INTRODUCTION TO REAL ANALYTIC GEOMETRY

KRZYSZTOF KURDYKA

1. Analytic functions in Several variables

1.1. Summable families. Let $(E,\| \|)$ be a normed space over the field \mathbb{R} or $\mathbb{C}, \operatorname{dim} E<\infty$. Let $\left\{x_{\alpha}\right\}_{\alpha \in A}$ be a family (possibly infinite and even uncountable) of vectors in E. We say that this family is summable if there is $x \in E$ such that

$$
\forall_{\epsilon>0} \exists_{F_{\epsilon} \text { finite }} \forall_{F_{\epsilon} \subset F \text { finite }}\left\|x-\sum_{\alpha \in F} x_{\alpha}\right\|<\epsilon .
$$

We write in this case $x:=\sum_{\alpha \in A} x_{\alpha}$, clearly x is unique.
We shall say that a collection $f_{\alpha}: Z \rightarrow E, \alpha \in A$ is uniformly summable if the family $\left\{f_{\alpha}(z)\right\}_{\alpha \in A}$ is summable for each $z \in Z$, moreover F_{ϵ} can be chosen independently of z.

Exercise 1.1. -The following conditions are equivalent:
(1) $\sum_{\alpha \in A} x_{\alpha}$ is summable
(2) $\sum_{\alpha \in A}\left\|x_{\alpha}\right\|$ is summable
(3) $\sup _{A \supset F-f \text { inite }}\left\{\sum_{\alpha \in F}\left\|x_{\alpha}\right\|\right\}<+\infty$

Exercise 1.2. -Assume that $A=\bigcup_{\beta \in B} C_{\beta}$ is a disjoint union. Then $\sum_{\alpha \in A} x_{\alpha}$ is summable if and only if $c_{\beta}:=\sum_{\alpha \in C_{\beta}} x_{\alpha}$ is summable for each $\beta \in B$ and $\sum_{\beta \in B} c_{\beta}$ is summable.
1.2. Power series. Let $\mathbb{K}=\mathbb{R}$ or \mathbb{C}, for $z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{K}^{n}$ we denote $\|z\|=\left(\left|z_{1}\right|^{2} \cdots+|z|^{2}\right)^{1 / 2}$.

Let $\nu=\left(\nu_{1}, \ldots, \nu_{n}\right) \in \mathbb{N}^{n}$, we recall standard notations : $\nu!:=$ $\nu_{1}!\cdots \nu_{n}!,\binom{\nu}{\mu}=\frac{\nu!}{\mu!(\nu-\mu)!}$ for $\mu \leq \nu$ in the partial order $\left(\mu \leq \nu \Rightarrow \mu_{i} \leq\right.$ $\left.\nu_{i}, i=1, \ldots, n\right)$.
$z^{\nu}:=z_{1}^{\nu_{1}} \ldots z_{n}^{\nu_{n}}$. For $a \in \mathbb{K}$ and $r=\left(r_{1}, \ldots, r_{n}\right), r_{i}>0$ we denote by
$P(a, r):=\left\{z \in \mathbb{K}^{n}:\left|z_{i}-a_{i}\right|<r_{i}, i=1, \ldots, n\right\}$ the poly-cylinder centered at a of poly-radius r.

Exercise 1.3. Let $\theta=\left(\theta_{1}, \ldots, \theta_{n}\right),\left|\theta_{i}\right|<1$, show that

$$
\sum_{\nu \in \mathbb{N}^{n}} \theta^{\nu}=\frac{1}{\left(1-\theta_{1}\right) \cdots\left(1-\theta_{n}\right)}
$$

A family $a_{\nu} \in \mathbb{C}, \nu \in \mathbb{N}^{n}$ of complex numbers determines a formal power series $\sum_{\nu \in \mathbb{N}^{n}} a_{\nu} z^{\nu}$.

Lemma 1.4. (Abel's Lemma) Let $a_{\nu} \in \mathbb{C}, \nu \in \mathbb{N}^{n}$, be a family of complex numbers (in other words a power series $\sum_{\nu \in \mathbb{N}^{n}} a_{\nu} z^{\nu}$ is given). Assume that there exists $b=\left(b_{1}, \ldots, b_{n}\right) \in \mathbb{C}^{*}$ and $M>0$ such that $\left|a_{\nu} b^{\nu}\right| \leq M$, for all $\nu \in \mathbb{N}^{n}$. Then $\sum_{\nu \in \mathbb{N}^{n}} a_{\nu} z^{\nu}$ is summable (we will say that the series converges) for any $z \in P(0,|b|)$, where $|b|=\left(\left|b_{1}\right|, \ldots,\left|b_{n}\right|\right) \in \mathbb{C}^{*}$.

Proof. Use Exercise 1.3. Note that actually the series converges absolutely.

Suppose that we are given a power series $\sum_{\nu \in \mathbb{N}^{n}} a_{\nu} z^{\nu}$. Put

$$
P_{l}(z):=\sum_{\{\nu:|\nu|=l\}} a_{\nu} z^{\nu},
$$

this is a homogenous polynomial of degree l. Then (for a fixed $z \in \mathbb{C}^{n}$) the following conditions are equivalent:
(1) $\sum_{\nu \in \mathbb{N}^{n}} a_{\nu} z^{\nu}$ is summable,
(2) the series

$$
\sum_{l=0}^{\infty}\left(\sum_{\{\nu:|\nu|=l\}}\left|a_{\nu} z^{\nu}\right|\right)
$$

converges.
Note that the condition (2) above implies the series $\sum_{l=0}^{\infty} P_{l}(z)$ converges absolutely. By the Cauchy rule we obtain that

$$
\gamma(z):=\limsup _{l \rightarrow \infty}\left(\sum_{\{\nu:|\nu|=l\}}\left|a_{\nu} z\right|\right)^{\frac{1}{l}} \leq 1
$$

which implies that $\sum_{\{\nu:|\nu|=l\}} P_{l}(z)$ converges absolutely. On the other hand if $\gamma(z)<1$, then again by Cauchy's rule and the above equivalence we obtain that $\sum_{\nu \in \mathbb{N}^{n}} a_{\nu} z^{\nu}$ is summable. Thus we have obtained the following

Corollary 1.5. If a series $\sum_{\nu \in \mathbb{N}^{n}} a_{\nu} z^{\nu}$ is summable for any $z \in P(0, r)$, then $\gamma(z)<1$ for any $z \in P(0, r)$.

This corollary enables as to associate to any power series the "sup" of poly-radiuses r on which we have $\gamma<1$. We shall call such a $r \in \mathbb{R}_{+}^{n}$ the radius of convergence.

Suppose that we are given a (formal) power series $f=\sum_{\nu \in \mathbb{N}^{n}} a_{\nu} z^{\nu}$, let $k=1, \ldots, n$. Put

$$
\frac{\partial f}{\partial z_{k}}:=\sum_{\nu \in \mathbb{N}^{n}} \nu_{k} a_{\nu} z_{1}^{\nu_{1}} \cdots z_{k}^{\nu_{k}-1} \cdots z_{n}^{\nu_{n}}
$$

Exercise 1.6. If a series f is summable in $P(0, r)$, then $\frac{\partial f}{\partial z_{k}}$ is also summable in $P(0, r)$. Hint : use the fact $\lim _{l \rightarrow \infty} l^{\frac{1}{l-1}}=1$.

Definition 1.7. Let U be an open subset of \mathbb{K}^{n}, and let $f: U \rightarrow \mathbb{K}$ be a function. We say that f is analytic at $c \in U$ if there exist a power series $\sum_{\nu \in \mathbb{N}^{n}} a_{\nu}(z-c)^{\nu}$ (called Taylor expansion of f at c) and $r \in \mathbb{R}_{+}^{n}$ such that the series is summable in $P(c, r)$ and

$$
f(z)=\sum_{\nu \in \mathbb{N}^{n}} a_{\nu}(z-c)^{\nu}, z \in P(c, r) .
$$

We say that f is analytic in U if f is analytic at any point of U. In the case $\mathbb{K}=\mathbb{C}$ analytic functions are rather called holomorphic .

Proposition 1.8. Any analytic function f is infinitely many times \mathbb{K}-differentiable, moreover $\frac{\partial f}{\partial z_{k}}$ is again analytic.

Proof. The result is classical for $n=1$, so it is enough to use Exercise 1.6. We obtain also

$$
\nu!a_{\nu}=\frac{\partial^{\nu} f}{\partial z^{\nu}}(c) .
$$

Theorem 1.9. (Principle of analytic continuation) Let U be an open connected subset of \mathbb{K}^{n} and $f: U \rightarrow \mathbb{K}$ an analytic function. Assume that at some $c \in U$ we have $\frac{\partial^{\nu} f}{\partial z^{\nu}}(c)=0$, for all $\nu \in \mathbb{N}^{n}$. Then $f \equiv 0$ in U. In particular if $f \equiv 0$ in an open nonempty $V \subset U$, then $f \equiv 0$ in U.

Proof. One can join any two points in U by a an arc piecewise parallel to coordinate axes. So we can apply the classical result in the case $n=1$.

Remark 1.10. It follows that, if U connected and $f: U \rightarrow \mathbb{K}$ is an analytic function such $f \not \equiv$ const, then $\operatorname{Int} f^{-1}(0)=\emptyset$.

1.3. Separate analyticty.

Theorem 1.11. (Osgood's lemma) Let U be an open subset of \mathbb{C}^{n} and $f: U \rightarrow \mathbb{C}$ a locally bounded function which is holomorphic with respect to each variable separately. Then f is holomorphic in U.

Remark 1.12. In fact according to a theorem of Hartogs the assumption that f is locally bounded is superfluous. But the proof of the Hartogs theorem requires a more advanced tools.

Proof. We may assume that $U=P(c, r)$ is a poly-cylinder. We shall proceed by the induction on n, the case $n=1$ is trivial. We need a following

Lemma 1.13. Let Ω be an open subset of \mathbb{C} and let $g: \Omega \times[a, b] \rightarrow \mathbb{C}$ be a function. Assume that $g(z, t)$ is bounded, holomorphic with respect to z and contiuous with respect to t. Then the function

$$
h(z):=\int_{a}^{b} g(z, t) d t
$$

is holomorphic in Ω.
Proof of the lemma. Let us fix $c \in \Omega$ and $B:=B(c, \rho) \subset \Omega$ a disk such that its boundary $\partial B \subset \Omega$. Then by the Cauchy formula we may write

$$
g(z, t)=\frac{1}{2 \pi i} \int_{\partial B} \frac{g(\xi, t)}{\xi-z} d \xi, z \in B
$$

Hence g is locally uniformly continuous with respect to z, since g is bounded. Thus g is continuous (i.e. with respect to ($z, t)$-variables). So, by Fubini's theorem, for $z \in B$ we can write

$$
h(z)=\int_{a}^{b}\left(\frac{1}{2 \pi i} \int_{\partial B} \frac{g(\xi, t)}{\xi-z} d \xi\right) d t=\frac{1}{2 \pi i} \int_{\partial B} \frac{1}{\xi-z}\left(\int_{a}^{b} g(\xi, t) d t\right) d \xi
$$

That is $h(z)=\frac{1}{2 \pi i} \int_{\partial B} \frac{h(\xi)}{\xi-z} d \xi, z \in B$, which proves that h is holomorphic. So Lemma 1.13 follows.

To finish the proof of Theorem 1.11 we expand our function f on $P(c, r) \subset \mathbb{C}^{n}$ in the series

$$
f(z)=\sum_{l=0}^{\infty} A_{l}\left(z^{\prime}\right)\left(z_{n}-c_{n}\right)^{l}
$$

which converges absolutely, where $z^{\prime}=\left(z_{1}, \ldots, z_{n-1}\right)$. Again thanks to Cauchy's formula we have

$$
A_{l}\left(z^{\prime}\right)=\frac{1}{2 \pi i} \int_{\left|\xi-c_{n}\right|=\rho} \frac{f\left(z^{\prime}, \xi\right)}{\left(\xi-c_{n}\right)^{l+1}} d \xi,
$$

for any $0<\rho<r_{n}$. Now, by Lemma 1.13, each function $A_{l}\left(z^{\prime}\right)$ is holomorphic with respect to each variable separately and locally bounded. Hence by the induction hypothesis each function $A_{l}\left(z^{\prime}\right)$ is actually holomorphic. Expanding $A_{l}\left(z^{\prime}\right)$ into a power series we find an expansion of f into a power series in the poly-cylinder $P(c, r)$. Exercise: check the convergence.

Remark 1.14. Clearly Osgood's lemma is false in the real case. For instance consider $f(x, y)=\frac{x^{3}}{x^{2}+y^{2}}, f(0,0)=0$. Check that this function is continuous, analytic with respect to x and y, but not differentiable at the origin.
1.4. Cauchy-Riemann equations and consequences. Recall the classical basic functios about holomorphic functions of 1 variable. Let $f: U \rightarrow \mathbb{C}$ be function, where U is an open subset of \mathbb{C}, then the following conditions are equivalent :
(1) f is holomorphic in U;
(2) f is \mathbb{C}-differentiable at any point of U;
(3) f is \mathbb{R}-differentiable at any point of $a \in U$ and the (real) differential $d_{a} f: \mathbb{C} \rightarrow \mathbb{C}$ is actually \mathbb{C}-linear;
(4) f is \mathbb{R}-differentiable and the Cauchy-Riemann equations are satisfied:

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x},
$$

where $u=\operatorname{Re} f$ and $v=\operatorname{Im} f$.
Let us recall that if Y and Z are vector spaces over \mathbb{C} then they carry a unique structure of vector spaces over \mathbb{R}. Consider an \mathbb{R}-linear map $\varphi: Z \rightarrow Y$, then φ is \mathbb{C} - linear if and only if

$$
\varphi(i z)=i \varphi(z), z \in Z
$$

Now we can state the main theorem about holomorphic functions in several variables.

Theorem 1.15. Let $f: U \rightarrow \mathbb{C}$ be function, where U is an open subset of \mathbb{C}^{n}. Then f is holomorphic in U if and only if f is continuous (even merely locally bounded) and $\frac{\partial f}{\partial z_{k}}, k=1, \ldots, n$ (complexes derivatives) exists at any point in U.

Proof. Apply Osgood's lemma and use the above results in 1 variable.

Definition 1.16. Let U be a an open subset of \mathbb{C}^{n}, we say that a map $F=\left(f_{1}, \ldots, f_{k}\right): U \rightarrow \mathbb{C}^{k}$ holomorphic if each f_{j} is holomorphic.

Proposition 1.17. A map $F=\left(f_{1}, \ldots, f_{k}\right): U \rightarrow \mathbb{C}^{k}$ is holomorphic if and only if F is C^{1} in the real sense and the differential $d_{a} f$ is \mathbb{C} linear at every $a \in \mathbb{C}$.

Proof. This is an immediate consequence of Theorem 1.15.
Thus we obtain the following basic properties of holomorphic maps.

Corollary 1.18.

(1) If f and g are holomorphic then also, $(f+g),(f g),\left(\frac{f}{g}\right)$ (where defined) are holomorphic.
(2) If G and F are holomorphic maps, then $G \circ F$ is holomorphic.
(3) If F is holomorphic such that F^{-1} exists and $d_{a} F$ is an isomorphism for each $a \in U$ (the last assumption is actually superfluous), then F^{-1} is holomorphic.
(4) Implicit function theorem holds in the holomorphic setting.

Note that the explicit and direct estimates in the above statements for poly-radius of convergence are not obvious at all.
1.5. Real analytic functions. Let W be an open subset in \mathbb{R}^{n} and $f: W \rightarrow \mathbb{R}$ an analytic function. This means that for any $a \in W$ the function f can be expanded in a power series in $P_{\mathbb{R}}(a, r)$ for some $r=r(a) \in \mathbb{R}_{+}^{n}$, where

$$
P_{\mathbb{R}}(a, r):=\left\{z \in \mathbb{R}^{n}:\left|z_{i}-a_{i}\right|<r_{i}, i=1, \ldots, n\right\}=\mathbb{R}^{n} \cap P_{\mathbb{C}}(a, r) .
$$

Here $P_{\mathbb{C}}(a, r):=\left\{z \in \mathbb{C}^{n}:\left|z_{i}-a_{i}\right|<r_{i}, i=1, \ldots, n\right\}$.
Proposition 1.19. There exist an open set $\widetilde{W} \subset \mathbb{C}^{n}, W \subset \widetilde{W}$ and holomorphic function $\widetilde{f}: \widetilde{W} \rightarrow \mathbb{C}$ such that $\left.\widetilde{f}\right|_{W}=f$. Moreover $(\widetilde{W}, \widetilde{f})$ are unique in the following sense. If $\widetilde{W}_{1} \subset \mathbb{C}^{n}$ is an open set and $\widetilde{f}_{1}: \widetilde{W}_{1} \rightarrow \mathbb{C}$ a holomorphic function such that $\left.\widetilde{f}_{1}\right|_{W}=f$, then there exists an open set $U \subset \mathbb{C}^{n}, W \subset U$ and such that $\left.\widetilde{f}_{1}\right|_{U}=\left.\widetilde{f}\right|_{U}$.

We shall call the holomorphic function $\widetilde{f}: \widetilde{W} \rightarrow \mathbb{C}$ complexification of f.
Proof. Put $\widetilde{W}=\bigcup_{a \in W} P_{\mathbb{C}}(a, r(a))$. the function $\widetilde{f}:=\bigcup_{a \in W} \widetilde{f}_{a}$. Here \widetilde{f}_{a} is the holomorphic functionin $P_{\mathbb{C}}(a, r(a))$ defined by the power series obtained at a. We leave as exercise details to be checked: that \widetilde{f} is well defined and the second part of the statement. Hint: use analytic continuation theorem.

Corollary 1.20. In Corollary 1.18 we may replace "holomorphic" by "real analytic".

Let U be an open subset of \mathbb{C}^{n} and $f: U \rightarrow \mathbb{C}$ a holomorphic function. We put $U^{c}=\left\{z \in \mathbb{C}^{n}: \bar{z} \in U\right\}$, where $\bar{z}:=\left(\bar{z}_{1}, \ldots, \bar{z}_{n}\right)$ and $\bar{f}(z):=\overline{f(\bar{z})}$. Note that \bar{f} is actually holomorphic (check CauchyRiemann equations). Observe however that the function $z \mapsto \overline{f(z)}$ is not holomorphic if $f \neq$ const.

Proposition 1.21. Let U be an open subset of \mathbb{C}^{n} and $f: U \rightarrow \mathbb{C} a$ holomorphic function. Then $f(x) \in \mathbb{R}^{n}$, for all $x \in U \cap \mathbb{R}^{n}$ if and only if $f=\bar{f}$ in a neighborhood of $U \cap \mathbb{R}^{n}$.
Proof. Prove that both conditions are equivalent to the fact that all coefficients of the Taylor expansion f at a point in $U \cap \mathbb{R}^{n}$ are real.
1.6. Riemann extension theorem. Let U be an open subset of $\mathbb{C}^{n}=$ $\mathbb{C}^{n-1} \times \mathbb{C}$ and let Z be a closed subset of U such that for any $z^{\prime} \in C^{n-1}$ the set $\left(\left\{z^{\prime}\right\} \times \mathbb{C}\right) \cap Z$ consists only of isolated points. We will say that Z is negligible.
Exercise 1.22. Assume that U is connected and that Z is negligible in U Show that $U \backslash Z$ is also connected.

Theorem 1.23. (Riemann extension theorem) Assume that $f: U \backslash$ $Z \rightarrow \mathbb{C}$ is a holomorphic bounded function and that Z is negligible . Then f extends to a unique holomorphic function on U.

Proof. Let $z=\left(z^{\prime}, z_{0}\right) \in Z$, since Z is closed there exist $\delta, \varepsilon>0$ such that

$$
Z \cap\left(B\left(z^{\prime}, \delta\right) \times\left\{\xi:\left|\xi-z_{0}\right|=\varepsilon\right\}\right)=\emptyset
$$

where $B\left(z^{\prime}, \delta\right)$ is an open disk in \mathbb{C}^{n-1}. Let us define

$$
\widetilde{f}(w, t):=\frac{1}{2 \pi i} \int_{\left|\xi-z_{0}\right|=\varepsilon} \frac{f(w, \xi)}{\xi-t} d \xi,
$$

for $w \in B\left(z^{\prime}, \delta\right), t \in B\left(z_{0}, \varepsilon\right)$. Note that, by Lemma $1.13 \tilde{f}$ is holomorphic with respect to each w_{j}-variable, it is holomorphic with respect to t-variable by the classical result, moreover it is bounded. Hence by Osgood's lemma (Theorem 1.11) our function \tilde{f} is holomorphic in $B\left(z^{\prime}, \delta\right), \times B\left(z_{0}, \varepsilon\right)$. Check that $\tilde{f}=f$ outside Z and prove the uniqueness.

2. Weierstrass Preparation Theorem

2.1. Symmetric polynomials and Newton sums. Let A be a commutative ring with unit. We say that a polynomial $P \in A\left[X_{1}, \ldots, X_{k}\right]$ is symmetric if for any permutation τ we have

$$
P\left(X_{\tau(1)}, \ldots, X_{\tau(k)}\right)=P\left(X_{1}, \ldots, X_{k}\right) .
$$

Let us write

$$
\left(T-X_{1}\right) \cdots\left(T-X_{k}\right)=T^{k}+\sigma_{1} T^{k-1}+\cdots+\sigma_{k},
$$

where

$$
\sigma_{j}:=(-1)^{j} \sum_{\nu_{1}<\cdots<\nu_{j}} X_{\nu_{1}} \cdots X_{\nu_{j}}
$$

Recall that σ_{j} is called j-th elementary symmetric polynomial. If ξ_{1}, \ldots, ξ_{k} are all the roots of $P=Z^{k}+a_{1} Z^{k-1}+\cdots+a_{k}$, then we have Viéte formulas

$$
a_{j}=\sigma_{j}\left(\xi_{1}, \ldots, \xi_{n}\right)
$$

Important symmetric polynomials are Newton sums

$$
s_{l}:=\sum_{i=1}^{k} X_{1}^{l}+\cdots+X_{k}^{l}
$$

Lemma 2.1. There are polynomials $R_{j} \in \mathbb{Z}\left[Y_{1}, \ldots, Y_{n}\right]$ such that

$$
\sigma_{j}=R_{j}\left(s_{1}, \ldots, s_{k}\right)
$$

A celebrate theorem on symmetric polynomials claims the following.

Theorem 2.2. Let A be a commutative ring with unit and let $P \in$ $A\left[X_{1}, \ldots, X_{k}\right]$ be symmetric polynomial, then there exist a unique $Q \in$ $A\left[Y_{1}, \ldots, Y_{k}\right]$ such that

$$
P=Q\left(\sigma_{1}, \ldots, \sigma_{n}\right)
$$

If the ring A contains \mathbb{Q}, then there exist a unique $R \in A\left[Y_{1}, \ldots, Y_{k}\right]$ such that

$$
P=R\left(s_{1}, \ldots, s_{k}\right) .
$$

2.2. Generalized discriminants. Let us consider a generic polynomial

$$
P_{c}(z)=z^{k}+c_{1} z^{k-1}+\cdots+c_{k}
$$

where $z \in \mathbb{C}$ and $c=\left(c_{1}, \ldots, c_{k}\right) \in \mathbb{C}^{k}$. Put
$W_{s}:=\left\{c \in \mathbb{C}^{k}: P_{c}(z)\right.$ has at most s distinct complex roots $\}$.
Let $K=\{1, \ldots, k\}$ and put
$\mathcal{D}_{s}\left(z_{1}, \ldots, z_{k}\right)=\sum_{J \subset K \# J=k-s} \prod_{\mu<\nu ; \mu, \nu \in J}\left(z_{\mu}-z_{\nu}\right)^{2} \quad, \quad s=0, \ldots, k-1$
Since $\mathcal{D}_{s}\left(z_{1}, \ldots z_{k}\right)$ is a symmetric polynomial, by Theorem 2.2 there exists $D_{s} \in \mathbb{C}\left[c_{1}, \ldots, c_{k}\right]$ such that $\mathcal{D}_{s}=D_{s} \circ \sigma$ where $\sigma=\left(\sigma_{1}, \ldots, \sigma_{k}\right)$. We call $D_{s}, s=0, \ldots, k-1$ generalized discriminants of P.

Lemma 2.3.

$$
W_{s}=\left\{c \in \mathbb{C}^{k}: D_{0}(c)=\cdots=D_{k-s-1}(c)=0\right\}
$$

Proof. Indeed, if $c \in W_{s}$ and $\xi=\left(z_{1}, \ldots, z_{k}\right)$ are all the roots (with possible repetition) of $P_{c}(z)$, then $\#\left\{z_{1}, \ldots, z_{k}\right\} \leq s$, hence

$$
\mathcal{D}_{0}(\xi)=\cdots=\mathcal{D}_{k-s-1}(\xi)=0
$$

which implies $D_{0}(c)=\cdots=D_{k-s-1}(c)=0$.
Let $c \in \mathbb{C}^{k}$ be such that $D_{0}(c)=\cdots=D_{k-s-1}(c)=0$. Let $\xi=$ $\left(z_{1}, \ldots, z_{k}\right)$ the complete sequence of roots of P_{c}. Assume that $c \notin W_{s}$, $s+1 \leq \#\left\{z_{1}, \ldots, z_{k}\right\}=l$. Let $z_{1}, \ldots z_{t}$ be all distinct l roots t of $P_{c}(z)$. Then

$$
\mathcal{D}_{j}\left(z_{1}, \ldots, z_{k}\right)=D_{j}(c)=0 \quad \text { if } j=0,1, \ldots k-s-1 .
$$

Since $k-l \leq k-s-1$,

$$
0=\mathcal{D}_{k-t}\left(z_{1}, \ldots, z_{k}\right)=\prod_{\mu<\nu ; \mu, \nu \in\{1, \ldots, t\}}\left(z_{\mu}-z_{\nu}\right)^{2},
$$

which is absurd.

Note that $D:=D_{k-2}$ is the discriminant of P, we have

$$
D=\prod_{\mu<\nu}\left(z_{\mu}-z_{\nu}\right)^{2}= \pm \prod_{\nu=1} P^{\prime}\left(z_{\nu}\right)
$$

In particular $D(c) \neq 0$ if and only if all roots of P_{c} are simple.

Corollary 2.4. Each W_{s} is algebraic.
2.3. Continuity of roots. Let us consider a generic polynomial

$$
P_{c}(z)=z^{k}+c_{1} z^{k-1}+\cdots+c_{k},
$$

where $z \in \mathbb{C}$ et $c=\left(c_{1}, \ldots, c_{k}\right) \in C^{k}$. Suppose that for some $r>0$ we have $\left|c_{j}\right| \leq r^{j}, j=1, \ldots, k$, then

$$
P(z)=0 \Rightarrow|z| \leq 2 r .
$$

Indeed we have

$$
\left|z^{k}+c_{1} z^{k-1}+\cdots+c_{k}\right| \geq\left|z^{k}\right|\left(1-\frac{r}{|z|} \cdots-\frac{r^{k}}{\left|z^{k}\right|}\right)>0
$$

if $\frac{r}{|z|} \leq \frac{1}{2}$.
The following notion from general topology will be important in the next paragraphs.

Definition 2.5. A continuous map $f: X \rightarrow Y$, between two topological spaces is said to be proper, if for any compact $K \subset Y$ the inverse image $f^{-1}(K)$ is compact.

Proposition 2.6. If X and Y are locally compact (i.e. every point has a compact neighborhood) then f is proper if and only for each $y \in Y$ there exists a neighborhood V such that $f^{-1}(V)$ is relatively compact (i.e. its closure is compact).

Proof. Exercise
Recall that we have a natural Viéte map

$$
\sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right): \mathbb{K}^{n} \rightarrow \mathbb{K}^{n}
$$

So we have proved
Proposition 2.7. The map $\sigma: \mathbb{K}^{n} \rightarrow \mathbb{K}^{n}$ is proper and surjective if $\mathbb{K}=\mathbb{C}$.

Theorem 2.8. Let

$$
P_{c}(z)=z^{k}+c_{1} z^{k-1}+\cdots+c_{k},
$$

where $c=\left(c_{1}, \ldots, c_{k}\right) \in \mathbb{C}^{k}$. Let z_{1}, \ldots, z_{s} be all distinct roots of P_{c}. Then for any $\varepsilon>0$ there exists $\delta>0$ such that:
if $c^{\prime} \in \mathbb{C}^{k},\left|c^{\prime}-c\right|<\delta$, and $z^{\prime} \in \mathbb{C}$ such that $P_{c^{\prime}}\left(z^{\prime}\right)=0$, then $\left|z^{\prime}-z_{j}\right|<\varepsilon$ for some $j=1, \ldots, s$.

Proof. Let $r>0$ be such that $\left|c_{j}\right| \leq r^{j}, j=1, \ldots, k$, and put $R:=2 r$. The set

$$
K:=\bar{B}(0, R) \backslash \bigcup_{j=1}^{s} B\left(z_{j}, \varepsilon\right)
$$

is compact and nonempty if r is large enough. The map $(w, c) \mapsto$ $\left|P_{c}(w)\right|$ is continuous and strictly positive on the compact $z \times K$,
hence it is also strictly positive on $\bar{B}(z, \delta) \times K$ if $\delta>0$ is small enough. Decreasing, if necessary, δ we may assume that $P_{c^{\prime}}$ has no roots outside $\bar{B}(0, R)$, so the theorem follows.
2.4. Weierstrass preparation theorem. Let U an open neighborhood of $0 \in \mathbb{C}^{n}$, we write $z=\left(z^{\prime}, z_{n}\right) \in \mathbb{C}^{n-1} \times \mathbb{C}=\mathbb{C}^{n}$. Let $f: U \rightarrow \mathbb{C}$ be a holomorphic function. We shall say that f is k-regular at 0 , if

$$
\frac{\partial^{j} f}{\partial z_{n}^{j}}(0)=0, j=1, \ldots, k-1 \text { and } \frac{\partial^{k} f}{\partial z_{n}^{k}}(0) \neq 0 .
$$

In other words f is k-regular if $z_{n} \mapsto f\left(0, z_{n}\right)=z_{n}^{k} \varphi\left(z_{n}\right)$ with φ holomorphic and $\varphi(0) \neq 0$. We denote

$$
P(\varepsilon, \delta):=P^{\prime}(0, \varepsilon) \times B(0, \delta),
$$

where $P^{\prime}(0, \varepsilon)$ is a poly-disk of radius ε. Let $c_{j}: P^{\prime}(0, \varepsilon) \rightarrow \mathbb{C}, j=$ $1, \ldots, k$ be holomorphic functions, $c_{j}(0)=0$. We call

$$
P\left(z^{\prime}, z_{n}\right)=z_{n}^{k}+\sum_{j=1}^{k} c_{j}\left(z^{\prime}\right) z_{n}^{k-j}
$$

a Weierstrass polynomial.
Remark 2.9. If $f=\sum_{l \geq l_{0}} P_{l}$ is the expansion into series of homogenous polynomials, $P_{l_{0}} \neq 0$, then any line L such that $L \not \subset P_{l_{0}}^{-1}(0)$ can be chosen as z_{n}-axis and f will be l_{0}-regular.

Theorem 2.10. Let U an open neighborhood of $0 \in \mathbb{C}^{n}$. Let $f: U \rightarrow \mathbb{C}$ be a holomorphic function which is k-regular at 0 . Then there exists $\varepsilon, \delta>0$ a Weierstrass polynomial P in the poly-disk $P(\varepsilon, \delta)$ and holomorphic function φ nowhere vanishing in $P(\varepsilon, \delta)$ such that

$$
f\left(z^{\prime}, z_{n}\right)=\varphi\left(z^{\prime}, z_{n}\right) P\left(z^{\prime}, z_{n}\right)
$$

for $\left(z^{\prime}, z_{n}\right) \in P(\varepsilon, \delta)$. Moreover
(1) P and φ are unique, P will be called the Weierstrass polynomial associated to f,
(2) if fis real then P and φ are also real.

Proof. The uniqueness. Suppose that $f=\varphi P=\varphi_{1} P_{1}$ in some polydisk $P(\varepsilon, \delta)$. By the continuity of roots may decrease δ in such way that if $z^{\prime} \in B^{\prime}(0, \varepsilon), z_{n} \in \mathbb{C}$ and $P\left(z^{\prime}, z_{n}\right)=0$, then $\left|z_{n}\right|<\varepsilon$. We may also assume this property for the polynomial P_{1}. So for $z^{\prime} \in B^{\prime}(0, \varepsilon)$ two univariate monic polynomials

$$
z_{n} \mapsto P\left(z^{\prime}, z_{n}\right), \quad z_{n} \mapsto P_{1}\left(z^{\prime}, z_{n}\right)
$$

have the same roots and with same multiplicities. Hence they are equal. It follows that $\varphi=\varphi_{1}$ in $P(\varepsilon, \delta) \backslash P^{-1}(0)$ which is dense in $P(\varepsilon, \delta)$, so $\varphi=\varphi_{1}$ in $P(\varepsilon, \delta)$.

Reality. The function f is real if and only if $f=\bar{f}$, hence

$$
\varphi P=f=\bar{\varphi} \bar{P}
$$

By the uniqueness we obtain $P=\bar{P}, \varphi=\bar{\varphi}$. So P and φ are real.
Existence. Le us fix ε such that $z_{n} \mapsto f\left(0, z_{n}\right)$ has no zeros in the punctured disk $\left\{0<\left|z_{n}\right| \leq \varepsilon\right\}$. Recall that k is the multiplicity of this function at $0 \in \mathbb{C}$. By the continuity argument there exists $\delta>0$ such that if $z^{\prime} \in P^{\prime}(0, \delta)$, then $z_{n} \mapsto f\left(z^{\prime}, z_{n}\right)$ has no zeros in the circle $\left\{\left|z_{n}\right|=\varepsilon\right\}$.

According to the theorem of Rouché $z_{n} \mapsto f\left(z^{\prime}, z_{n}\right)$ has k zeros in the disk $\left\{\left|z_{n}\right|<\varepsilon\right\}$. Let us denote those zeros by $w_{1}\left(z^{\prime}\right), \ldots, w_{k}\left(z^{\prime}\right)$. Put
$P\left(z^{\prime}, z_{n}\right):=\left(z_{n}-w_{1}\left(z^{\prime}\right) \cdots\left(z_{n}-w_{k}\left(z^{\prime}\right)\right)=z_{n}^{k}+c_{1}\left(z^{\prime}\right) z_{n}^{k-1}+\cdots+c_{k}\left(z^{\prime}\right)\right.$, with $c_{j}\left(z^{\prime}\right)=\sigma_{j}\left(w_{1}\left(z^{\prime}\right), \ldots, w_{k}\left(z^{\prime}\right)\right)$. To show that P is a Weierstrass polynomial it is enough to check that each $c_{j}\left(z^{\prime}\right)$ is holomorphic. By Theorem 2.2, it is enough to show that

$$
\left.S_{j}=s_{j}\left(w_{1}\left(z^{\prime}\right), \ldots, w_{k}\left(z^{\prime}\right)\right)=w_{1}\left(z^{\prime}\right)^{j}+\cdots+w_{k}\left(z^{\prime}\right)\right)^{j}
$$

are holomorphic for $j=1, \ldots, k$. According to the theorem on logarithmic residus we have

$$
S_{j}\left(z^{\prime}\right):=\frac{1}{2 \pi i} \int_{\left|z_{n}\right|=\varepsilon} z_{n}^{j} \frac{\frac{\partial f}{\partial z_{n}}\left(z^{\prime}, z_{n}\right)}{f\left(z^{\prime}, z_{n}\right)} d z_{n}
$$

By Theorem 1.11 and Lemma 1.13 functions $S_{j}\left(z^{\prime}\right)$ are holomorphic. To conclude note that

$$
\varphi\left(z^{\prime}, z_{n}\right)=\frac{f\left(z^{\prime}, z_{n}\right)}{P\left(z^{\prime}, z_{n}\right)}
$$

is holomorphic and bounded in the complement of zeros of P. So by Riemann's Extension Theorem φ is actually holomorphic in $P(\varepsilon, \delta)$. Finally note that φ has no zeros in $P(\varepsilon, \delta)$ since zeros of f and P have the same multiplicities (with respect to z_{n}).

Remark 2.11. If $z_{n} \mapsto f\left(0, z_{n}\right) \not \equiv 0$, then f is k regular for some k. Hence, for z^{\prime} close enough $0 \in \mathbb{C}^{n-1}$ the function $z_{n} \mapsto f\left(z^{\prime}, z_{n}\right)$ has at most k zeros in $B(0, \varepsilon)$. Assume now the contrary that $z_{n} \mapsto f\left(0, z_{n}\right) \equiv$ 0 but $f \not \equiv 0$.

Can we bound the number of zeros (close to the origin) of $z_{n} \mapsto$ $f\left(z^{\prime}, z_{n}\right)$? (provided that $\left.z_{n} \mapsto f\left(z^{\prime}, z_{n}\right) \not \equiv 0\right)$

The answer is positive, the first (and forgotten for some time) solution (algebraic) was given by Bautin (1939), the second (geometric) is due to Gabrielov (1968) and become a milestone in the real analytic (more precisely subanalytic) geometry.

2.5. Weierstrass division theorem.

Theorem 2.12. Let U an open neighborhood of $0 \in \mathbb{C}^{n}$. Let $f ; g$: $U \rightarrow \mathbb{C}$ be two holomorphic functions. Assume that f is k-regular at 0 . Then there exists $\varepsilon, \delta>0$ such that in the poly-disk $P(\varepsilon, \delta)$ we have

$$
g=Q f+R
$$

for $\left(z^{\prime}, z_{n}\right) \in P(\varepsilon, \delta)$, with R holomorphic in $P(\varepsilon, \delta)$ of the form

$$
R\left(z^{\prime}, z_{n}\right)=\sum_{j=1}^{d} a_{j}\left(z^{\prime}\right) z_{n}^{k-j}
$$

where $d<k$ and $a_{j}: P^{\prime}(0, \varepsilon) \rightarrow \mathbb{C}$ are holomorphic. Moreover
(1) Q and R are unique (that is their Taylor series at 0 are unique),
(2) if f and g are real then Q and R are also real.

Proof. Uniqueness.

Assume that $Q f+R=g=Q_{1} f+R_{1}$, then $0=\left(Q-Q_{1}\right) f+\left(R-R_{1}\right)$. Hence it is sufficient to show that if $g \equiv 0$ then $Q \equiv 0$ and $R \equiv 0$. Indeed, for $z^{\prime} \in \mathbb{C}^{n-1}$ close enough to 0 the function $z_{n} \mapsto f\left(z^{\prime} ; z_{n}\right)$ has k zeros in $\left\{\left|z_{n}\right|<\varepsilon\right\}$, this follows from Weierstrass Preparation Theorem. Hence $z_{n} \mapsto R\left(z^{\prime}, z_{n}\right)$ must have at least k roots. But degree of R is less than k so $R \equiv 0$, which implies $Q \equiv 0$.

Reality. The same argument as in the proof of Theorem 2.10.
Existence. By Preparation Theorem 2.10 we may assume that f is a Weierstrass polynomial. Also we may assume that f and g are holomorphic in a neighborhood of $\bar{P}(\varepsilon, \delta)$, moreover that $z^{\prime} \in$ $P^{\prime}(0, \varepsilon), f\left({ }^{\prime}, z_{n}\right)=0 \Rightarrow\left|z_{n}\right|<\varepsilon$.

Hence the function

$$
Q\left(z^{\prime}, z_{n}\right):=\frac{1}{2 \pi i} \int_{\{|\xi|=\varepsilon\}} \frac{g\left(z^{\prime}, \xi\right)}{f\left(z^{\prime}, z_{n}\right)} \frac{1}{\xi-z_{n}} d \xi,
$$

is holomorphic in $P(\varepsilon, \delta)$, by By Theorem 1.11 and Lemma 1.13. On the other hand

$$
g\left(z^{\prime}, z_{n}\right)=\frac{1}{2 \pi i} \int_{\{|\xi|=\varepsilon\}} \frac{g\left(z^{\prime}, \xi\right)}{\xi-z_{n}} d \xi,
$$

in $P(\varepsilon, \delta)$, so

$$
(g-Q f)\left(z^{\prime}, z_{n}\right)=\frac{1}{2 \pi i} \int_{\{|\xi|=\varepsilon\}} \frac{g\left(z^{\prime}, \xi\right)}{f\left(z^{\prime}, z_{n}\right)} \Gamma\left(z^{\prime}, \xi, z_{n}\right) d \xi
$$

where

$$
\Gamma\left(z^{\prime}, \xi, z_{n}\right):=\frac{f\left(z^{\prime}, \xi\right)-f\left(z^{\prime}, z_{n}\right)}{\xi-z_{n}} .
$$

Note that $z_{n} \mapsto \Gamma\left(z^{\prime}, \xi, z_{n}\right)$ is a polynomial of degree less than k, the coefficients are actually holomorphic in $P(\varepsilon, \delta)$. Thus $R:=Q f-g$ is
a polynomial in z_{n} of degree less than k, with coefficients holomorphic in $P^{\prime}(0, \delta)$.

Remark 2.13. The division theorem holds also for formal power series, also in some refined version.
2.6. Decomposition of a Weierstrass polynomial into irreducible factors. We change a bit the notation. Let U an open subset connected subset of \mathbb{C}^{n}, we denote $\mathcal{O}(U)$ the ring of holomorphic functions on U. We consider a monic polynomial

$$
P(u, z)=z^{k}+\sum_{j=1}^{k} c_{j}(u) z_{n}^{k-j}
$$

with $c_{j} \in \mathcal{O}(U)$. Our goal is to show
Theorem 2.14. There are unique monic irreducible polynomials
$Q_{1}, \cdots, Q_{l} \in \mathcal{O}(U)[z]$ and integers ν_{1}, \ldots, ν_{l} such that

$$
P=Q_{1}^{\nu_{1}} \cdots Q_{l}^{\nu_{l}} .
$$

Proof. We shall use generalized discriminants D_{s}. For $s=0, \ldots, k-1$ we put

$$
\Delta_{s}(u)=D_{s}\left(c_{1}(u), \ldots, c_{k}(u)\right)
$$

Hence Δ_{s} are holomorphic in U. Since U is connected we have two possibilities: either $\Delta_{s} \equiv 0$ or $\operatorname{Int} \Delta_{s}^{-1}(0)=\emptyset$. Let $r \leq k$ be such a integer that

$$
\Delta_{0} \equiv \cdots \Delta_{k-r-1} \text { and } \Delta_{k-r} \not \equiv 0
$$

Let $\Omega:=U \backslash \Delta_{k-r}^{-1}(0)$. According to Lemma 2.3 for any $a \in \Omega$ polynomial $z \mapsto P(a, z)$ has exactly r complex roots which we denote by $\xi_{1}(a), \ldots, \xi_{r}(a)$. Note that there is no natural way to label these roots, they should be seen as a set. However if we fix arbitrary an order as above, then we have, by the continuity of roots and Rouché's theorem the following :

Lemma 2.15. One can choose continuously roots ξ_{j} in a neighborhood of any point $a \in \Omega$.

As consequence each root ξ_{j} has a fixed multiplicity ν_{j}. It means that for b close enough to a

$$
\frac{\partial^{\nu_{j}-1} P}{\partial z^{\nu_{j}-1}}\left(b, \xi_{j}(b)\right)=0 \text { and } \frac{\partial^{r_{j}} P}{\partial z^{r_{j}}}\left(b, \xi_{j}(b)\right) \neq 0
$$

Hence applying Implicit Function Theorem we obtain
Lemma 2.16. One can choose holomorphically roots ξ_{j} in a neighborhood of any point $a \in \widetilde{U}$.

Let $Z:=P^{-1}(0) \cap(\Omega \times \mathbb{C})$ and let $\pi: Z \rightarrow \Omega$ denote the projection. It follows from Lemma 2.15 that π is a finite covering. Let Z_{1}, \ldots, Z_{l} be connected components, then (the restriction) $\pi: Z_{i} \rightarrow \Omega$ is again a finite (k_{i}-sheeted) covering (see Exercise 3.4 for the definition). Let us assume that $\xi_{1}(a), \ldots, \xi_{k_{i}}(a)$ are the roots $z \mapsto P(a, z)$ which correspond to the component Z_{i}. We put, for any $a \in \Omega$

$$
c_{q}(a)=\sigma_{q}\left(x i_{1}(a), \ldots, \xi_{k_{i}}(a)\right), q=1, \ldots, k_{i} .
$$

Note that each c_{q} is holomorphic and locally bounded function, hence by the Riemann Extension Theorem it extends to a holomorphic function on U. So we can now define irreducible factors.

$$
Q_{i}(u, z):=z^{k_{i}}+\sum_{q=1}^{k_{i}} c_{q}(u) z^{k_{i}-q}
$$

We leave the uniqueness of the decomposition as an exercise.

Exercise 2.17. Show that P is irreducible if an only if its discriminant is non-identically vanishing in U.

2.7. The theorem of Puiseux.

Theorem 2.18. Let

$$
P(u, z)=z^{k}+\sum_{j=1}^{k} c_{j}(u) z_{n}^{k-j},
$$

where c_{j} are holomorphic functions in the disk $B(0, \delta) \subset \mathbb{C}$. Assume that P is irreducible and that the discriminant of P vanishes only at $0 \in \mathbb{C}$. Then there exists a holomorphic function $h: B\left(0, \delta^{1 / k}\right) \mathbb{C}$ such that

$$
P\left(u^{k}, z\right)=\prod_{j=0}^{k-1}\left(z-h\left(\theta_{j} u\right)\right)
$$

where $\theta_{0}, \ldots, \theta_{k-1}$ are the roots of unity of order k.
The idea of the proof: Consider $Z=P^{-1}(0) \backslash\{0\} \times \mathbb{C}$, the canonical projection $\pi: Z \rightarrow B^{*}:=B(0, \delta) \backslash\{0\}$ is a k-sheeted covering. Since P is irreducible Z is connected. Let $B_{k}^{*}:=B\left(0, \delta^{1 / k}\right) \backslash\{0\}$. Now consider the map

$$
\varphi: B_{k}^{*} \ni u \mapsto u^{k} \in B^{*}
$$

this is also is a k-sheeted covering. Finally study the pull back of π by $\Phi(u, t)=\left(u^{k}, t\right)$, and show that $\Phi^{-1}(Z)$ has k connected components. Conclude the result.

3. More exercises

Exercise 3.1. Maximum Principle. Let $U \subset \mathbb{C}^{n}$ be open and connected. Let $f: U \rightarrow \mathbb{C}$ be a holomorphic function. Assume that there exists $a \in U$ such that

$$
|f(a)|=\sup _{z \in U}|f(z)|
$$

then f is constant. More generally, show that if f is non-constant, then f is open. Is the last statement true for holomorphic maps $F: U \rightarrow \mathbb{C}^{n}$? (Consider $F(x, y)=(x, x y)$.)
Exercise 3.2. Let $P(u, z)=z^{k}+c_{1}(u) z^{k-1}+\cdots+c_{k}(u)$, with c_{j} holomorphic in an open and connected $U \subset \mathbb{C}^{n}$. Put $Z:=P^{-1}(0)$ and let $\pi: U \times \mathbb{C} \rightarrow U$ stand for the canonical projection. Show that $\left.\pi\right|_{Z}$ the restriction of π to Z, is open and proper. Which of these properties remain true in the real case?

More generally (in the complex case) we can consider $\Omega=U \times V$, where $V \subset \mathbb{C}$ is open. What can be said about $\left.\pi\right|_{z \cap \Omega}$?
Exercise 3.3. Let $U \subset \mathbb{C}^{n}$ be open and connected. Let $f: U \rightarrow \mathbb{C}$ be a holomorphic non-constant function. Show that $U \backslash f^{-1}(0)$ is connected.
Exercise 3.4. Let M and N be two locally connected topological spaces. Recall that a continuous map $\varphi: M \rightarrow N$ is covering, if for each $y \in N$ there exists a neighborhood V of y such that $\varphi^{-1}(V)=$ $\bigcup_{\alpha \in A} U_{\alpha} \neq \emptyset$ (a disjoint union of open sets) such that for each $\alpha \in A$ the map $\left.\varphi\right|_{U_{\alpha}}: U_{\alpha} \rightarrow V$ is a homeomorphism. Assume that $\varphi: M \rightarrow N$ is a finite covering (i.e all fibers are finite). Prove the following:
(1) if N is connected then all fibers have the same cardinality k, we will say that the covering is k-sheeted;
(2) if N is connected and $\bar{M} \subset M$ is an open and closed subset of M (e.g. \widetilde{M} may be a connected component of M), then $\left.\varphi\right|_{\widetilde{M}}: \widetilde{M} \rightarrow N$ is again a covering.
(3) let $\gamma:[0,1] \rightarrow N$ be a continuous arc, let $x_{0} \in M$ be such a point that $\varphi\left(x_{0}\right)=\gamma(0)$, then there exists a unique $\widetilde{\gamma}:[0,1] \rightarrow$ M such that $\widetilde{\gamma}(0)=x_{0}$ and $\varphi \circ \widetilde{\gamma}=\gamma$.
Exercise 3.5. Let M and N be two locally compact topological spaces, show that $\varphi: M \rightarrow N$ is a finite covering if and only if φ is proper local homeomorphism.
Exercise 3.6. Chow's Theorem for hypersurfaces. Let $U \subset \mathbb{C}^{n}$ be open and convex neighborhood of $0 \in \mathbb{C}$. Let $f: U \rightarrow \mathbb{C}$ be a holomorphic function, denote $Z:=f^{-1}(0)$. Assume that Z is homogenous that means: $z \in Z,|t| \leq 1 \Rightarrow t z \in Z$, equivalently that for any complex vector line $L \subset \mathbb{C}^{n}$ we have either $L \cap Z=L \cap U$ or $L \cap Z=\{0\}$. Show that Z is actually algebraic, precisely that there exists a homogenous polynomial $g=: \mathbb{C}^{n} \rightarrow \mathbb{C}$ such that $Z=U \cap g^{-1}$.

