
QUBO Results

Quadratic Binary Optimization and Its
Applications

Implication Networks and Persistencies

Endre Boros

RUTCOR, Rutgers University

Fields Institute, Toronto, October 7, 2008.

Joint work with P.L. Hammer1 and G. Tavares

1(1936-2006)



QUBO Results

Outline

1 Quadratic Unconstrained Binary Optimization
Quadratic Pseudo-Boolean Functions
Applications of QUBO
Representations and Bounds
Persistencies and Autarkies
Posiforms and QUBO
Implication Networks
Graph Cuts and Implication Networks

2 Results
Components of the Algorithm
Computational Results
References



QUBO Results

Quadratic Unconstrained Binary Optimization (QUBO)

Variables and Literals
Variables: x1, x2, ..., xn ∈ {0, 1}.
Negations: xi = 1− xi ∈ {0, 1} for i = 1, ..., n

Quadratic Pseudo-Boolean Function (QPBF): f : {0, 1}n → R

f(x1, ..., xn) = c0 +
n∑

j=1

cjxj +
∑

1≤i<j≤n

cijxixj

Quadratic Unconstrained Binary Optimization (QUBO)

min
(x1,...,xn)∈{0,1}n

f(x1, ..., xn)

Pseudo-Boolean Optimization
(Hammer and Rudeanu, 1968)



QUBO Results

Quadratic Unconstrained Binary Optimization (QUBO)

Variables and Literals
Variables: x1, x2, ..., xn ∈ {0, 1}.
Negations: xi = 1− xi ∈ {0, 1} for i = 1, ..., n

Quadratic Pseudo-Boolean Function (QPBF): f : {0, 1}n → R

f(x1, ..., xn) = c0 +
n∑

j=1

cjxj +
∑

1≤i<j≤n

cijxixj

Quadratic Unconstrained Binary Optimization (QUBO)

min
(x1,...,xn)∈{0,1}n

f(x1, ..., xn)

Pseudo-Boolean Optimization
(Hammer and Rudeanu, 1968)



QUBO Results

Quadratic Unconstrained Binary Optimization (QUBO)

Variables and Literals
Variables: x1, x2, ..., xn ∈ {0, 1}.
Negations: xi = 1− xi ∈ {0, 1} for i = 1, ..., n

Quadratic Pseudo-Boolean Function (QPBF): f : {0, 1}n → R

f(x1, ..., xn) = c0 +
n∑

j=1

cjxj +
∑

1≤i<j≤n

cijxixj

Quadratic Unconstrained Binary Optimization (QUBO)

min
(x1,...,xn)∈{0,1}n

f(x1, ..., xn)

Pseudo-Boolean Optimization
(Hammer and Rudeanu, 1968)



QUBO Results

Quadratic Unconstrained Binary Optimization (QUBO)

Variables and Literals
Variables: x1, x2, ..., xn ∈ {0, 1}.
Negations: xi = 1− xi ∈ {0, 1} for i = 1, ..., n

Quadratic Pseudo-Boolean Function (QPBF): f : {0, 1}n → R

f(x1, ..., xn) = c0 +
n∑

j=1

cjxj +
∑

1≤i<j≤n

cijxixj

Quadratic Unconstrained Binary Optimization (QUBO)

min
(x1,...,xn)∈{0,1}n

f(x1, ..., xn)

Pseudo-Boolean Optimization
(Hammer and Rudeanu, 1968)



QUBO Results

Quadratic Unconstrained Binary Optimization (QUBO)

Variables and Literals
Variables: x1, x2, ..., xn ∈ {0, 1}.
Negations: xi = 1− xi ∈ {0, 1} for i = 1, ..., n

Quadratic Pseudo-Boolean Function (QPBF): f : {0, 1}n → R

f(x1, ..., xn) = c0 +
n∑

j=1

cjxj +
∑

1≤i<j≤n

cijxixj

Quadratic Unconstrained Binary Optimization (QUBO)

min
(x1,...,xn)∈{0,1}n

f(x1, ..., xn)

Pseudo-Boolean Optimization
(Hammer and Rudeanu, 1968)



QUBO Results

Outline

1 Quadratic Unconstrained Binary Optimization
Quadratic Pseudo-Boolean Functions
Applications of QUBO
Representations and Bounds
Persistencies and Autarkies
Posiforms and QUBO
Implication Networks
Graph Cuts and Implication Networks

2 Results
Components of the Algorithm
Computational Results
References



QUBO Results

Applications of QUBO

MAX-2-SAT, MAXCUT, Maximum Stable Set, Maximum
Clique, Graph Balancing, ...

Physics (Ising problem)
VLSI Design (via minimization, floor partitioning, wire
length minimization, verification, buffer assignment, ...)
Finance (capital budgeting, portfolio optimization)
Image Processing (segmentation, denoising, deblurring,
MRI, ...)
Statistics (clustering, maximum likelihood ranking)
Manufacturing (scheduling, production, location, ...)



QUBO Results

Applications of QUBO

MAX-2-SAT, MAXCUT, Maximum Stable Set, Maximum
Clique, Graph Balancing, ...

Physics (Ising problem)
VLSI Design (via minimization, floor partitioning, wire
length minimization, verification, buffer assignment, ...)
Finance (capital budgeting, portfolio optimization)
Image Processing (segmentation, denoising, deblurring,
MRI, ...)
Statistics (clustering, maximum likelihood ranking)
Manufacturing (scheduling, production, location, ...)



QUBO Results

Applications of QUBO

MAX-2-SAT, MAXCUT, Maximum Stable Set, Maximum
Clique, Graph Balancing, ...

Physics (Ising problem)
VLSI Design (via minimization, floor partitioning, wire
length minimization, verification, buffer assignment, ...)
Finance (capital budgeting, portfolio optimization)
Image Processing (segmentation, denoising, deblurring,
MRI, ...)
Statistics (clustering, maximum likelihood ranking)
Manufacturing (scheduling, production, location, ...)



QUBO Results

Applications of QUBO

MAX-2-SAT, MAXCUT, Maximum Stable Set, Maximum
Clique, Graph Balancing, ...

Physics (Ising problem)
VLSI Design (via minimization, floor partitioning, wire
length minimization, verification, buffer assignment, ...)
Finance (capital budgeting, portfolio optimization)
Image Processing (segmentation, denoising, deblurring,
MRI, ...)
Statistics (clustering, maximum likelihood ranking)
Manufacturing (scheduling, production, location, ...)



QUBO Results

Applications of QUBO

MAX-2-SAT, MAXCUT, Maximum Stable Set, Maximum
Clique, Graph Balancing, ...

Physics (Ising problem)
VLSI Design (via minimization, floor partitioning, wire
length minimization, verification, buffer assignment, ...)
Finance (capital budgeting, portfolio optimization)
Image Processing (segmentation, denoising, deblurring,
MRI, ...)
Statistics (clustering, maximum likelihood ranking)
Manufacturing (scheduling, production, location, ...)



QUBO Results

Applications of QUBO

MAX-2-SAT, MAXCUT, Maximum Stable Set, Maximum
Clique, Graph Balancing, ...

Physics (Ising problem)
VLSI Design (via minimization, floor partitioning, wire
length minimization, verification, buffer assignment, ...)
Finance (capital budgeting, portfolio optimization)
Image Processing (segmentation, denoising, deblurring,
MRI, ...)
Statistics (clustering, maximum likelihood ranking)
Manufacturing (scheduling, production, location, ...)



QUBO Results

Applications of QUBO

MAX-2-SAT, MAXCUT, Maximum Stable Set, Maximum
Clique, Graph Balancing, ...

Physics (Ising problem)
VLSI Design (via minimization, floor partitioning, wire
length minimization, verification, buffer assignment, ...)
Finance (capital budgeting, portfolio optimization)
Image Processing (segmentation, denoising, deblurring,
MRI, ...)
Statistics (clustering, maximum likelihood ranking)
Manufacturing (scheduling, production, location, ...)



QUBO Results

Outline

1 Quadratic Unconstrained Binary Optimization
Quadratic Pseudo-Boolean Functions
Applications of QUBO
Representations and Bounds
Persistencies and Autarkies
Posiforms and QUBO
Implication Networks
Graph Cuts and Implication Networks

2 Results
Components of the Algorithm
Computational Results
References



QUBO Results

Representations and Lower Bounds

Posiforms: Nonnegative (except maybe the constant terms) multi-linear
polynomials in 2n literals x1, x1, ..., xn, xn



QUBO Results

Representations and Lower Bounds

Posiforms: Nonnegative (except maybe the constant terms) multi-linear
polynomials in 2n literals x1, x1, ..., xn, xn

f = −2− x1 − x2 − x3 + x1x2 + x1x3 + x2x3 QPBF



QUBO Results

Representations and Lower Bounds

Posiforms: Nonnegative (except maybe the constant terms) multi-linear
polynomials in 2n literals x1, x1, ..., xn, xn

f = −2− x1 − x2 − x3 + x1x2 + x1x3 + x2x3 QPBF
= −5 + x1 + x2 + x3 + x1x2 + x1x3 + x2x3 quadratic posiform



QUBO Results

Representations and Lower Bounds

Posiforms: Nonnegative (except maybe the constant terms) multi-linear
polynomials in 2n literals x1, x1, ..., xn, xn

f = −2− x1 − x2 − x3 + x1x2 + x1x3 + x2x3 QPBF
= −5 + x1 + x2 + x3 + x1x2 + x1x3 + x2x3 quadratic posiform
= −4 + x3 + x1x2 + x1x3 + x2x3 quadratic posiform



QUBO Results

Representations and Lower Bounds

Posiforms: Nonnegative (except maybe the constant terms) multi-linear
polynomials in 2n literals x1, x1, ..., xn, xn

f = −2− x1 − x2 − x3 + x1x2 + x1x3 + x2x3 QPBF
= −5 + x1 + x2 + x3 + x1x2 + x1x3 + x2x3 quadratic posiform
= −4 + x3 + x1x2 + x1x3 + x2x3 quadratic posiform
= −3 + x1x2x3 + x1x2x3 cubic posiform



QUBO Results

Representations and Lower Bounds

Posiforms: Nonnegative (except maybe the constant terms) multi-linear
polynomials in 2n literals x1, x1, ..., xn, xn

f = −2− x1 − x2 − x3 + x1x2 + x1x3 + x2x3 QPBF
= −5 + x1 + x2 + x3 + x1x2 + x1x3 + x2x3 quadratic posiform
= −4 + x3 + x1x2 + x1x3 + x2x3 quadratic posiform
= −3 + x1x2x3 + x1x2x3 cubic posiform

MAX2SAT ≡ minimization of a quadratic posiform ≡ QUBO.



QUBO Results

Representations and Lower Bounds

Posiforms: Nonnegative (except maybe the constant terms) multi-linear
polynomials in 2n literals x1, x1, ..., xn, xn

f = −2− x1 − x2 − x3 + x1x2 + x1x3 + x2x3 QPBF
= −5 + x1 + x2 + x3 + x1x2 + x1x3 + x2x3 quadratic posiform
= −4 + x3 + x1x2 + x1x3 + x2x3 quadratic posiform
= −3 + x1x2x3 + x1x2x3 cubic posiform

MAX2SAT ≡ minimization of a quadratic posiform ≡ QUBO.

Roof Dual Bound: C2(f) ≤ f (Hammer, Hansen and Simeone, 1984)

C2(f) = largest C s.t. f = C + φ for some quadratic posiform φ.



QUBO Results

Representations and Lower Bounds

Posiforms: Nonnegative (except maybe the constant terms) multi-linear
polynomials in 2n literals x1, x1, ..., xn, xn

f = −2− x1 − x2 − x3 + x1x2 + x1x3 + x2x3 QPBF
= −5 + x1 + x2 + x3 + x1x2 + x1x3 + x2x3 quadratic posiform
= −4 + x3 + x1x2 + x1x3 + x2x3 quadratic posiform
= −3 + x1x2x3 + x1x2x3 cubic posiform

MAX2SAT ≡ minimization of a quadratic posiform ≡ QUBO.

Roof Dual Bound: C2(f) ≤ f (Hammer, Hansen and Simeone, 1984)

C2(f) = largest C s.t. f = C + φ for some quadratic posiform φ.

Complete Hierarchy of Bounds: (B, Crama and Hammer, 1990)

C2(f) ≤ C3(f) ≤ · · · ≤ Cn(f) = min f



QUBO Results

Outline

1 Quadratic Unconstrained Binary Optimization
Quadratic Pseudo-Boolean Functions
Applications of QUBO
Representations and Bounds
Persistencies and Autarkies
Posiforms and QUBO
Implication Networks
Graph Cuts and Implication Networks

2 Results
Components of the Algorithm
Computational Results
References



QUBO Results

Persistencies and Autarkies

Partial assignment: y ∈ {0, 1}S , S ⊆ V



QUBO Results

Persistencies and Autarkies

Partial assignment: y ∈ {0, 1}S , S ⊆ V

y is a persistency for a pseudo-Boolean function f if

f(x|y) ≤ f(x) ∀ x ∈ {0, 1}V .



QUBO Results

Persistencies and Autarkies

Partial assignment: y ∈ {0, 1}S , S ⊆ V

y is a persistency for a pseudo-Boolean function f if

f(x|y) ≤ f(x) ∀ x ∈ {0, 1}V .

y is an autarky for a posiform φ if

T (y) = 0 for all terms T of φ for which V ar(T ) ∩ S 6= ∅.



QUBO Results

Persistencies and Autarkies

Partial assignment: y ∈ {0, 1}S , S ⊆ V

y is a persistency for a pseudo-Boolean function f if

f(x|y) ≤ f(x) ∀ x ∈ {0, 1}V .

y is an autarky for a posiform φ if

T (y) = 0 for all terms T of φ for which V ar(T ) ∩ S 6= ∅.

y = (1,1,1, ∗, ∗, ∗, ∗) is an autarky of the posiform

φ = x1x2 + 5x1x3x6 + 4x2x3x7 + 4x1x4 + 5x2x5 + 6x4x5



QUBO Results

Persistencies and Autarkies

Partial assignment: y ∈ {0, 1}S , S ⊆ V

y is a persistency for a pseudo-Boolean function f if

f(x|y) ≤ f(x) ∀ x ∈ {0, 1}V .

y is an autarky for a posiform φ if

T (y) = 0 for all terms T of φ for which V ar(T ) ∩ S 6= ∅.

Given y and f = φ, it is
easy to test if y is an autarky for φ;
hard to test if y is a persistency for f .



QUBO Results

Persistencies and Autarkies

Partial assignment: y ∈ {0, 1}S , S ⊆ V

y is a persistency for a pseudo-Boolean function f if

f(x|y) ≤ f(x) ∀ x ∈ {0, 1}V .

y is an autarky for a posiform φ if

T (y) = 0 for all terms T of φ for which V ar(T ) ∩ S 6= ∅.

Given y and f = φ, it is
easy to test if y is an autarky for φ;
hard to test if y is a persistency for f .



QUBO Results

Basic facts about persistencies and autarkies

An autarky y of a posiform φ is a persistency of the function f
represented by φ.



QUBO Results

Basic facts about persistencies and autarkies

An autarky y of a posiform φ is a persistency of the function f
represented by φ.

A persistency y of the function f is an autarky for some
posiform φ representing f .



QUBO Results

Basic facts about persistencies and autarkies

An autarky y of a posiform φ is a persistency of the function f
represented by φ.

A persistency y of the function f is an autarky for some
posiform φ representing f .

If f has persistencies y1 ∈ {0, 1}S1 and y2 ∈ {0, 1}S2 , then it
also has a persistency y3 ∈ {0, 1}S1∪S2 .



QUBO Results

Basic facts about persistencies and autarkies

An autarky y of a posiform φ is a persistency of the function f
represented by φ.

A persistency y of the function f is an autarky for some
posiform φ representing f .

If f has persistencies y1 ∈ {0, 1}S1 and y2 ∈ {0, 1}S2 , then it
also has a persistency y3 ∈ {0, 1}S1∪S2 .

A posiform φ has a unique maximal subset S = S(φ) for which
it has an autarky y ∈ {0, 1}S . For a quadratic posiform φ it is
easy to find S(φ). (B. and Hammer, 1990)



QUBO Results

Outline

1 Quadratic Unconstrained Binary Optimization
Quadratic Pseudo-Boolean Functions
Applications of QUBO
Representations and Bounds
Persistencies and Autarkies
Posiforms and QUBO
Implication Networks
Graph Cuts and Implication Networks

2 Results
Components of the Algorithm
Computational Results
References



QUBO Results

Use of posiforms for QUBO

Posiforms provide autarkies (persistencies) S(φ)
Denoting by C(φ) the constant term of a posiform φ, we
have

min
x∈{0,1}n

f(x) = max{C(φ) | φ is a posiform of f}

QUBO can be solved by finding better and better posiform
representations of the objective; for each posiform φk

fix persistent variables in set S(φk), and simplify the
problem;
try to generate from φk another posiform φk+1 such that
C(φk) < C(φk+1), until all variables become persistent.

How to find S(φ)? How to manipulate posiforms?



QUBO Results

Use of posiforms for QUBO

Posiforms provide autarkies (persistencies) S(φ)
Denoting by C(φ) the constant term of a posiform φ, we
have

min
x∈{0,1}n

f(x) = max{C(φ) | φ is a posiform of f}

QUBO can be solved by finding better and better posiform
representations of the objective; for each posiform φk

fix persistent variables in set S(φk), and simplify the
problem;
try to generate from φk another posiform φk+1 such that
C(φk) < C(φk+1), until all variables become persistent.

How to find S(φ)? How to manipulate posiforms?



QUBO Results

Use of posiforms for QUBO

Posiforms provide autarkies (persistencies) S(φ)
Denoting by C(φ) the constant term of a posiform φ, we
have

min
x∈{0,1}n

f(x) = max{C(φ) | φ is a posiform of f}

QUBO can be solved by finding better and better posiform
representations of the objective; for each posiform φk

fix persistent variables in set S(φk), and simplify the
problem;
try to generate from φk another posiform φk+1 such that
C(φk) < C(φk+1), until all variables become persistent.

How to find S(φ)? How to manipulate posiforms?



QUBO Results

Use of posiforms for QUBO

Posiforms provide autarkies (persistencies) S(φ)
Denoting by C(φ) the constant term of a posiform φ, we
have

min
x∈{0,1}n

f(x) = max{C(φ) | φ is a posiform of f}

QUBO can be solved by finding better and better posiform
representations of the objective; for each posiform φk

fix persistent variables in set S(φk), and simplify the
problem;
try to generate from φk another posiform φk+1 such that
C(φk) < C(φk+1), until all variables become persistent.

How to find S(φ)? How to manipulate posiforms?



QUBO Results

Use of posiforms for QUBO

Posiforms provide autarkies (persistencies) S(φ)
Denoting by C(φ) the constant term of a posiform φ, we
have

min
x∈{0,1}n

f(x) = max{C(φ) | φ is a posiform of f}

QUBO can be solved by finding better and better posiform
representations of the objective; for each posiform φk

fix persistent variables in set S(φk), and simplify the
problem;
try to generate from φk another posiform φk+1 such that
C(φk) < C(φk+1), until all variables become persistent.

How to find S(φ)? How to manipulate posiforms?



QUBO Results

Use of posiforms for QUBO

Posiforms provide autarkies (persistencies) S(φ)
Denoting by C(φ) the constant term of a posiform φ, we
have

min
x∈{0,1}n

f(x) = max{C(φ) | φ is a posiform of f}

QUBO can be solved by finding better and better posiform
representations of the objective; for each posiform φk

fix persistent variables in set S(φk), and simplify the
problem;
try to generate from φk another posiform φk+1 such that
C(φk) < C(φk+1), until all variables become persistent.

How to find S(φ)? How to manipulate posiforms?



QUBO Results

Outline

1 Quadratic Unconstrained Binary Optimization
Quadratic Pseudo-Boolean Functions
Applications of QUBO
Representations and Bounds
Persistencies and Autarkies
Posiforms and QUBO
Implication Networks
Graph Cuts and Implication Networks

2 Results
Components of the Algorithm
Computational Results
References



QUBO Results

QPBF −→ Posiform

f = 10− 2x1 − 6x2 + 2x1x2 − 2x1x3 + 4x2x3



QUBO Results

QPBF −→ Posiform

f = 10− 2x1 − 6x2 + 2x1x2 − 2x1x3 + 4x2x3

= 10− 2x1 − 6x2 + 2x1x2 − 2x1(1− x3) + 4x2x3



QUBO Results

QPBF −→ Posiform

f = 10− 2x1 − 6x2 + 2x1x2 − 2x1x3 + 4x2x3

= 10− 2x1 − 6x2 + 2x1x2 − 2x1(1− x3) + 4x2x3

= 10− 4x1 − 6x2 + 2x1x2 + 2x1x3 + 4x2x3



QUBO Results

QPBF −→ Posiform

f = 10− 2x1 − 6x2 + 2x1x2 − 2x1x3 + 4x2x3

= 10− 2x1 − 6x2 + 2x1x2 − 2x1(1− x3) + 4x2x3

= 10− 4x1 − 6x2 + 2x1x2 + 2x1x3 + 4x2x3

= 10− 4(1− x1)− 6(1− x2) + 2x1x2 + 2x1x3 + 4x2x3



QUBO Results

QPBF −→ Posiform

f = 10− 2x1 − 6x2 + 2x1x2 − 2x1x3 + 4x2x3

= 10− 2x1 − 6x2 + 2x1x2 − 2x1(1− x3) + 4x2x3

= 10− 4x1 − 6x2 + 2x1x2 + 2x1x3 + 4x2x3

= 10− 4(1− x1)− 6(1− x2) + 2x1x2 + 2x1x3 + 4x2x3

= 4x1 + 6x2 + 2x1x2 + 2x1x3 + 4x2x3 = φ



QUBO Results

QPBF −→ Posiform

f = 10− 2x1 − 6x2 + 2x1x2 − 2x1x3 + 4x2x3

= 10− 2x1 − 6x2 + 2x1x2 − 2x1(1− x3) + 4x2x3

= 10− 4x1 − 6x2 + 2x1x2 + 2x1x3 + 4x2x3

= 10− 4(1− x1)− 6(1− x2) + 2x1x2 + 2x1x3 + 4x2x3

= 4x1 + 6x2 + 2x1x2 + 2x1x3 + 4x2x3 = φ

C(φ) = 0 and S(φ) = ∅



QUBO Results

Implication Networks

1

x1

x2

x3

0

x1

x2

x3

f = 4x1 + 6x2 + 2x1x2 + 2x1x3 + 4x2x3



QUBO Results

Implication Networks

2

2

1

x1

x2

x3

0

x1

x2

x3

f = 4x1 + 6x2 + 2x1x2 + 2x1x3 + 4x2x3



QUBO Results

Implication Networks

2

2

3

3

1

x1

x2

x3

0

x1

x2

x3

f = 4x1 + 6x2 + 2x1x2 + 2x1x3 + 4x2x3



QUBO Results

Implication Networks

2

2

3

3

1

1

1

x1

x2

x3

0

x1

x2

x3

f = 4x1 + 6x2 + 2x1x2 + 2x1x3 + 4x2x3



QUBO Results

Implication Networks

2

2

3

3

1

1

1

1
1

x1

x2

x3

0

x1

x2

x3

f = 4x1 + 6x2 + 2x1x2 + 2x1x3 + 4x2x3



QUBO Results

Implication Networks

2

2

3

3

1

1

1

1

2

2

1

x1

x2

x3

0

x1

x2

x3

f = 4x1 + 6x2 + 2x1x2 + 2x1x3 + 4x2x3



QUBO Results

Implication Networks

2

2

3

3

1

1

1

1

2

2

1

x1

x2

x3

0

x1

x2

x3

f = 4x1 + 6x2 + 2x1x2 + 2x1x3 + 4x2x3



QUBO Results

Flows and Posiform Transformations

2

2

3

3

1

1

1

1

2

2

1

x1

x2

x3

0

x1

x2

x3

f = 4x1 + 6x2 + 2x1x2 + 2x1x3 + 4x2x3



QUBO Results

Flows and Posiform Transformations

2

2

3

3

1

1

1

1

2

2

1

x1

x2

x3

0

x1

x2

x3

f = 4x1 + 6x2 + 2x1x2 + 2x1x3 + 4x2x3

= 3x1 + 5x2 + 2x1x2 + x1x3 + 3x2x3

+ (x1 + x1x3 + x3x2 + x2)



QUBO Results

Flows and Posiform Transformations

2

2

3

3

1

1

1

1

2

2

1

x1

x2

x3

0

x1

x2

x3

f = 4x1 + 6x2 + 2x1x2 + 2x1x3 + 4x2x3

= 3x1 + 5x2 + 2x1x2 + x1x3 + 3x2x3

+ (x1 + x1x3 + x3x2 + x2)
= 3x1 + 5x2 + 2x1x2 + x1x3 + 3x2x3

+ (1 + x1x3 + x3x2)



QUBO Results

Flows and Posiform Transformations

1

1

2

3

2

1

1

1

1

1
1

1

2

1

x1

x2

x3

0

x1

x2

x3

f = 4x1 + 6x2 + 2x1x2 + 2x1x3 + 4x2x3

= 3x1 + 5x2 + 2x1x2 + x1x3 + 3x2x3

+ (x1 + x1x3 + x3x2 + x2)
= 3x1 + 5x2 + 2x1x2 + x1x3 + 3x2x3

+ (1 + x1x3 + x3x2)
= 1 + 3x1 + 5x2 + 2x1x2 + x1x3 + 3x2x3 + x1x3 + x3x2



QUBO Results

Flows and Posiform Transformations

1

1

2

3

2

1

1

1

1

1
1

1

2

1

x1

x2

x3

0

x1

x2

x3

f = 4x1 + 6x2 + 2x1x2 + 2x1x3 + 4x2x3

= 1 + 3x1 + 5x2 + 2x1x2 + x1x3 + 3x2x3 + x1x3 + x3x2



QUBO Results

Flows and Posiform Transformations

1

1

1

1
2

2

2

2

1

1

1

1

1

11

x1

x2

x3

0

x1

x2

x3

f = 4x1 + 6x2 + 2x1x2 + 2x1x3 + 4x2x3

= 1 + 3x1 + 5x2 + 2x1x2 + x1x3 + 3x2x3 + x1x3 + x3x2

= 4 + 2x2 + 2x1x2 + 2x1x3 + 2x2x3 + 2x2x3



QUBO Results

Persistencies and Decompositions

1

1

1

1
2

2

2

2

1

1

1

1

1

11

x1

x2

x3

0

x1

x2

x3

f = 10− 2x1 − 6x2 + 2x1x2 − 2x1x3 + 4x2x3

= 4x1 + 6x2 + 2x1x2 + 2x1x3 + 4x2x3

= 4 + 2x2 + 2x1x2 + 2x1x3 + 2x2x3 + 2x2x3



QUBO Results

Persistencies and Decompositions

1

1

1

1
2

2

2

2

1

1

1

1

1

11

x2

x3

x3

0

x2x1

x1

f = 10− 2x1 − 6x2 + 2x1x2 − 2x1x3 + 4x2x3

= 4x1 + 6x2 + 2x1x2 + 2x1x3 + 4x2x3

= 4 + 2x2 + 2x1x2 + 2x1x3 + 2x2x3 + 2x2x3



QUBO Results

Persistencies and Decompositions

1

1

1

1
2

2

2

2

1

1

1

1

1

11

x2

x3

x3

0

x2x1

x1

Strong persistency: x2 = 1, x3 = 0
Weak persistency: x1 = 1 (or x1 = 0)



QUBO Results

Persistencies and Decompositions

1

1

1

1
2

2

2

2

1

1

1

1

1

11

x2

x3

x3

0

x2x1

x1

Strong persistency: x2 = 1, x3 = 0
Weak persistency: x1 = 1 (or x1 = 0)



QUBO Results

Persistencies and Decompositions

Type I: u ∈ C =⇒ u 6∈ C

Type II: u ∈ C ⇐⇒ u 6∈ C

Persistencies eliminate all type I strong components.
Residual (type II) strong components decompose original
problem into variable disjoint, independent subproblems.
Submodular input (all quadratic coefficients are negative)
results in an implication network consisting of two
subnetworks on {x1, ..., xn} and {x1, ...xn}, which are
completely independent =⇒ no type II strong
component =⇒ C2(f) = min f !



QUBO Results

Persistencies and Decompositions

Type I: u ∈ C =⇒ u 6∈ C

Type II: u ∈ C ⇐⇒ u 6∈ C

Persistencies eliminate all type I strong components.
Residual (type II) strong components decompose original
problem into variable disjoint, independent subproblems.
Submodular input (all quadratic coefficients are negative)
results in an implication network consisting of two
subnetworks on {x1, ..., xn} and {x1, ...xn}, which are
completely independent =⇒ no type II strong
component =⇒ C2(f) = min f !



QUBO Results

Persistencies and Decompositions

Type I: u ∈ C =⇒ u 6∈ C

Type II: u ∈ C ⇐⇒ u 6∈ C

Persistencies eliminate all type I strong components.
Residual (type II) strong components decompose original
problem into variable disjoint, independent subproblems.
Submodular input (all quadratic coefficients are negative)
results in an implication network consisting of two
subnetworks on {x1, ..., xn} and {x1, ...xn}, which are
completely independent =⇒ no type II strong
component =⇒ C2(f) = min f !



QUBO Results

Persistencies and Decompositions

Type I: u ∈ C =⇒ u 6∈ C

Type II: u ∈ C ⇐⇒ u 6∈ C

Persistencies eliminate all type I strong components.
Residual (type II) strong components decompose original
problem into variable disjoint, independent subproblems.
Submodular input (all quadratic coefficients are negative)
results in an implication network consisting of two
subnetworks on {x1, ..., xn} and {x1, ...xn}, which are
completely independent =⇒ no type II strong
component =⇒ C2(f) = min f !



QUBO Results

Persistencies and Decompositions

Type I: u ∈ C =⇒ u 6∈ C

Type II: u ∈ C ⇐⇒ u 6∈ C

Persistencies eliminate all type I strong components.
Residual (type II) strong components decompose original
problem into variable disjoint, independent subproblems.
Submodular input (all quadratic coefficients are negative)
results in an implication network consisting of two
subnetworks on {x1, ..., xn} and {x1, ...xn}, which are
completely independent =⇒ no type II strong
component =⇒ C2(f) = min f !



QUBO Results

Implication Networks and Persistencies

There is a one-to-one correspondence between quadratic
posiform transformations and flow-augmentations...
For any binary assignment x ∈ {0, 1}n there is a
corresponding cut (S, S) in the implication network of f
such that f(x) = cut(S, S).
... but, there are many other cuts in the implication
networks!
..., therefore, the max-flow-min-cut value = C2(f) is only a
lower bound for f .
There is a unique maximal subset of the variables which is
fixed by persistencies (i.e., which participate in a type I
strong component).
There is a unique decomposition of the residual problem
into variable disjoint smaller subproblems.



QUBO Results

Implication Networks and Persistencies

There is a one-to-one correspondence between quadratic
posiform transformations and flow-augmentations...
For any binary assignment x ∈ {0, 1}n there is a
corresponding cut (S, S) in the implication network of f
such that f(x) = cut(S, S).
... but, there are many other cuts in the implication
networks!
..., therefore, the max-flow-min-cut value = C2(f) is only a
lower bound for f .
There is a unique maximal subset of the variables which is
fixed by persistencies (i.e., which participate in a type I
strong component).
There is a unique decomposition of the residual problem
into variable disjoint smaller subproblems.



QUBO Results

Implication Networks and Persistencies

There is a one-to-one correspondence between quadratic
posiform transformations and flow-augmentations...
For any binary assignment x ∈ {0, 1}n there is a
corresponding cut (S, S) in the implication network of f
such that f(x) = cut(S, S).
... but, there are many other cuts in the implication
networks!
..., therefore, the max-flow-min-cut value = C2(f) is only a
lower bound for f .
There is a unique maximal subset of the variables which is
fixed by persistencies (i.e., which participate in a type I
strong component).
There is a unique decomposition of the residual problem
into variable disjoint smaller subproblems.



QUBO Results

Implication Networks and Persistencies

There is a one-to-one correspondence between quadratic
posiform transformations and flow-augmentations...
For any binary assignment x ∈ {0, 1}n there is a
corresponding cut (S, S) in the implication network of f
such that f(x) = cut(S, S).
... but, there are many other cuts in the implication
networks!
..., therefore, the max-flow-min-cut value = C2(f) is only a
lower bound for f .
There is a unique maximal subset of the variables which is
fixed by persistencies (i.e., which participate in a type I
strong component).
There is a unique decomposition of the residual problem
into variable disjoint smaller subproblems.



QUBO Results

Implication Networks and Persistencies

There is a one-to-one correspondence between quadratic
posiform transformations and flow-augmentations...
For any binary assignment x ∈ {0, 1}n there is a
corresponding cut (S, S) in the implication network of f
such that f(x) = cut(S, S).
... but, there are many other cuts in the implication
networks!
..., therefore, the max-flow-min-cut value = C2(f) is only a
lower bound for f .
There is a unique maximal subset of the variables which is
fixed by persistencies (i.e., which participate in a type I
strong component).
There is a unique decomposition of the residual problem
into variable disjoint smaller subproblems.



QUBO Results

Implication Networks and Persistencies

There is a one-to-one correspondence between quadratic
posiform transformations and flow-augmentations...
For any binary assignment x ∈ {0, 1}n there is a
corresponding cut (S, S) in the implication network of f
such that f(x) = cut(S, S).
... but, there are many other cuts in the implication
networks!
..., therefore, the max-flow-min-cut value = C2(f) is only a
lower bound for f .
There is a unique maximal subset of the variables which is
fixed by persistencies (i.e., which participate in a type I
strong component).
There is a unique decomposition of the residual problem
into variable disjoint smaller subproblems.



QUBO Results

Outline

1 Quadratic Unconstrained Binary Optimization
Quadratic Pseudo-Boolean Functions
Applications of QUBO
Representations and Bounds
Persistencies and Autarkies
Posiforms and QUBO
Implication Networks
Graph Cuts and Implication Networks

2 Results
Components of the Algorithm
Computational Results
References



QUBO Results

The Submodular Case

To a submodular QPBF f we can associate both a graph-cut network Gf

and an implication network Nf :



QUBO Results

The Submodular Case

1

x1

x2x3

0

1

x1

x1x2

x2

x3

x3

0

To a submodular QPBF f we can associate both a graph-cut network Gf

and an implication network Nf :

f = 4 + 8x2 + 2x3 − 4x1x2 − 2x1x3 − 2x2x3



QUBO Results

The Submodular Case

1

x1

x2x3

0

1

x1

x1x2

x2

x3

x3

0

To a submodular QPBF f we can associate both a graph-cut network Gf

and an implication network Nf :

f = 4 + 8x2 + 2x3 − 4x1x2 − 2x1x3 − 2x2x3

= −2 + 6x1 + 6x2 + 2x3 + 4x1x2 + 2x1x3 + 2x2x3



QUBO Results

The Submodular Case

6 3

3

1

x1

x2x3

0

1

x1

x1x2

x2

x3

x3

0

To a submodular QPBF f we can associate both a graph-cut network Gf

and an implication network Nf :

f = 4 + 8x2 + 2x3 − 4x1x2 − 2x1x3 − 2x2x3

= −2 + 6x1 + 6x2 + 2x3 + 4x1x2 + 2x1x3 + 2x2x3



QUBO Results

The Submodular Case

6 3

36 3

3

1

x1

x2x3

0

1

x1

x1x2

x2

x3

x3

0

To a submodular QPBF f we can associate both a graph-cut network Gf

and an implication network Nf :

f = 4 + 8x2 + 2x3 − 4x1x2 − 2x1x3 − 2x2x3

= −2 + 6x1 + 6x2 + 2x3 + 4x1x2 + 2x1x3 + 2x2x3



QUBO Results

The Submodular Case

6 3

36 3

3

2 1

1

1

x1

x2x3

0

1

x1

x1x2

x2

x3

x3

0

To a submodular QPBF f we can associate both a graph-cut network Gf

and an implication network Nf :

f = 4 + 8x2 + 2x3 − 4x1x2 − 2x1x3 − 2x2x3

= −2 + 6x1 + 6x2 + 2x3 + 4x1x2 + 2x1x3 + 2x2x3



QUBO Results

The Submodular Case

6 3

36 3

3

2 1

1

4 2 2

1

x1

x2x3

0

1

x1

x1x2

x2

x3

x3

0

To a submodular QPBF f we can associate both a graph-cut network Gf

and an implication network Nf :

f = 4 + 8x2 + 2x3 − 4x1x2 − 2x1x3 − 2x2x3

= −2 + 6x1 + 6x2 + 2x3 + 4x1x2 + 2x1x3 + 2x2x3



QUBO Results

The Submodular Case

6 3

36 3

3

2 1

1

4 2 22 1 1

1

x1

x2x3

0

1

x1

x1x2

x2

x3

x3

0

To a submodular QPBF f we can associate both a graph-cut network Gf

and an implication network Nf :

f = 4 + 8x2 + 2x3 − 4x1x2 − 2x1x3 − 2x2x3

= −2 + 6x1 + 6x2 + 2x3 + 4x1x2 + 2x1x3 + 2x2x3



QUBO Results

The Submodular Case

6 3

36 3

3

2 1

1

4 2 22 1 1

2 1

1

1

x1

x2x3

0

1

x1

x1x2

x2

x3

x3

0

To a submodular QPBF f we can associate both a graph-cut network Gf

and an implication network Nf :

f = 4 + 8x2 + 2x3 − 4x1x2 − 2x1x3 − 2x2x3

= −2 + 6x1 + 6x2 + 2x3 + 4x1x2 + 2x1x3 + 2x2x3



QUBO Results

The Submodular Case

6 3

36 3

3

2 1

1

4 2 22 1 1

2 1

1

1

x1

x2x3

0

1

x1

x1x2

x2

x3

x3

0

To a submodular QPBF f we can associate both a graph-cut network Gf

and an implication network Nf :

f = 4 + 8x2 + 2x3 − 4x1x2 − 2x1x3 − 2x2x3

= −2 + 6x1 + 6x2 + 2x3 + 4x1x2 + 2x1x3 + 2x2x3



QUBO Results

Outline

1 Quadratic Unconstrained Binary Optimization
Quadratic Pseudo-Boolean Functions
Applications of QUBO
Representations and Bounds
Persistencies and Autarkies
Posiforms and QUBO
Implication Networks
Graph Cuts and Implication Networks

2 Results
Components of the Algorithm
Computational Results
References



QUBO Results

Components of the Algorithm

The purpose of the preprocessing algorithm is to fix some of
the variables at their optimum values and decompose the
remaining problem into several smaller problems which do not
share variables, in strongly polynomial time.

Build implication network
Compute maximum flow; fix variables by persistency
(increase capacities of some arcs)
Probe remaining variables and repeat all of the above as
long as there is some change.
Output remaining strong components, if any.



QUBO Results

Components of the Algorithm

The purpose of the preprocessing algorithm is to fix some of
the variables at their optimum values and decompose the
remaining problem into several smaller problems which do not
share variables, in strongly polynomial time.

Build implication network
Compute maximum flow; fix variables by persistency
(increase capacities of some arcs)
Probe remaining variables and repeat all of the above as
long as there is some change.
Output remaining strong components, if any.



QUBO Results

Components of the Algorithm

The purpose of the preprocessing algorithm is to fix some of
the variables at their optimum values and decompose the
remaining problem into several smaller problems which do not
share variables, in strongly polynomial time.

Build implication network
Compute maximum flow; fix variables by persistency
(increase capacities of some arcs)
Probe remaining variables and repeat all of the above as
long as there is some change.
Output remaining strong components, if any.



QUBO Results

Components of the Algorithm

The purpose of the preprocessing algorithm is to fix some of
the variables at their optimum values and decompose the
remaining problem into several smaller problems which do not
share variables, in strongly polynomial time.

Build implication network
Compute maximum flow; fix variables by persistency
(increase capacities of some arcs)
Probe remaining variables and repeat all of the above as
long as there is some change.
Output remaining strong components, if any.



QUBO Results

Components of the Algorithm

The purpose of the preprocessing algorithm is to fix some of
the variables at their optimum values and decompose the
remaining problem into several smaller problems which do not
share variables, in strongly polynomial time.

Build implication network
Compute maximum flow; fix variables by persistency
(increase capacities of some arcs)
Probe remaining variables and repeat all of the above as
long as there is some change.
Output remaining strong components, if any.



QUBO Results

Components of the Algorithm

The purpose of the preprocessing algorithm is to fix some of
the variables at their optimum values and decompose the
remaining problem into several smaller problems which do not
share variables, in strongly polynomial time.

Build implication network
Compute maximum flow; fix variables by persistency
(increase capacities of some arcs)
Probe remaining variables and repeat all of the above as
long as there is some change.
Output remaining strong components, if any.

If the input QPBF is submodular, then the above
procedure will fix all the variables at their optimal
values in the first round, without any probing.



QUBO Results

Outline

1 Quadratic Unconstrained Binary Optimization
Quadratic Pseudo-Boolean Functions
Applications of QUBO
Representations and Bounds
Persistencies and Autarkies
Posiforms and QUBO
Implication Networks
Graph Cuts and Implication Networks

2 Results
Components of the Algorithm
Computational Results
References



QUBO Results

Via Minimization in VLSI Design

Percentage of Variables Fixed by

Problem2 n Persistency Probing ALL Time
(strong) (weak) (forc) (equal) TOOLS (sec)

via.c1y 829 93.6% 6.4% 0% 0% 100% 0.03
via.c2y 981 94.7% 5.3% 0% 0% 100% 0.06
via.c3y 1328 94.6% 5.4% 0% 0% 100% 0.09
via.c4y 1367 96.4% 3.6% 0% 0% 100% 0.09
via.c5y 1203 93.1% 6.9% 0% 0% 100% 0.08

via.c1n 828 57.4% 9.6% 32.4% 0.6% 100% 0.49
via.c2n 980 12.4% 4.4% 83.1% 0.1% 100% 7.14
via.c3n 1327 6.8% 5.7% 87.3% 0.2% 100% 18.17
via.c4n 1366 11.1% 1.3% 87.6% 0% 100% 23.08
via.c5n 1202 3.4% 1.4% 95.0% 0.2% 100% 17.13

2S. Homer and M. Peinado. Design and performance of parallel and
distributed approximation algorithms for maxcut. Journal of Parallel and
Distributed Computing 46 (1997) 48-61.



QUBO Results

Vertex Cover in Planar Graphs

Averages for 100 graphs in each of the 4 groups
Variables Fixed (%) Time (sec)

n A. D. N.3 QUBO4 A. D. N.2 QUBO3

1000 68.4 100 4.06 0.05
2000 67.4 100 12.24 0.16
3000 65.5 100 30.90 0.27
4000 62.7 100 60.45 0.53

3Alber, Dorn, Niedermeier. Experimental evaluation of a tree
decomposition based algorithm for vertex cover on planar graphs. Discrete
Applied Mathematics 145 (2005) 219-231; 750 GHz, Linux PC, 720 MB

4Pentium 4, 2.8 GHz, Windows XP, 512 MB



QUBO Results

Jumbo Vertex Cover in Planar Graphs

Computing Times (min)5

Vertices Planar Density
10% 50% 90%

50,000 0.7 2.3 0.9
100,000 2.9 10.2 3.9
250,000 19.5 69.8 26.3
500,000 79.3 277.3 106.9

QUBO fixed all variables for all problems!

5Averages over 3 experiments on a Xeon 3.06 GHz, XP, 3.5 GB RAM.



QUBO Results

One Dimensional Ising Models

Average Computing Time (s)
σ Number of Spins Branch, Cut & Price6 Biq Maq5 QUBO7

2.5 100 699 68 1
150 92 079 388 3
200 N/A 993 9
250 N/A 6 567 14
300 N/A 34 572 21

3.0 100 256 59 1
150 13 491 293 2
200 61 271 1 034 3
250 55 795 3 594 4
300 55 528 8 496 5

6F. Rendl, G. Rinaldi, A. Wiegele. (2007). Solving max-cut to
optimality by intersecting semidefinite and polyhedral relaxations.

7ALL problems were solved by QUBO.



QUBO Results

Larger One Dimensional Ising Models

Average of 3 Problems
σ n Variables not fixed QUBO Time (s)8

2.5 500 5 13
750 22 30

1000 24 53
1250 20 81
1500 32 124

3.0 500 0 4
750 0 12

1000 0 23
1250 0 37
1500 0 59

8Pentium M, 1.6 GHz 760 MB RAM



QUBO Results

Outline

1 Quadratic Unconstrained Binary Optimization
Quadratic Pseudo-Boolean Functions
Applications of QUBO
Representations and Bounds
Persistencies and Autarkies
Posiforms and QUBO
Implication Networks
Graph Cuts and Implication Networks

2 Results
Components of the Algorithm
Computational Results
References



QUBO Results

References

Hammer, P.L. Some network flow problems solved with
pseudo-Boolean programming. Operations Research 13 (1965)
388-399.

Hammer, P.L. and S. Rudeanu. Boolean Methods in Operations
Research and Related Areas. (Springer-Verlag, Berlin,
Heidelberg, New York, 1968.)

Hammer, P.L., P. Hansen and B. Simeone. Roof duality,
complementation and persistency in quadratic 0−1 optimization.
Mathematical Programming 28 (1984), pp. 121-155.

Boros E. and P.L. Hammer. A max-flow approach to improved
roof-duality in quadratic 0− 1 minimization. RUTCOR
Research Report RRR 15-1989, RUTCOR, March 1989.

Boros, E., Y. Crama, and P.L. Hammer. Upper bounds for
quadratic 0− 1 maximization. Operations Research Letters, 9
(1990), 73-79,



QUBO Results

References Cont’d

Billionnet, A. and A. Sutter. Persistency in quadratic 0− 1
optimization. Math. Programming 54 (1992), no. 1, Ser. A, pp.
115–119.

Boros, E., Y. Crama and P.L. Hammer. Chvátal cuts and odd
cycle inequalities in quadratic 0− 1 optimization. SIAM Journal
on Discrete Mathematics, 5 (1992), 163-177.

Boros, E. and P.L. Hammer, Pseudo-Boolean Optimization,
Discrete Applied Mathematics, 123 (2002) 155–225.

Boros, E., P.L. Hammer and G. Tavares. Preprocessing for
unconstrained quadratic binary programming. RUTCOR
Research Report, 10-2006.

Boros, E., P.L. Hammer, G. Tavares, and R. Sun. A max-flow
approach to improved lower bounds for quadratic 0− 1
minimization. Discrete Optimization, 5/2 (2007) 501-529.



QUBO Results

THANK YOU!


	Quadratic Unconstrained Binary Optimization
	Quadratic Pseudo-Boolean Functions
	Applications of QUBO
	Representations and Bounds
	Persistencies and Autarkies
	Posiforms and QUBO
	Implication Networks
	Graph Cuts and Implication Networks

	Results
	Components of the Algorithm
	Computational Results
	References


