding Larger and Larger Inscribed Ellipsoids

Theorem
If A= 0 and z € R" with | = ||z||3 > n then E(A’) is max volume
ellipsoid inscribed in conv{E(A),{z,—z}} where

-1 I
A = ﬁanju B <1 - _1> Azz" A
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Finding Larger and Larger Inscribed Ellipsoids
Volume increase

vol(E(A")) = kn(I)vol(E(A)) where
wo= ) (1)

» kn(l) > 1 for | > n proves (polar to) John's theorem

Remarks

» Significant volume increase for /| > n+ 1:
ko(n+1) =1+ 6(1/n?)
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Ellipsoidal Norm Maximization

for Ellipsoidal Approximations

» Ellipsoidal Norm Maximization

Given A - 0, given well-bounded (B(r) € K C B(R)) convex body
K by separation oracle, find

ma| x|

» P-time a-approximation algorithm for Ellipsoidal Norm
Maximization gives P-time a+/n 4+ 1l-ellipsoidal approximation
for K (in O(n®log(R/r)) iterations)

» Complexity

Ellipsoidal Norm Maximization NP-complete for S(Pr) (same for
P¢) even if f is a matroid rank function
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Symmetry Invariance

Automorphism Group of K

Definition
Aut(K) ={T(x) = Cx: T(K) = K}

» Uniqueness of Epax = Aut(K) C Aut(Emax)

» Same for Ei,

> S(Ps) is axis-aligned (Aut(-) D {Diag({£1}")})
= Emax = E(A*) is axis-aligned, i.e. A* is diagonal
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Keeping Ellipsoids Axis-Aligned

when K is axis-aligned

Lemma
Given A - 0 with E(A) C K, let

Asym = (Diag (diag (A-1))) ™

(zero out all non-diagonal entries of A=1). Then
1. vol(E(Asym)) > vol(E(A)) (Hadamard'’s ineq)

2. E(Asym) € conv(Uc—piag(113m) C(E(A))) € K
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Maximum Ellipsoidal Norm for Diagonal A

Only need A > 0 diagonal
Squared Norm formulation
max y ; d,-xl-2

st. xé€ Py

» Maximizing concave function over convex set
=- max attained at vertex
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Squared Norm Maximization

when f is Matroid Rank Function

If f is matroid rank function

» P¢: matroid polytope [Edmonds]. Vertices are 0 — 1: x? = x;.
[Recall: [LS] matrix cuts]

» Squared norm maximization equivalent to

max . dix;
s.t. x€ Py

— max weight matroid base, solved exactly by greedy alg

» In O(n3log n) iterations, can find axis-aligned ellipsoid
E = E(Diag(1/c)) (~ Lowner ellipsoid Epax) with
ECS(Pr) S vn+1E

—g(8) = T€3§<1Sax> = 1 15lpiag(c) = /; ci
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Extension

Theorem
Can find \/n + 1 ellipsoidal approximation for any axis-symmetric
{—1,0,1} given by a separation oracle.
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Ellipsoidal Norm Maximization

for general monotone submodular functions

Steps:
> (1- %)—approximation algorithm for Euclidean Norm
Maximization, i.e. A=/
» General case reduces to Euclidean Norm Maximization over
scaled polymatroid
» Scaled polymatroid approximated by polymatroid at a loss of
O(log n)
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Euclidean Norm Maximization (A

for general monotone submodular functions

Problem
MaXxeps HXH

Algorithm

Define permutation o by
o(i+1) = argmaxf({o(1),0(2),---,0(i),j})
J

Output vertex x°

Theorem
Algorithm is a 1 — 1/e-approximation algorithm for maxcp, ||x||

Uses Nemhauser et al. '78 result for maximizing submodular
function over cardinality constraint
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Ellipsoidal Norm Maximization

for general monotone submodular functions

Rescaling

max
x€P¢

> 2x2— max |lyl|
i

yET(Pr)

where
T-R">R":x—y=(axy, - ,CnXn)

» T(Pf) not a polymatroid
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Approximating Scaled Polymatroid by Polymatroid

T(Pf) C Pg where

g(S) =max{(1ls,y) : y € T(Pr)} = max{(c,x) : x € Pr}.

N

Theorem
g Is submodular

Proof.

f — Lovasz extension f : R" — R : ¢ — max{(c, x) : x € P¢}.

fis L-convex: f(wi) + F(wo) > F(wi V wa) + F(wy A wa)
[V (resp. A): component-wise max (resp. min)]
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Sandwiching T~*(Py)

» Can approx. max{|ly|| : y € Pg}, or
max{{/>°; c?x? : x € T"1P,}
» How close is Pr and T~1(P,)?
» Polymatroid approximation again: Pr C T-1(Pg) C Py,
h(S) = max{(c,x) : x € T"}(Pg)} = max{(1/c,y) : y € Pg}

submodular (by Lovasz extension)

\
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Sandwiching T~*(Py)

» Can approx. max{||y|| 1y € Pg}, or
max{,/>; c?x? : x € T 1Pg}
» How close is Pr and T~1(P,)?
» Polymatroid approximation again: Ps C T*I(Pg) C Py
h(S) = max{(c,x) : x € T"Y(Pg)} = max{(1/c,y) : y € Pg}
submodular (by Lovdsz extension)
Explicit Expressions for g and h
For S={1,--- ,k} with e < <--+ < ¢, we have
> g(S) =Xy cilf(i k) = (i + 1, k)]
> h(S) = Z/,m:lglgmgk( 1= ¢-1) (* -2 )f(l, m)

Cm+1

Theorem
For every S, h(S) < O(log n)f(S)

Michel X. Goemans Approximating Submodular Functions Everywhere



Summarizing

Theorem
Construct in deterministic P-time a (submodular) function

g(s) = Zc; with
ieS
» a(n) =+/n+ 1 for matroid rank functions f, or

» a(n) = O(y/nlog n) for general monotone submodular f
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Q(+/n/ log n) Lower Bound

for matroid rank functions

With polynomially many oracle calls, cannot distinguish between

» Uniform matroid U with rank o = [{/n]:
ry(S) = min{|S|, a}

» Matroid Mgr parameterized by a fixed set R of cardinality a.
Independent sets: Z={/ C [n] : |/| <« and |INR| < logn}

Theorem
With polynomially many oracle calls, a(n) = Q(+/n/ log n) (even
for randomized algs)
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Back to Submodular Max-Min Fair Allocation Problem

Goal:

. max min £;(P;).
partitions (Py,P,,,Py) of [n] J

g(S) = I> <
i€S

» Reduces to Santa Claus problem (at a loss of O(y/nlogn))
— O(n%m% log n Iog% m)-approximation

» Can replace f; by

» Not great, but better than previous results...
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Submodular Load-Balacing

[Svitkina and Fleischer '08]:

Problem
Given submodular f : 21"l — R and integer k, partition [n] into
Pi,---, Pg to

min max f(Pi)

For g(5) = /> s Ci, equivalent to scheduling on unrelated
parallel machines: 2-approx alg. [LenstraST90]

Can immediately get O(y/nlog n)-approximation for submodular
load-balancing
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Degree-Bounded MST

Definition
Minimum Degree-Bounded Spanning Tree (MST) problem:
» Given G = (V, E) with costs ¢ : E — R, integer k

» find Spanning Tree T of maximum degree < k and of
minimum total cost ) .1 c(e)

Even feasibility is hard (k = 2: Hamiltonian path).
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Degree-Bounded MST

Definition
Minimum Degree-Bounded Spanning Tree (MST) problem:
» Given G = (V, E) with costs ¢ : E — R, integer k
» find Spanning Tree T of maximum degree < k and of
minimum total cost ) .1 c(e)

Even feasibility is hard (k = 2: Hamiltonian path).

Results:

Let OPT (k) be the cost of the optimum tree of max degree < k.
» [G. 2006]: Find a tree of cost < OPT (k) and of max degree

<k+2
(or prove that no tree of max degree < k exists)

» [Singh and Lau 2007]: same result with k + 1
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Our Algorithm

» Solve natural LP relaxation (spanning tree polytope
intersected with degree constraints) and get an extreme point
x* of cost LP
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Our Algorithm

» Solve natural LP relaxation (spanning tree polytope
intersected with degree constraints) and get an extreme point
x* of cost LP

> Let E*: support of x*. Show (by algebraic techniques) that
E* is Laman: forany C C V: |E*(C)| <2|C| -3
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Our Algorithm

» Solve natural LP relaxation (spanning tree polytope
intersected with degree constraints) and get an extreme point
x* of cost LP

> Let E*: support of x*. Show (by algebraic techniques) that
E* is Laman: forany C C V: |E*(C)| <2|C| -3

» Hence, E* can be oriented so that indegree of every vertex is
at most 2.
Define matroid Ma(x*) on ground set E* such that
independent sets have at most k outgoing edges from any
vertex
= any independent set has degree at most k + 2
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Our Algorithm

>

Solve natural LP relaxation (spanning tree polytope
intersected with degree constraints) and get an extreme point
x* of cost LP

Let E*: support of x*. Show (by algebraic techniques) that
E* is Laman: forany C C V: |E*(C)| <2|C| -3

Hence, E* can be oriented so that indegree of every vertex is
at most 2.

Define matroid Ma(x*) on ground set E* such that
independent sets have at most k outgoing edges from any
vertex

= any independent set has degree at most k + 2

Find a minimum cost spanning tree of E* which is also
independent in My(x*) (by matroid intersection)
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Our Algorithm

» Solve natural LP relaxation (spanning tree polytope
intersected with degree constraints) and get an extreme point
x* of cost LP

> Let E*: support of x*. Show (by algebraic techniques) that
E* is Laman: forany C C V: |E*(C)| <2|C| -3

» Hence, E* can be oriented so that indegree of every vertex is
at most 2.
Define matroid Ma(x*) on ground set E* such that
independent sets have at most k outgoing edges from any
vertex
= any independent set has degree at most k + 2

» Find a minimum cost spanning tree of E* which is also
independent in My(x*) (by matroid intersection)

» Argue (polyhedrally) that cost of solution obtained < LP
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D.R. Fulkerson Prize

2009 Call for Nominations

» For outstanding papers in the area of discrete mathematics
published between 1/2003 and 12/2008

» Prize Committee: Bill Cook (chair), Michel Goemans, Danny
Kleitman
» To be awarded in Aug 2009

» Send nominations to Bill Cook (bico®isye.gatech.edu) by
1/15/2009
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