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1. ORDERED STRUCTURES

1.1. Preliminaries.
ä By an ordered structure we mean a first order structureM = 〈M,<, . . .〉 where
< is a dense linear ordering on M .

ä We fix an ordered structureM.
ä By definable we mean definable with parameters from M .
ä By an interval we mean an interval in M with endpoints in M ∪ {±∞}.
ä For a function f we will denote by Γ(f ) the graph of f .
ä For definable X ⊆ Mn and Y ⊆ Mk, as usual, we say that a function f : X →
Y is definable if the graph of f is a definable subset of Mn ×Mk.

ä For a set X ⊆Mk we will denote by Xc the complement of X , i.e. Mk \X .
ä We use 〈a, b〉 to denote an ordered pair.
ä Topology: we use the order topology on M and the product topology on Mk.
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1.2. Definability in Ordered Structures.

Proposition 1.1. If X is a definable subset of Mn then the topological closure and
interior of X are definable.

Proof. Exercise 1.1. �

Proposition 1.2. Let A ⊆ Mn be a definable set and f : A → M a definable
function.
(1) The set {a ∈ A : f is continuous at a } is definable.
(2) The function x 7→ limt→x f (t) is definable (i.e. its domain is a definable set
and the function is definable).

Proof. Exercise 1.2. �

Proposition 1.3 (Uniform definability). Let {Xa : a ∈ Mk} be a uniformly defin-
able family of subsets of Mn (i.e. there is definable X ⊆ Mk ×Mn such that for
every a ∈Mk we have Xa = {x ∈Mn : 〈a, x〉 ∈ X}). Then
(1) The family {cl(Xa) : a ∈Mk} is also uniformly definable.
(2) The sets of all a ∈Mk such that Ma is a discrete set, an open set, a closed set,
a bounded set, nowhere dense set are definable.

Proof. Exercise 1.3. �
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Ecercise 1.4. LetM be an ℵ1-saturated ordered structure.
(1) Show that a sequence (ai)i∈N inM is convergent if and only if it is eventually
constant.

(2) Show that M is not topologically connected.
(3) Show that every compact subset of M is finite.

1.3. Definable Connectedness.

Definition 1.4. A subset A ⊆ Mn is definably connected if there are no definable
open U1, U2 ⊆ Mn such that A ∩ U1 ∩ U2 = ∅ and both A ∩ U1 and A ∩ U2 are
nonempty.

Ecercise 1.5.
(1) Show that the image of a definably connected set under a definable continuous
map is definably connected.

(2) Let X1, X2 ⊆ Mn be definable connected sets with cl(X1) ∩ X2 6= ∅. Show
that X1 ∪X2 is definably connected.
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1.4. O-minimal Structures.

Definition 1.5. An ordered structureM is called o-minimal if every definable sub-
set A ⊆M is a finite union of points and intervals.

Proposition 1.6. IfM = 〈M,<〉 is a densely ordered set thenM is o-minimal.

Proof. By quantifier elimination every definable subset A ⊆ M is a Boolean com-
bination of sets x < a, x = a, a < x.

Ecercise 1.6. Show that an ordered structureM is o-minimal if and only if every
definable subset A ⊆M is a Boolean combination of points and intervals.

�

Ecercise 1.7. Let V = 〈V,<,+, (λk)k∈K〉 be an ordered vector space over an or-
dered field K. Show that V is o-minimal. (You may use quantifier elimination for
V .)

Ecercise 1.8. Show that the ordered field of real numbers R̄ = 〈R, <,+,−, ·, 0, 1〉
is o-minimal. (You may use quantifier elimination for R̄.)
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Ecercise 1.9. LetM be an o-minimal structure.
(1) Show that every interval I ⊆M is definably connected.
(2) Show that Mn is definably connected.
(3) (Intermediate Value Theorem) Let f, g : I →M be definable continuous func-
tions on an open interval I such that for any x ∈ I we have f (x) 6= g(x). Show
that either f (x) > g(x) on I, or f (x) < g(x) on I .

(4) Show that every infinite definable subset of M contains an interval.
(5) Show that if A ⊆M is a definable subset then the frontier of A
(fr(A) = cl(A) \ int(A)) is finite.

(6) Show that a definable bounded from above A ⊆M has a least upper bound.
(7) Let {Xa : a ∈Mk} be a uniformly definable family. Show that the set
{a ∈Mk : Xa is finite } is definable.

(8) Let Ḡ = 〈G,<, ·〉 be an ordered group. Assume Ḡ is o-minimal. Show that Ḡ
has no definable nontrivial proper subgroups and it is abelian.

(9) Let R̄ = 〈R,<, ·,+,−, ·, 0, 1〉 be an ordered field. Assume R̄ is o-minimal.
Show that R̄ is real closed.

Claim 1.7. LetM be an o-minimal structure and X ⊆ M be a definable set. For
a ∈M exactly one of the following holds

(1) There is ε > a such that (a, ε) ⊆ X;
(2) There is ε > a such that (a, ε) ⊆ Xc.

Proof. Exercise 1.10 �
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2. UNIFORM FINITENESS

ã We fix an o-minimal structureM.

Theorem 2.1 (Main Theorem). If N ≡M then N is o-minimal.

Theorem 2.2 (Uniform Finiteness). Let {Xa : a ∈ Mk} be a uniformly definable
family of subsets of M . Then there is k ∈ N such that for all a ∈Mk we have

|Xa| > k ⇐⇒ Xa is infinite.

Ecercise 2.1. Show that Theorem 2.1 implies Theorem 2.2 and vice versa.

Ecercise 2.2. Show that there are elementary equivalent structures A and B such
that:
(a) Every definable subset of A is either finite or co-finite;
(b) The is an infinite and co-infinite definable subset of B.

2.1. Monotonicity Theorem. Our first goal is to show that every definable func-
tion f : M →M is piece-wise continuous and monotone.

We need some technical claims first.
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Claim 2.3. Let I ⊆ M be an open interval and f : I → M a definable function
such that x < f (x) for every x ∈ I . Then there is an open interval J ⊆ I and
c > J such that f (x) > c for all x ∈ J .

Proof. We assume I = (a, b). Let

B = {d ∈ I : f (x) ≤ f (d) for all x ∈ (a, d)}.
Case 1: There is ε > a such that (a, ε) ⊆ B.
Then f is increasing on (a, ε) and we can take J = (α, β) ⊆ (a, ε) with a < α <
β < f (α) and c = f (α).
Case 2: not Case 1. Then, by Claim 1.7, there is ε > a such that (a, ε) ⊆ Bc.
Decreasing ε slightly if needed we may assume ε ∈ Bc.
We take c = f (ε) and claim that the set {x ∈ (a, ε) : f (x) > c} is infinite, hence
contains an interval.

Indeed, since ε ∈ Bc, there is t0 ∈ (a, ε) with f (t0) > c. Since t0 ∈ Bc,
there is t1 ∈ (a, t0) with f (t1) > f (t0). Continuing we get an infinite sequence
. . . < t2 < t1 < t0 < ε with c > f (t0) > f (t1) > . . . . �
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Theorem 2.4. Let I ⊆M be an open interval, andX ⊆ I×I a definable set. Then
there is an open interval J ⊆ I such that either {〈x, y〉 ∈ J × J : x < y} ⊆ X or
{〈x, y〉 ∈ J × J : x < y} ⊆ Xc.

Proof. For a ∈ I we will denote by Xa the set {x ∈M : 〈a, x〉 ∈ X}.
Let Y = {a ∈ I : (a, ε) ⊆ Xa for some ε > a}. If Y is finite then, by Claim 1.7,

the set {a ∈ I : (a, ε) ⊆ Xc
a for some ε > a} is infinite. Replacing X with Xc if

needed, we may assume that Y is infinite, hence contains an open interval I ′.
For every a ∈ I ′ let f (a) = sup{b ∈ I ′ : (a, b) ∈ Xa}. It is easy to see that f is

a definable function. Since I ′ ⊆ Y , we have f (a) > a for every a ∈ I ′. Applying
the previous claim we can find an interval J ⊆ I ′ and c > J such that f (a) > c for
all a ∈ J . It is not hard to see that {〈x, y〉 ∈ J × J : x < y} ⊆ X . �

Corollary 2.5. Let I ⊆M be an open interval, and assume I × I ⊆ X1∪ . . .∪Xr

for some definable Xi, i = 1, . . . , r. Then there is an open interval J ⊆ I and
k ∈ {1, . . . r} such that 〈a, b〉 ∈ Xk for every a < b ∈ J .

Theorem 2.6 (Monotonicity Theorem). Let f : I → M be a definable function on
some open interval I = (a, b). Then there are a = a0 < a1 < . . . < an = b such
that on each (ai, ai+1) the function f is either constant or strictly monotone and
continuous.
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Proof. We first show monotonicity. Consider the following definable subset of M :

A= = {x ∈ I : f is locally constant in a neighborhood of x}
A< = {x ∈ I : f is locally increasing in a neighborhood of x}
A> = {x ∈ I : f is locally decreasing in a neighborhood of x}

We claim that the set I \ (A= ∪ A< ∪ A>) is finite. If not, then it is infinite and
contains an interval J . Consider the sets

X� = {〈x, y〉 ∈ J2 : f (x)�f (y)}
where � ∈ {<,=, >}. These sets cover J × J , hence, by Corollary 2.5, there is
an open interval J ′ ⊆ J and � ∈ {=, <,>} such that for all x < y ∈ J ′ we have
f (x)�f (y). It is easy to get a contradiction now.

We leave an Exercise to show that a definable function f : I → M locally in-
creasing (decreasing,constant) at every a ∈ I is increasing (decreasing, constant)
on I .

Continuity: Using monotonicity, we may assume that f is either constant or
strictly monotone on I . The set I0 = {a ∈ I : f is continuous at a } is defin-
able, and we need to show that it is co-finite in I . If not then there would be an
interval J ⊆ I such that f is nowhere continuous on J . Using monotonicity we
may assume that f is strictly monotone on J . The image of J under f is infinite
hence it contains an interval J ′. We leave it as an Exercise to show that f−1(J ′) is
an interval and f is continuous on it. �
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Corollary 2.7. Let f : (a, b) → M be definable. Then for every c ∈ (a, b) both
one-sided limits limx→c+ f (x) and limx→c− f (x) exist in M ∪ {±∞}. Also the
limits limx→a+ f (x) and limx→b− f (x) exist

Corollary 2.8. Let f : [a, b]→M be a definable continuous function. Then f takes
a maximum and minimum values on [a, b].

2.2. Uniform Finiteness and Cell Decomposition in M 2.
ã In this section for a definable set A ⊆M 2 and x ∈M we will denote by Ax the

fiber {y ∈M : 〈x, y〉 ∈ A}.
Our goal is to prove the following uniform finiteness lemma.

Lemma 2.9 (Finiteness Lemma). Let A ⊆ M 2 be a definable subset such that for
every x ∈ M the set Ax is finite. Then there is K ∈ N such that |Ax| < K for all
x ∈M .

Instead of subsetsA as in Lemma 2.9 it is more convenient to consider small sets.
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Definition 2.10. A definable setA ⊆M 2 is small if the set {x ∈M : Ax is infinite}
is finite.

Lemma 2.11. Let A ⊆M 2 be a definable small set. Then there are points
−∞ = a0 < a1 < a2 < . . . < ak < ak+1 = +∞ and natural numbers ki ∈ N such
that for every x ∈ (a1, ai+1) we have |Ax| = ki.

We will prove Lemma 2.11 by a series of claims.

Let A ⊆M 2 be a small definable set. We say that a point 〈a, b〉 ∈ A is normal in
A if there is an open box U = I×J inM 2 containing 〈a, b〉 such that U∩A = Γ(f )
for some definable continuous function f : I → M . We will denote by G(A) the
set of all points normal in A.

Claim 2.12. Let A ⊆ M 2 be a definable small set. If π1(A) is infinite then there
is an open interval I and a definable continuous function f : I → M such that
Γ(f ) ⊆ A.

Claim 2.13. Let A ⊆ M 2 be a definable small set, I ⊆ M an open interval and
f : I → M a definable continuous function such that Γ(f ) ⊆ A. Then there is
x0 ∈ I such that 〈x0, f (x0)〉 is normal in A.

Proof. Exercise 2.3. �

Corollary 2.14. If A ⊆M 2 is a definable small set then π1(A \G(A)) is finite.
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Claim 2.15. If A ⊆M 2 is a definable small set then cl(A) is also small.

Claim 2.16. If A ⊆M 2 is a definable small set then π1(cl(A) \ A) is finite.

Proof. Exercise 2.4. �

We say that a definable set A ⊆ M 2 is locally bounded at a ∈ M if there is an
open interval I containing a and a bounded open interval J such that (I×M)∩A ⊆
I × J .

Claim 2.17. If A ⊆M 2 is a definable small set then A is locally bounded at all but
finitely many a ∈M .

Proof. Exercise 2.5. �

We now ready to finish the proof of Lemma 2.11. Let A ⊆ M 2 be a definable
small set. Using above claims we can find −∞ = a0 < a1 < a2 < . . . < ak <
ak+1 = +∞ such that for every Ii = (ai, ai+1) we have:
• The set A is locally bounded at every x ∈ Ii.
• Every point in (Ii ×M) ∩ A is normal in A.
• (Ii ×M) ∩ A is closed in Ii ×M .

Ecercise 2.6. Let i ∈ {0, . . . , k}. Show that for all x, y ∈ Ii we have |Ax| = |Ay|.

It finishes the proof of Lemma 2.11.

In fact we have obtained a description of small sets.
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Lemma 2.18. Let A ⊆M 2 be a definable small set. Then there are points
−∞ = a0 < a1 < a2 < . . . < ak < ak+1 = +∞ such that the intersection of A
with each vertical strip (ai, ai+1)×M has the form Γ(fi,1)∪Γ(fi,2)∪. . .∪Γ(fi,ki

) for
some definable continuous functions fi,j : (ai, ai+1) → M with fi,1(x) < fi,2(x) <
. . . fi,ki

(x) for x ∈ (ai, ai+1).
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2.3. Uniform Finiteness and Cell Decomposition.

Definition 2.19. For every n ∈ N, we define k-cells in Mn by induction on n as
follows:
(I) A 0-cell in M is a point; an 1-cell in M is an open interval.

(II) Assume C ⊆Mn is a definable k-cell.
(a) If f : C →M is a definable continuous function then Γ(f ) is a k-cell inMn+1.
(b) If f, g : C → M are definable continuous functions with f (x) < g(x) for all

x ∈ C (f, g may be constant functions −∞,+∞) then the set
{〈x, y〉 ∈Mn ×M : x ∈ C, f (x) < y < g(x)} is a (k + 1)-cell in Mn+1.
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Ecercise 2.7. (1) Show that if C ⊆Mn is an n-cell then C is open.
(2) If C ⊆Mn is a k-cell and k < n then C has an empty interior.
(3) If X ⊆ Mn is a union of finitely many (n− 1) cells then Mn \X is dense in
Mn and has a nonempty interior.

(4) Every cell is locally closed, i.e. it is open in its closure.
(5) Every cell is homeomorphic under an appropriate projection to an open cell.
(6) Every cell is definably connected.
(7) We say that two cells C1, C2 are adjacent if either C1 ∩ cl(C2) 6= ∅ or C2 ∩
cl(C1) 6= ∅.
Let X be a finite union of the cells C1, . . . , Ck ⊆ Mn. Show that X is defin-
ably connected if and only there is an ordering of the cells such that any two
consecutive cells in this ordering are adjacent.

(8) Give an example of a cell C ⊆ R2 (in the language of real closed fields) such
that C−1 = {〈y, x〉 ∈ R2 : 〈x, y〉 ∈ C} is not a cell.

Definition 2.20. We define a cell decomposition of Mn by induction on n.

(I) A cell decomposition of M is a partition of M into finitely many points and
open intervals (i.e. a partition of M into finitely many cells).

(II) A cell decomposition of Mn+1 is a partition of Mn+1 into finitely many cells
Ci, i = 1, . . . ,m, such that the set of projections {π(Ci) : i = 1, . . . ,m} is a cell
decomposition of Mn.
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If A ⊆ Mn is a definable set and D is a cell-decomposition of Mn then we say
that D is compatible with A if every cell C ∈ D is either part of A or is disjoint
from A.

The following is the fundamental cell decomposition theorem.

Theorem 2.21 (Cell Decomposition Theorem). (I) IfA1, ..., Ak are definable sub-
sets of Mn then there is a cell decomposition of Mn compatible with each Ai.

(II) For each definable function f : A→ M , A ⊆ Mn, there is a cell decomposi-
tion of Mn compatible with A such that f is continuous on every cell.

The proof of this theorem is done by induction on n and is quite lengthy. Note
that we have proved it for n = 1, and the part (I) for n = 2 can be derived from
Lemma 2.18.

The following claim provides sufficiently many definable continuous functions.

Claim 2.22. Let U ⊆Mn be an open set, I ⊆M an interval, and f : U×M →M
a functions such that for each 〈u, r〉 ∈ U ×M
(a) f (u, ·) is continuous and monotone on I;
(b) f (·, r) is continuous on U .

Then f is continuous.

Proof. Exercise 2.8. �
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2.4. Some Consequences of Cell Decomposition Theorem. For a definable set
X ⊆ Mn a definably connected component of X is a maximal definable definably
connected subset of X .

Corollary 2.23. Let X ⊆ Mn be a nonempty definable set. Then X has only
finitely many definably connected components. They are open and closed in X and
form a partition of X .

Proof. Exercise 2.9. �

In the following statements for a definable subset X ⊆ Mk+n and a ∈ Mk we
will denote by Xa the set {b ∈Mn : 〈a, b〉 ∈ X}.
Proposition 2.24. Let D be a cell decomposition of Mk+n and a ∈ Mk. Then the
collection Da = {Ca : C ∈ D} is a cell decomposition of Mn.

Corollary 2.25. Let {Xa : a ∈ Mk} be uniformly definable family of subsets of
Mn. Then there is K ∈ N such that each Xa has at most K definably connected
components.

Proof. Exercise 2.10. �

Corollary 2.26. If {Xa : a ∈ Mk} is a uniformly definable family of subsets Mn

then there is K ∈ N such that |Xa| > K ⇐⇒ Xa is infinite.

Proof. Exercise 2.11. �

Corollary 2.27. If N ≡M then N is o-minimal.
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3. DIMENSION

ã We fix an o-minimal structureM.

We are going to define two notions of dimensions for sets definable in M and
show that they coincide.

Example 3.1. LetX ⊆ Cn be an algebraic variety defined over a countable subfield
k. Then dimC(X) = max{tr.deg(k(a)/k) : a ∈ X}.
3.1. Algebraic Dimension. Recall that if A ⊆ M and b ∈ M then we say that
b is algebraic over A if there is a formula ϕ(x) over A such thatM |= ϕ(b) and
M |= ∃<kxϕ(x) for some k ∈ N. We say that b is definable over A if we can
choose ϕ(x) as above withM |= ∃!xϕ(x).

For a set A ⊆M the algebraic closure of A is the set

acl(A) = {b ∈M : b is algebraic over A},
and the definable closure of A is the set

dcl(A) = {b ∈M : b is definable over A}.
Ecercise 3.1. Show that in the field C we have

√
2 ∈ acl(Q), but

√
2 6∈ dcl(Q).

Ecercise 3.2. Show that b ∈ acl(A)⇐⇒ b ∈ dcl(A), and b ∈ dcl(A) if and only if
there is a partial function f (x̄) definable over ∅ and ā ∈ A such that b = f (ā).

In order to develop acl-dimension we need Exchange Lemma.
20



Lemma 3.2 (Exchange Lemma). IfA ⊆M and b, c ∈M with b ∈ acl(Ac)\acl(A)
then c ∈ acl(Ab).

For a set A ⊆M and I ⊆M we say that I is independent over A if for all x ∈ I
we have x 6∈ acl

(
A ∪ (I \ {x})

)
.

Definition 3.3. For a set A ⊆ M and a tuple ā ∈ Mn the acl-dimension of ā over
A, a-dim(ā/A), is the least cardinality of a subtuple ā′ of ā such that ā ⊆ acl(Aā′).

Ecercise 3.3.
(1) a-dim(ā/A) is the cardinality of any maximally independent over A subtuple
ā′ of ā.

(2) If A ⊆ B then a-dim(ā/A) ≥ a-dim(ā/B).
(3) (Additivity) a-dim(āb̄/A) = a-dim(ā/Ab̄) + a-dim(b̄/A).

In order to define correctly acl-dimension of a definable set we need to work in a
saturated enough structure. So we also fix a κ-saturated elementary extension M̃
of M, where κ > |M |. For a definable set X ⊆ Mn we will denote by X̃ the
subset of M̃n defined in M̃ be the same formula that defines X inM.

Definition 3.4. (1) Let X ⊆ M̃n be a set defined over A ⊆ M̃ with |A| < κ. We
define the acl-dimension of X to be a-dim(X) = max{a-dim(b/A) : b ∈ X}.

(2) For a definable set X ⊆ Mn defined over a set A ⊆ M we define a-dim(X) =

a-dim(X̃).
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Ecercise 3.4. (1) Show that acl-dimension of a set does not depend on the choice
of A, i.e. if X is also defined over some A′ ⊆ M̃ with |A′| < κ then a-dim(X) =
max{a-dim(b/A′) : b ∈ X}.

(2) Show that acl-dimension of a definable set X ⊆ Mn does not depend on the
choice of M̃.

Ecercise 3.5.
(1) Let X, Y ⊆Mn be definable sets.

(a) Show that a-dim(X ∪ Y ) = max(a-dim(X), a-dim(Y )).
(b) Show that X ⊆ Y implies a-dim(X) ≤ a-dim(Y ).
(c) Show that a-dim(X × Y ) = a-dim(X) + a-dim(Y ).

(2) Let f : X → Mk be a definable map. Show that a-dim(f (X)) ≤ a-dim(X),
with equality if f is injective.

(3) Let C ⊆Mn be a k-cell. Show that a-dim(C) = k.
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3.2. Geometric Dimension.

Definition 3.5. For a definable set X ⊆ Mn we define the dimension of X to be
the largest d such that X contains a d-cell.

Theorem 3.6. For a definable X ⊆ Mn and d ∈ N the following conditions are
equivalent.
(1) dim(X) = d.
(2) a-dim(X) = d.
(3) d is the largest integer such that π(X) has a non-empty interior for some co-
ordinate projection π : Mn →Md.

(4) d is the largest integer such that f (X) has a non-empty interior for some de-
finable f : X →Md.

Proof. Exercise 3.6. �

Corollary 3.7. Let A ⊆Mn be a definable set of dimension and f : A→Mk be a
definable map. Then there is a definable set U ⊆ A such that f is continuous on U
and dim(A \ U) < dim(A).

Corollary 3.8. Let X, Y be definable sets. Then dim(X×Y ) = dim(X) + dim(Y ).

Claim 3.9. If X ⊆Mn is a definable set then dim(cl(X) \X) < dim(X).
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3.2.1. Definability of dimension.

Claim 3.10. Let {Aa : a ∈ Mk} be a uniformly definable family of subsets of Mn.
Then for every d ∈ N the set {a ∈Mk : dim(Aa) = d} is definable.

Proof. Exercise 3.7. �
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4. DEFINABLE CHOICE

ã In this we fix an o-minimal expansion of an ordered group
M = 〈M,<,+, 0, . . .〉.

Theorem 4.1 (Definable Choice). Let {Xa : : a ∈ Mk} be a uniformly definable
family of subsets of Mn. Then there is a definable function f : Mk → Mn such
that f (a) ∈ Xa for every non-empty Xa, and Xa = Xb implies f (a) = f (b).

Corollary 4.2. Let E ⊆ M 2n be a definable equivalence relation on Mn. Then
there is a definable function f : Mn →Mk such that aEb⇐⇒ f (a) = f (b).

Corollary 4.3 (Curve Selection). Let X ⊆ Mn be a definable set and a ∈ cl(X).
Then there is a definable map σ : (0, ε)→ X such that limt→0− σ(t) = a.

Corollary 4.4. Let A ⊆ M be a nonempty set different from {0}. Then dcl(A) is
the universe of an elementary substructure ofM.

Proof. Follows from Tarski-Vaught Test and Definable Choice. �

Ecercise 4.1. Let B ⊆ Mn be a definable bounded closed set and f : → M a
definable continuous function. Show that f takes maximum and minimum values
on B.
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5. SMOOTHNESS

ã In this section we work in o-minimal expansion of a real closed fieldR = 〈R,<
,+, ·, 0, 1, . . .〉.

Definition 5.1. Let I ⊆ R be an open interval. A definable function f : I → R is
differentiable at a ∈ I with the derivative d if

lim
t→0

f (a + t)− f (a)

t
= d.

As usual we write f ′(a) = d.

It is easy to see that if f : I → R is a definable function then the set {x ∈
I : f is differentiable at x} is definable and the function x 7→ f ′(x) is definable on
this set.

Theorem 5.2. Let I be an open interval and f : I → R be a definable function.
Then f is differentiable at all but finitely many points.

Proof. For x ∈ I let

f ′(x+) = lim
t→0+

f (x + t)− f (x)

t
and f ′(x−) = lim

t→0−

f (x + t)− f (x)

t
.

By o-minimality both these limits exist in R ∪ {±∞}, and f is differentiable at x
if and only if f ′(x+) = f ′(x−) ∈ R.
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Step 1. The set {x ∈ I : f ′(x+) 6= f ′(x−)} is finite.
Assume not. Then there is an open interval J ⊆ I such that f ′(x+) 6= f ′(x−) at
any x ∈ J . Decreasing J if needed we may assume that both f ′(x+) and f ′(x−)
are continuous on J . Then either f ′(x+) > f ′(x−) on J or f ′(x+) < f ′(x−). We
assume f ′(x+) > f ′(x−). Then there is c ∈ R and an open interval J ′ ⊆ J such
that f ′(x+) > c > f ′(x−) on J ′. Let J ′′ ⊆ J ′ be an open interval such that the
function F (x) = f (x) − cx is continuous and strictly monotone on J ′′. It is easy
to see that F ′(x+) > 0 and F is increasing on J ′′, and also F ′(x−) < 0 and F is
decreasing on J ′′. A contradiction.
Step 2. The set {x : f ′(x+) ∈ {±∞}} is finite.
Assume that f ′(x+) = +∞ at infinitely many x. Then we can find a, b ∈ I such
that f is continuous on [a, b] and f ′(x+) = f ′(x−) = +∞ on (a, b).

Let h(x) = λx + c be an affine function such that h(a) = f (a) and h(b) = f (b).
Consider the function F (x) = f (x)−h(x). It is easy to see that F ′(x+) = F ′(x−) =
+∞. Since F is continuous on [a, b] and F (a) = F (b) = 0, F attends a maximum
or minimum value at some c ∈ (a, b). If F has maximum at c then F ′(c+) ≤ 0, a
contradiction. If F has minimum at c then F ′(c−) ≤ 0, a contradiction. �
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Corollary 5.3. Let a < b ∈ R and f : (a, b) → R be a definable function. Then
for every r ∈ N there are a = a0 < a1 < . . . < ak = b such that f is Cr on each
(ai, ai+1).

Ecercise 5.1.
(1)(Mean Value Theorem) Assume a < b ∈ R, f : [a, b] is a definable function
continuous on [a, b] and differentiable on (a, b). Then there is c ∈ (a, b) such that
f (b)− f (a) = f ′(c)(b− a).
(2) Assume f : (a, b) → R is a definable function differentiable on (a.b). If
f ′(x) = 0 on (a, b) then f is constant on (a, b).

Definition 5.4. Let U ⊆ Rn be a definable open set and f = (f1, . . . , fk) : U → Rk

a definable map. For r ≥ 1 we say that f = (f1, . . . , fk) : U → Rk is a Cr-map if
all the partial derivatives ∂fi

∂xj
are Cr−1-functions on U .

Ecercise 5.2. Let U ⊆ Rn be a definable open set and f : U → Rk be a definable
continuous map. Then for every r ≥ 1 there is a definable open Vr ⊆ U such f is
Cr on Vr and dim(U \ Vr) < n.

Definition 5.5. Let U ⊆ Rn be a definable open set and f = (f1, . . . , f)k : U → Rk

be a definable C1-map. For a ∈ U the k × n matrix of partial derivatives
(
∂fj
∂xj

(a)
)

is called the Jacobian matrix of f at a and is denoted by Jf(a).
The linear map x 7→ Jf(a)x is called the differential of f at a and is denoted da(f ).
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Theorem 5.6 (Inverse Function Theorem). Let U ⊆ Rn be a definable open set,
f : U → Rn a definable Cr map, and a ∈ U . If da(f ) is invertible then there are
definable open neighborhoods U ′ ⊆ U of a and V of f (a) such that f maps U ′

homeomorphically onto V and f−1 is also Cr.

Theorem 5.7 (Implicit Function Theorem). Let U ⊆ Rk+n be a definable open set
and F = (F1, . . . , Fn) : U → Rn a definable Cr-map. Let 〈x0, y0〉 be in U such
that F (x0, y0) = 0 and the n× n matrix(

∂Fi
∂yj

(x0, y0)

)
1≤i≤n
1≤j≤n

is invertible. Then there are open definable neighborhoods V of x0 in Rk and W
of y0 in Rn, and there is a definable Cr map ϕ : V → W such that V ×W ⊆ U
and for all 〈x, y〉 ∈ V ×W we have

F (x, y) = 0⇐⇒ y = ϕ(x).

Proof. Apply Inverse Function Theorem to the map 〈x, y〉 7→ 〈x, F (x, y)〉. �

29



5.1. Smooth Cell Decomposition.

Definition 5.8. Let A ⊆ Rn be a definable set and f : A → Rm a definable map.
We say that f is Cr on A if there is an open U ⊆ Rn and a definable Cr-map
F : U → Rm extending f .

Definition 5.9. A cell C ⊆ Rn is a Cr-cell if all functions used in forming C are
Cr.

Theorem 5.10 (Smooth Cell Decomposition). Let r ≥ 1.
(1) For any definable A1, . . . , Ak ⊆ Rn there is a Cr-cell decomposition of Rn

compatible with each Ai.
(2) For any definable function f : A→ R,A ⊆ Rn there is aCr cell decomposition
of Rn compatible with A such that f � C is Cr on each cell C ⊆ A

The proof of Smooth Cell Decomposition is based on the following claim.

Claim 5.11. Let C ⊆ Rn be a k-cell, f : C → R a definable function, and r ∈ N.
Then there is a definable subset C ′ ⊆ C such then dim(C \ C ′) < k and f � C ′ is
Cr.
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5.2. Definable Triangulation.

We say that a0, . . . , ad ∈ Rn are affine independent if the vectors
a1 − a0, . . . , ad − a0 are linearly independent.

For a0, . . . , ad ∈ Rn let (a0, . . . , ad) = {
∑
tiai : ti > 0,

∑
ti = 1} ⊆ Rn.

Ecercise 5.3. Show that a0, . . . , ad ∈ Rn are affine independent if and only if
dim ((a0, . . . , ad)) = d.

If a0, . . . , ad ∈ Rn are affine independent then (a0, . . . , ad) is called a d-simplex
in Rn spanned by a0, . . . , ad.

The closure of (a0, . . . , ad) is denoted by [a0, . . . , ad]. It is easy to see that

[a0, . . . , ad] =
{∑

tiai : ti ≥ 0,
∑

ti = 1
}
⊆ Rn

We call a0, . . . , ad the vertices of (a0, . . . , ad) (and [a0, . . . , ad]).
A face of a simplex (a0, . . . , ad) is a simplex spanned by a non-empty subset of
{a0, . . . , ad}.

For simplexes σ and τ we write τ < σ is τ is a proper dace of σ.

Definition 5.12. A complex in Rn is a finite collection K of simplexes in Rn such
that for σ1, σ2 ∈ K either cl(σ1) ∩ cl(σ2) = ∅ or cl(σ1) ∩ cl(σ2) = cl(τ ) for some
common face τ of σ1 and σ2. (τ is not required to be in K !).
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For a simplex K in Rn, the polyhedron spanned by K is
|K| = union of all simplexes in K, and the set of vertices of K is
V ert(K) = the set of all vertices of the simplexes in K.

Theorem 5.13 (Triangulation Theorem). Let S1, . . . , Sk ⊆ Rn be definable sets.
Then there is a complex K is Rn and a homeomorphism Φ: Rn → |K| such that
Φ(Si) is a union of simplexes in K.

For N ∈ N let KN be the complex consisting of the simplex (e1, . . . , eN) and all
its faces, where e1, . . . , eN is the standard basis of RN .

Claim 5.14. For every definable set A ⊆ Rn there is N ∈ N and a subcomplex K
of KN such that A is definably homeomorphic to |K|.
Proof. Let L be a complex in Rn such that A is definably homeomorphic to |L|.
Let V = {v1, . . . , vN} be the set of vertices of L.

Let F : V → RN be the map vi 7→ ei, and
K = {(F (vi1), . . . , F (vis)) : (vi1), . . . , vis) ∈ L}.
Ecercise 5.4. K is a subcomplex of KN and F extends to a homeomorphism from
|L| onto |K|.

�

Corollary 5.15. Up-to a definable homeomorphism there are at most countably
many definable sets.
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Theorem 5.16. Let {Sa : a ∈ Rk} be a uniformly definable family of subsets of Rn.
Then there is N ∈ N and a partial definable map f : Rk ×Rn → RN such that for
each a ∈ Rk the map fa : x → f (a, x) is a homeomorphism from Sa onto a union
of faces of KN .

Proof. The type

Σ(x) = {x ∈ Rk}
⋃
N∈N

{
¬∃ z

(
ϕ(u, v, z) defines a graph of a homeomorphism

from Sx onto a union of faces of KN

)
: ϕ(u, v, z) is an L-formula.

}
is inconsistent. Hence we can partitionRk into finitely many definable setsAi such
that for each Ai there is Ni ∈ N and a formula ϕi(u, vi, zi) such that for a ∈ Ai,
ϕi(u, vi, ba) defines a homeomorphism from Sa into a union of faces of KNi

, for
some ba.

It is not hard to see that we can put all Ai together and assume one ϕ works for
all Rk. Now we use definable choice. �
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5.3. Definable Trivialization.

Definition 5.17. Let f : S → A be a definable map. We say that f is trivial if there
is a definable set F and a definable homeomorphism h : S → A× F such that the
following diagram is commutative

S A× F

A

-h

Q
Q
QQsf

�
��+ π

We say that f is trivial over a definable set B ⊆ A if for SB = f−1(B) the map
f � SB : SB → B is trivial.

Theorem 5.18 (Definable Trivialization). For a definable continuous map f : S →
A there is a definable partition of A = A1∪ . . .∪Al such that f is trivial over each
Ai.
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Proof. Using Theorem 5.16, after partitioning A if needed, we can assume that
there is a definable set F and a definable bijection h : S → A × F such that the
following diagram is commutative

S A× F

A

-h

Q
Q
QQsf

�
��+ π

and for each a ∈ A, h maps f−1(a) homeomorphically onto {a} × F . �

Claim 5.19. Let S ⊆ A× Rn be a definable set such that for each x ∈ A the fiber
Sx = {y ∈ Rn : 〈x, y〉 ∈ S} is closed in Rn. Then there is a partition of A into
finitely many set Ai such that S ∩ (Ai ×Rn) is closed in Ai ×Rn.

Proof. We do it by induction on dim(A). If dim(A) = 0 then A is a finite set and S
is closed.

Assume dim(A) > 0. Let A′ = π(cl(S) \ S), where π : S → A is a projection.
For A0 = A \ A′ we have that S ∩ (A0 ×Rn) is closed in A0 ×Rn. Thus, by the

induction hypothesis, it is sufficient to show that dim(A′) < dim(A).
Assume not, i.e. dim(A′) = dim(A). Using definable choice we can find a

definable function α : A′ → Rn such that α(a) ∈ Rn \Sa and 〈a, α(a)〉 ∈ cl(S) for
all a ∈ A′.
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Since each Sa is closed inRn, using definable choice, we can also find a definable
function γ : A′ → R such that for all a ∈ A′ we have Bγ(a)(α(a))∩ Sa = ∅, where
Bγ(a)(α(a)) is an open ball in Rn of radius γ(a) centered at a.

Let A′′ ⊆ A′ be a definable set with dim(A′ \A′′) < dim(A′) such that both α and
γ are continuous on A′′. Since dim(A′′) = dim(A), A′′ contains a definable open
in A set U . The set {〈x, y〉 : x ∈ U, y ∈ Bγ(x)(α(x))} is open in A × Rn, disjoint
from S and also contains points 〈x, α(x)〉 in the closure of S. A contradiction. �
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6. SOME O-MINIMAL STRUCTURE OVER THE REALS

The following structure are o-minimal:
(1) R̄ = 〈R, <,+,−, ·, 0, 1〉 -the field of real numbers;
(2) Ran - the field of real numbers expanded by all restricted analytic functions;
(3) Ran,exp - the expansion of Ran by the function x 7→ ex.

6.1. The structure Ran and subanalytic sets. LetA be a real analytic manifold of
dimension n and X ⊆ A. Then the X is subanalytic in A if for every point a ∈ A
there is an open neighborhood U of a in A and an analytic bijection f : U → V ,
where V is an open subset of Rn such that f (X ∩ U) is definable in Ran.

Example 6.1.
(a) The set {〈x, sin(x)〉 : x ∈ R} is a subanalytic subset of R2, but it is not defin-
able in Ran.

(b) The set {〈x, sin(1/x)〉 : x ∈ R∗} is not subanalytic in R2, but it is subanalytic
in R∗ × R.

Claim 6.2. The set X ⊆ Rn is definable in Ran if and only if the set Π(X) is
subanalytic in Rn, where Π(x) : Rn → Rn is the map

〈x1, . . . , xn〉 7→

〈
x1√

1 + x2
1

, . . . ,
xn√

1 + x2
n

〉
.

Proof. Exercise 6.1. �
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6.2. Growth Dichotomy. There is a fundamental difference between structures
Ran and Rexp.

Definition 6.3. Let R = 〈R,<,+, ·, . . .〉 be an o-minimal expansion of a real
closed field. We say that the structure R is polynomially bounded if for every
definable function function f : [c,+∞)→ R there isN ∈ N such that |f (x)| < xN

for all sufficiently large positive x.

Example 6.4. The structure Rexp IS NOT polynomially bounded.

Fact 6.5. The structures Ran IS polynomially bounded.

Theorem 6.6 (Growth Dichotomy). Let R = 〈R, <,+, . . .〉 be an o-minimal ex-
pansion of the field of reals. If R is not polynomially bounded then the function
x 7→ ex is definable inR.

The proof uses computations in the Hardy field HR of germs at +∞ of R-
definable functions.
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6.3. Field of Germs at 0+.
ã We fix an o-minimal extensionR = 〈R,<,+,−, ·, . . . , 〉 of a real closed field.

Let R′ be a saturated enough elementary extension of R, and τ ∈ R′ a positive
R-infinitesimal element, i.e. 0 < τ < r for all r > 0 ∈ R. Let Rτ = dcl(R∪ {τ}).
Then, by Corollary 4.4, Rτ is the universe of an elementary substructureRτ ofR′,
and it is an elementary extension ofR.

Notice, that for every element a ∈ Rτ there is an R-definable function α : Rτ →
Rτ such that a = α(τ ), and for any formula ϕ(x) we have
Rτ |= ϕ(a) if and only ifR |= ϕ(α(t)) for all small enough t > 0.

Ecercise 6.2. Let X ⊆ Rn
τ be an Rτ -definable set. Then its R-trace X ∩ Rn is an

R-definable subset of Rn.
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7. TAME EXTENSIONS

7.1. Tame extensions.

Definition 7.1. A proper elementary extension R̃ � R is called tame if for every
γ ∈ R̃ the set {x ∈ R : x < γ} isR-definable.

Example 7.2. 1. The extensionRτ ofR is tame.
2. The field of real numbers R̄ is not a tame extension of the field of algebraic real
numbers.

Ecercise 7.1. If R is an o-minimal expansion of the field R̄ then every proper
elementary extension R̃ ofR is tame.

Theorem 7.3 (Definability of Types). Assume R̃ � R is a tame extension. If
X ⊆ (R̃)n is an R̃-definable set then the set X ∩Rn isR-definable subset of Rn.

7.1.1. Standard Part Map. Let R̃ � R be a tame extension, and γ ∈ R̃. The set
A = {r ∈ R : r < γ} is definable in R. Let r = supR(A). We call r the standard
part of γ and denote by st(γ). Thus st : R̃→ R ∪ {±∞}.
Ecercise 7.2. If st(γ) ∈ R then st(γ) is unique element r ∈ R such that |γ−r| < δ
for all 0 < δ ∈ R.

Ecercise 7.3. Let α : R→ R be anR-definable function. Consider the elementary
extensionRτ as above. Let a = α(τ ). Show that st(a) = limt→0+ α(t),
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Ecercise 7.4. Let R̃ � R be a tame extension, and X ⊆ (R̃)n an R̃-definable
R-bounded set. Then the set st(X) = {st(x) : x ∈ X} is R-definable subset of
Rn.
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8. HAUSDORFF LIMITS

For an element x ∈ Rn and a subset Y ⊆ Rn we put
d(x, Y ) = inf{d(x, y) : y ∈ Y }.

We will denote by K(Rn) the collection of all compact subsets of Rn.
The Hausdorff distance on K(Rn) is defined as

dH(X, Y ) = sup{d(x, Y ), d(y,X) : x ∈ X, y ∈ Y }.

Ecercise 8.1. Show that dH is a metric on K(Rn).

For a family C ⊆ K(Rn) we will denote by clH(C) the topological closure of C in
K(Rn) with respect to the topology induced by dH .

Theorem 8.1. Let R = 〈R, <,+,−, ·, . . . , 〉 be an o-minimal expansion of the
field of real numbers. Let C = {Xa : a ∈ Rm} be a uniformly definable family of
compact subsets of Rn and Y ∈ K(Rn). If Y ∈ clH(C) then Y is definable.

Proof. Let X ⊆ Rm+n be a definable set such that for a ∈ Rm we have
Xa = {x ∈ Rn : 〈a, x〉 ∈ X}.

Let R̃ be an ℵ1-saturated elementary extension ofR. Notice that by Exercise 7.1
R̃ is a tame extension of R. We will denote by X̃ the subset of R̃m+n defined by
the same formula as X in Rm+n.

By Exercise 7.4, the Theorem will follow from the following claim.
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Claim 8.2. For a set Y ∈ K(Rn) we have Y ∈ clH(C) if and only if Y = st(X̃α)

for some α ∈ R̃m.

Proof. Let Y ∈ K(Rn). Assume Y ∈ clH(C). Since Y is compact, for each
k > 0 ∈ N we pick finite subsets Yk ⊆ Y such that dH(Y, Yk) <

1
k , and Yk ⊆ Yk+1.

For each k > 0 ∈ N let Ck = {a ∈ Rm : dH(Yk, Xa) <
2
k}.

Ecercise 8.2. Every Ck is definable, non-empty, and Ck+1 ⊆ Ck.

Since R̃ is ℵ1-saturated, there is α ∈ R̃m such that α ∈ ∩C̃k.

Ecercise 8.3. Show that Y = st(X̃α).

Ecercise 8.4. Let β ∈ R̃m be such that Z = st(X̃β) is compact. Show that Z ∈
clH(C).

�

Theorem 8.3. LetR = 〈R, <,+,−, ·, . . . , 〉 be an o-minimal expansion of the field
of real numbers. Let C be a uniformly definable family of compact subsets of Rn.
Then the family

{Y ∈ K(Rn) : Y ∈ clH(C)}
is uniformly definable as well.
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