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Summary

• Optimization models for surgery planning and 
scheduling

• Stochastic Programming:

• Problem 1: Single OR scheduling

• Problem 2: Multi-OR Surgery Allocation 

• Simulation Optimization:

• Problem 3: Bi-criteria patient appointment 
scheduling 

• Future research



Surgery Process

• Patient Intake: administrative 
activities, pre-surgery exam, 
gowning, site prep, anesthetic

• Surgery: incision, one or multiple 
procedures, pathology, closing

• Recovery: post anesthesia care 
unit (PACU), ICU, hospital bed



Outpatient Procedure Center



Complicating Factors

• Many types of resources to be scheduled: 

OR team, equipment, materials

• High cost of resources and fixed time to 

complete activities

• Large number of activities to be coordinated 

in a highly constrained environment

• Uncertainty in duration of activities

• Many competing criteria



Intake, Surgery, and Recovery



Problem 1: Single OR Scheduling



x1 x2 x3 x4 x5

a1 a2
a3 a4 a5

Idling

Planned OR Time

OvertimeWaiting

Min{ Idling + Waiting + Overtime}

Single OR Scheduling - S(n)/G(n)/1 



Stochastic Optimization Model 
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Stochastic Linear Program
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Two Stage Recourse Problem

Initial Decision (x) à Uncertainty Resolved à Recourse (y)
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Example

• Comparison of surgery allocations for n=3, 
5, 7 with i.i.d. distributions with U(1,2):

X

Patient

2 3 4 5 61

µ



Surgical Suite Decisions

• How  to design the suite (intake 
rooms, recovery rooms, ORs)

• Number of cases to schedule

• Number of ORs and staff to activate 
each day

• Surgery-to-OR assignment decisions

• Scheduling patients arrivals



Problem 2: Multi-OR Surgery 
Allocation



Multi-Operating Room Scheduling

Decisions:

•How many operating rooms (ORs) to open?

•Which OR to schedule each surgery in?

Performance Measures:

•Cost of operating rooms opened

•Overtime costs for operating rooms

S 1 S 2 S 3 S n

OR 1 OR 2 OR 3 OR m



Extensible Bin Packing
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Symmetry
• m! optimal solutions:

• Anti-symmetry constraints:

OR1 OR2 OR3
ORm
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Two-Stage Stochastic MIP
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Integer L-Shaped Method
IP0

IP2 IP1

IP4 IP3

IP5IP6

IP7IP8
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Heuristic and Bounds
Dell’Ollmo (1998) – 13/12 approximation algorithm for bin packing with 
extensible bins 

EBP Heuristic:
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§Sort surgeries from longest 
to shortest
§Sequentially apply 
surgeries to emptiest room



Robust Formulation
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General Insights

• The fast LPT based heuristic works (fairly) 

well on a large number of instances

– LPT works very well when overtime costs are 
low

– LPT is better (and easier) than solving MV 
problem in most cases

• Robust IP is better than LPT but worse than 

Stochastic IP



Current Research: Setups and Parallel 
Processing
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Problem 3: Patient Arrival Scheduling
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Simulation-optimization Summary

• Decision variables: scheduled start times to be 
assigned to n patients each day 

• Goal: Generate the set of non-dominated schedules to 
understand tradeoffs between waiting and session 
length

• Schedules generated using a genetic algorithm (GA)

• Non-dominated sorting used to identify the Pareto set 
and feedback into GA



Pareto Set

• Non-dominated sorting genetic algorithm of Deb et 
al.(2000) is used for ranking
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Selection Procedure

• Sequential two stage indifference zone ranking and 
selection procedure of Rinott (1978) is used to 
compute the number of runs sufficient to determine 
whether a solution i “dominates” j

• Solution i “dominates” j if:

and][][ ji WEWE < ][][ ji LELE <



Genetic Algorithm

• Main features of the GA:

• Randomly generated initial population of schedules

• Single point crossover:

• Mutation

• Selection based on 1) ranks and 2) crowding 
distance

z1    z2 z3  ….. zn

y1    y2 y3  ….. yn

z1    z2 - y3  ….. yn

y1    y2 - z3  ….. zn

Parents Children



Example

Solutions in Criteria Space
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Numerical Results
GA
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Current and Future Research

• Investigating new stochastic programming and 

robust optimization formulations and methods

• Dynamic (online) scheduling problems

• Surgical suite design and re-configuration



Questions?


