Optimization of Surgery Delivery Systems

Brian Denton
Edward P. Fitts Department of Industrial \& Systems
Engineering
North Carolina State University
June 2, 2009

Collaborators

> Angela Bailey (Mayo)
> Todd Huschka (Mayo) Heidi Nelson (Mayo)
> Ahmed Rahman (Mayo)
> Andrew Miller (University of Wisconsin)
> Hari Balasubramanian (University of Massachusetts)
> Andrew Schaefer (University of Pittsburgh)
> Sakine Batun (University of Pittsburgh)
> Ayca Erdogan (NC State University)

Supported by National Science Foundation - DMI 0620573

Summary

- Optimization models for surgery planning and scheduling
- Stochastic Programming:
- Problem 1: Single OR scheduling
- Problem 2: Multi-OR Surgery Allocation
- Simulation Optimization:
- Problem 3: Bi-criteria patient appointment scheduling
- Future research

NC STATE UNIVERSITY

Surgery Process

- Patient Intake: administrative activities, pre-surgery exam, gowning, site prep, anesthetic
- Surgery: incision, one or multiple procedures, pathology, closing
- Recovery: post anesthesia care unit (PACU), ICU, hospital bed

ise

NC STATE UNIVERSITY

Outpatient Procedure Center

ise

Complicating Factors

- Many types of resources to be scheduled: OR team, equipment, materials
- High cost of resources and fixed time to complete activities
- Large number of activities to be coordinated in a highly constrained environment
- Uncertainty in duration of activities
- Many competing criteria

NC STATE UNIVERSITY

Intake, Surgery, and Recovery

Problem 1: Single OR Scheduling

NC STATE UNIVERSITY

Single OR Scheduling - $\mathrm{S}(\mathrm{n}) / \mathrm{G}(\mathrm{n}) / 1$

Planned OR Time

Min\{ Idling + Waiting + Overtime\}

NC STATE UNIVERSITY

Stochastic Optimization Model

NC STATE UNIVERSITY

Stochastic Linear Program

$$
\min \left\{E_{Z}\left[\sum_{i=2}^{n} c_{i}^{w} w_{i}+\sum_{i=2}^{n} c^{s} s_{i}+c^{L} l\right]\right\}
$$

$$
\begin{aligned}
& \text { s.t. } w_{2}-s_{2} \\
& =Z_{1}-x_{1} \\
& -w_{2}+w_{3} \quad-s_{3} \quad=Z_{2}-x_{2} \\
& \begin{array}{lll}
\ddots & \ddots & \\
& \ddots & \ddots \\
& \\
& -w_{n} & -s_{n}+l-g=Z_{n}-d+\sum_{j=1}^{n-1} x_{i}
\end{array} \\
& x_{i} \geq 0, w_{i} \geq 0, s_{i} \geq 0, i=1, \ldots, n, \quad l, g \geq 0
\end{aligned}
$$

NC STATE UNIVERSITY

Two Stage Recourse Problem

Initial Decision (x) Uncertainty Resolved Recourse (y)

$$
\begin{aligned}
& \min \left\{Q(\mathbf{x})=E_{\mathbf{Z}}[Q(\mathbf{x}, \mathbf{Z})]\right\} \\
& \left.Q\left(\mathbf{x}, \mathbf{Z}^{k}\right)=\min \boldsymbol{\phi} \cdot \mathbf{y}^{k} \mid T \mathbf{x}+W \mathbf{y}^{k}=\mathbf{h}^{k}, \mathbf{y}^{k} \geq 0\right\} \\
& \left(\begin{array}{llllll}
T & W^{1} & & & \\
T & W^{2} & & & \\
T & & W^{3} & & \\
& & & & & \\
\\
T & & & & & \\
\hline
\end{array}\right.
\end{aligned}
$$

NC STATE UNIVERSITY

Example

- Comparison of surgery allocations for $n=3$, 5,7 with i.i.d. distributions with $U(1,2)$:

ise

NC STATE UNIVERSITY

Surgical Suite Decisions

- How to design the suite (intake rooms, recovery rooms, ORs)
- Number of cases to schedule
- Number of ORs and staff to activate each day
- Surgery-to-OR assignment decisions
- Scheduling patients arrivals

Problem 2: Multi-OR Surgery Allocation

NC STATE UNIVERSITY

Multi-Operating Room Scheduling

Decisions:
-How many operating rooms (ORs) to open?
-Which OR to schedule each surgery in?
Performance Measures:
-Cost of operating rooms opened

- Overtime costs for operating rooms

NC STATE UNIVERSITY

Extensible Bin Packing

$$
x_{j}=\left\{\begin{array}{l}
1 \text { if OR } j \text { open } \\
0 \text { if OR } j \text { closed }
\end{array} \quad y_{i j}=\left\{\begin{array}{l}
1 \text { if Surgery i assigned to OR } j \\
0 \text { Otherwise }
\end{array}\right.\right.
$$

$$
\begin{array}{ll}
Z=\min \left\{\sum_{j=1}^{m} c^{f} x_{j}+c^{v} o_{j}\right\} \\
\text { s.t. } \quad y_{i j} \leq x_{j} \quad \forall(i, j) \\
& \sum_{j=1}^{m} y_{i j}=1 \quad \forall(i) \\
& \sum_{i=1}^{n} d_{i} y_{i j}-o_{j} \leq T_{j} x_{j} \quad \forall(i, j) \\
& y_{i j}, x_{j} \in\{0,1\}, \quad o_{j} \geq 0
\end{array}
$$

NC STATE UNIVERSITY

Symmetry

- m! optimal solutions:

- Anti-symmetry constraints:

$x_{1} \geq x_{2}$	
$x_{2} \geq x_{3} \quad$ OR Ordering	
\vdots	
$x_{m} \geq x_{m-1}$	

$$
\begin{array}{ll}
\hline y_{11}=1 & \\
y_{21}+y_{22}=1 & \text { Surgery } \\
\vdots & \text { Assignment } \\
\sum_{j=1}^{m} y_{m j}=1 &
\end{array}
$$

NC STATE UNIVERSITY

Two-Stage Stochastic MIP

NC STATE UNIVERSITY

Integer L-Shaped Method

Master Problem:
$Z=\min \left\{\sum_{j=1}^{m} c^{f} x_{j}+\Theta\right\}$

$$
\text { s.t. } \quad y_{i j} \leq x_{j} \quad \forall(i, j)
$$

$$
\sum_{j=1}^{m} y_{i j}=1 \quad \forall(i)
$$

$$
y_{i j}, x_{j} \in\{0,1\}, \Theta \geq 0
$$

NC STATE UNIVERSITY

Heuristic and Bounds

Dell'Ollmo (1998) - 13/12 approximation algorithm for bin packing with extensible bins

EBP Heuristic:
$n \leftarrow L B ;$
repeat;
$L B=\left[\frac{\sum_{i=1}^{n} d_{i}}{T\left(1+\frac{c^{f}}{c^{v} T}\right)}\right\rceil$

$$
\begin{aligned}
& \text { LPT }(n) ; \quad \longrightarrow \begin{array}{l}
\begin{array}{l}
\text { sSort surgeries from longest } \\
\text { to shortest } \\
\text { sSequentially apply } \\
\text { surgeries to emptiest room }
\end{array} \\
\text { if }\left(o_{j}=0, \forall j\right) \text { Stop } ; \\
n \leftarrow n+1 ;
\end{array}
\end{aligned}
$$

end(repeat);

Robust Formulation

$$
\left.\begin{array}{c}
Z=\min \left\{\sum_{j=1}^{m} c^{f} x_{j}+F(x, y)\right\} \\
\text { s.t. } \quad y_{i j} \leq x_{j} \quad \forall(i, j) \\
\sum_{j=1}^{m} y_{i j}=1 \forall(i) \\
y_{i j}, x_{j} \in\{0,1\} \geq 0
\end{array}\right\}\left\{\begin{array}{c}
\max _{\delta}\left\{\sum_{j=1}^{m} \eta_{j}\right\} \\
F(x, y)=\left\{\begin{array}{c}
\eta_{j}=c_{j}^{v} \max \left\{0, \sum_{i: y_{j}=1}^{m} \delta_{i j} y_{i j}-T_{j} x\right. \\
\sum_{(i, j): y_{j}=1}^{m} \frac{\delta_{i j}-\underline{d}_{i}}{d_{i}-\underline{d}_{i}} y_{i j} \leq \tau \\
\underline{d}_{i} \leq \delta_{i j} \leq \bar{d}_{i}, \forall(i, j): y_{i j}=1
\end{array}\right.
\end{array}\right.
$$

	15 surgery instances									
	Variable Cost $=0.033$					Variable Cost $=0.0083$				
			Robust 1 P					Robust P		
Instance	MV_P	LPT_Heu	Taul2	TauF 4	TauF	MN_P	LPT_Heu	Tau=2	Taul	Tau=6
1	0.808	0.806	0.892	0.906	0.933	0.999	0.998	0.880	0.948	0.948
2	0.953	0.966	0.898	0.896	0.970	0.999	0.999	0.999	0.999	0.980
3	0.854	0.852	0.936	0.937	0.970	0.999	0.999	0.929	0.952	0.94
4	0.925	0.972	0.911	0.971	0.917	0.999	0.998	0.930	0.930	0.929
5	0.896	0.946	0.831	0.916	0.892	0.990	0.996	0.932	0.938	0.924
6	0.862	0.853	0.923	0.931	0.938	0.989	0.990	0.886	0.881	0.881
7	0.930	0.936	0.810	0.930	0.817	0.973	0.993	0.84	0.974	0.927
8	0.888	0.966	0.876	0.903	0.904	0.966	0.966	0.966	0.987	0.939
9	0.962	0.966	0.964	0.969	0.964	0.975	0.993	0.847	0.960	0.95
10	0.860	0.924	0.910	0.893	0.918	0.997	0.996	0.900	0.901	0.903
average	0.894	0.919	0.895	0.925	0.922	0.988	0.993	0.916	0.951	0.933
stidev	0.046	0.057	0.047	0.028	0.046	0.013	0.010	0.059	0.045	0.028
max	0.962	0.972	0.964	0.971	0.970	0.999	0.999	1.042	1.040	0.980
min	0.808	0.806	0.810	0.893	0.817	0.966	0.966	0.84	0.881	0.881

NC STATE UNIVERSITY

General Insights

- The fast LPT based heuristic works (fairly) well on a large number of instances
- LPT works very well when overtime costs are low
- LPT is better (and easier) than solving MV problem in most cases
- Robust IP is better than LPT but worse than Stochastic IP

NC STATE UNIVERSITY

Current Research: Setups and Parallel Processing

Problem 3: Patient Arrival Scheduling

NC STATE UNIVERSITY

Endoscopy Suite

NC STATE UNIVERSITY

Simulation-optimization Summary

- Decision variables: scheduled start times to be assigned to n patients each day
- Goal: Generate the set of non-dominated schedules to understand tradeoffs between waiting and session length
- Schedules generated using a genetic algorithm (GA)
- Non-dominated sorting used to identify the Pareto set and feedback into GA

Pareto Set

- Non-dominated sorting genetic algorithm of Deb et al.(2000) is used for ranking

NC STATE UNIVERSITY

Selection Procedure

- Sequential two stage indifference zone ranking and selection procedure of Rinott (1978) is used to compute the number of runs sufficient to determine whether a solution i "dominates" j
- Solution i "dominates" j if:

$$
E\left[W_{i}\right]<E\left[W_{j}\right] \text { and } E\left[L_{i}\right]<E\left[L_{j}\right]
$$

Genetic Algorithm

- Main features of the GA:
- Randomly generated initial population of schedules
- Single point crossover:

- Mutation
- Selection based on 1) ranks and 2) crowding distance

NC STATE UNIVERSITY

Example

Solutions in Criteria Space

NC STATE UNIVERSITY

Numerical Results

Current and Future Research

- Investigating new stochastic programming and robust optimization formulations and methods
- Dynamic (online) scheduling problems
- Surgical suite design and re-configuration

Questions?

