INTRODUCTION TO REAL ANALYTIC GEOMETRY

KRZYSZTOF KURDYKA

1. Analytic functions in several variables

1.1. Summable families. Let (E, || ||) be a normed space over the field \mathbb{R} or \mathbb{C} , dim $E < \infty$. Let $\{x_{\alpha}\}_{\alpha \in A}$ be a family (possibly infinite and even uncountable) of vectors in E. We say that this family is summable if there is $x \in E$ such that

$$\forall_{\epsilon>0}\,\exists_{F_{\epsilon}\,finite}\forall_{F_{\epsilon}\subset F\,finite}\,\|x-\sum_{\alpha\in F}x_{\alpha}\|<\epsilon$$

We write in this case $x := \sum_{\alpha \in A} x_{\alpha}$, clearly x is unique.

We shall say that a collection $f_{\alpha}: Z \to E, \alpha \in A$ is uniformly summable if the family $\{f_{\alpha}(z)\}_{\alpha \in A}$ is summable for each $z \in Z$, moreover F_{ϵ} can be chosen independently of z.

Exercise 1.1. —The following conditions are equivalent:

- (1) $\sum_{\alpha \in A} x_{\alpha}$ is summable (2) $\sum_{\alpha \in A} ||x_{\alpha}||$ is summable

(3) $\sup_{A \supset F-finite} \{ \sum_{\alpha \in F} \|x_{\alpha}\| \} < +\infty$

Exercise 1.2. —Assume that $A = \bigcup_{\beta \in B} C_{\beta}$ is a disjoint union. Then $\sum_{\alpha \in A} x_{\alpha}$ is summable if and only if $c_{\beta} := \sum_{\alpha \in C_{\beta}} x_{\alpha}$ is summable for each $\beta \in B$ and $\sum_{\beta \in B} c_{\beta}$ is summable.

1.2. Power series. Let $\mathbb{K} = \mathbb{R} \text{ or } \mathbb{C}$, for $z = (z_1, \ldots, z_n) \in \mathbb{K}^n$ we denote $||z|| = (|z_1|^2 \cdots + |z|^2)^{1/2}$.

Let $\nu = (\nu_1, \ldots, \nu_n) \in \mathbb{N}^n$, we recall standard notations : $\nu! :=$ $\nu_1! \cdots \nu_n!, \ \binom{\nu}{\mu} = \frac{\nu!}{\mu!(\nu-\mu)!}$ for $\mu \leq \nu$ in the partial order $(\mu \leq \nu \Rightarrow \mu_i \leq \nu)$ $\nu_i, i = 1, \ldots, n$).

 $z^{\nu} := z_1^{\nu_1} \dots z_n^{\nu_n}$. For $a \in \mathbb{K}$ and $r = (r_1, \dots, r_n), r_i > 0$ we denote by

 $P(a,r) := \{ z \in \mathbb{K}^n : |z_i - a_i| < r_i, i = 1, ..., n \}$ the poly-cylinder centered at a of poly-radius r.

Exercise 1.3. Let $\theta = (\theta_1, \ldots, \theta_n), |\theta_i| < 1$, show that

$$\sum_{\nu \in \mathbb{N}^n} \theta^{\nu} = \frac{1}{(1-\theta_1)\cdots(1-\theta_n)}.$$

A family $a_{\nu} \in \mathbb{C}, \ \nu \in \mathbb{N}^n$ of complex numbers determines a formal power series $\sum_{\nu \in \mathbb{N}^n} a_{\nu} z^{\nu}$.

Lemma 1.4. (Abel's Lemma) Let $a_{\nu} \in \mathbb{C}$, $\nu \in \mathbb{N}^n$, be a family of complex numbers (in other words a power series $\sum_{\nu \in \mathbb{N}^n} a_{\nu} z^{\nu}$ is given). Assume that there exists $b = (b_1, \ldots, b_n) \in \mathbb{C}^*$ and M > 0 such that $|a_{\nu}b^{\nu}| \leq M$, for all $\nu \in \mathbb{N}^n$. Then $\sum_{\nu \in \mathbb{N}^n} a_{\nu} z^{\nu}$ is summable (we will say that the series converges) for any $z \in P(0, |b|)$, where $|b| = (|b_1|, \ldots, |b_n|) \in \mathbb{C}^*$.

Proof. Use Exercise 1.3. Note that actually the series converges absolutely.

Suppose that we are given a power series $\sum_{\nu \in \mathbb{N}^n} a_{\nu} z^{\nu}$. Put

$$P_l(z) := \sum_{\{\nu: |\nu|=l\}} a_{\nu} z^{\nu},$$

this is a homogenous polynomial of degree l. Then (for a fixed $z \in \mathbb{C}^n$) the following conditions are equivalent:

(1) $\sum_{\nu \in \mathbb{N}^n} a_{\nu} z^{\nu}$ is summable,

$$(2)$$
 the series

$$\sum_{l=0}^{\infty} \left(\sum_{\{\nu: |\nu|=l\}} |a_{\nu} z^{\nu}| \right)$$

converges.

Note that the condition (2) above implies the series $\sum_{l=0}^{\infty} P_l(z)$ converges absolutely. By the Cauchy rule we obtain that

$$\gamma(z) := \limsup_{l \to \infty} \left(\sum_{\{\nu : |\nu| = l\}} |a_{\nu} z| \right)^{\frac{1}{l}} \le 1,$$

which implies that $\sum_{\{\nu:|\nu|=l\}} P_l(z)$ converges absolutely. On the other hand if $\gamma(z) < 1$, then again by Cauchy's rule and the above equivalence we obtain that $\sum_{\nu \in \mathbb{N}^n} a_{\nu} z^{\nu}$ is summable. Thus we have obtained the following

Corollary 1.5. If a series $\sum_{\nu \in \mathbb{N}^n} a_{\nu} z^{\nu}$ is summable for any $z \in P(0, r)$, then $\gamma(z) < 1$ for any $z \in P(0, r)$.

This corollary enables as to associate to any power series the "sup" of poly-radiuses r on which we have $\gamma < 1$. We shall call such a $r \in \mathbb{R}^n_+$ the radius of convergence.

Suppose that we are given a (formal) power series $f = \sum_{\nu \in \mathbb{N}^n} a_{\nu} z^{\nu}$, let $k = 1, \ldots, n$. Put

$$\frac{\partial f}{\partial z_k} := \sum_{\nu \in \mathbb{N}^n} \nu_k a_\nu z_1^{\nu_1} \cdots z_k^{\nu_k - 1} \cdots z_n^{\nu_n}.$$

$\mathbf{2}$

Exercise 1.6. If a series f is summable in P(0, r), then $\frac{\partial f}{\partial z_k}$ is also summable in P(0, r). *Hint*: use the fact $\lim_{l\to\infty} l^{\frac{1}{l-1}} = 1$.

Definition 1.7. Let U be an open subset of \mathbb{K}^n , and let $f: U \to \mathbb{K}$ be a function. We say that f is *analytic at* $c \in U$ if there exist a power series $\sum_{\nu \in \mathbb{N}^n} a_{\nu}(z-c)^{\nu}$ (called Taylor expansion of f at c) and $r \in \mathbb{R}^n_+$ such that the series is summable in P(c, r) and

$$f(z) = \sum_{\nu \in \mathbb{N}^n} a_{\nu}(z-c)^{\nu}, \ z \in P(c,r).$$

We say that f is analytic in U if f is analytic at any point of U. In the case $\mathbb{K} = \mathbb{C}$ analytic functions are rather called *holomorphic*.

Proposition 1.8. Any analytic function f is infinitely many times \mathbb{K} -differentiable, moreover $\frac{\partial f}{\partial z_k}$ is again analytic.

Proof. The result is classical for n = 1, so it is enough to use Exercise 1.6. We obtain also

$$\nu! a_{\nu} = \frac{\partial^{\nu} f}{\partial z^{\nu}}(c).$$

Theorem 1.9. (Principle of analytic continuation) Let U be an open connected subset of \mathbb{K}^n and $f: U \to \mathbb{K}$ an analytic function. Assume that at some $c \in U$ we have $\frac{\partial^{\nu} f}{\partial z^{\nu}}(c) = 0$, for all $\nu \in \mathbb{N}^n$. Then $f \equiv 0$ in U. In particular if $f \equiv 0$ in an open nonempty $V \subset U$, then $f \equiv 0$ in U.

Proof. One can join any two points in U by a an arc piecewise parallel to coordinate axes. So we can apply the classical result in the case n = 1.

Remark 1.10. It follows that, if U connected and $f : U \to \mathbb{K}$ is an analytic function such $f \not\equiv const$, then $\operatorname{Int} f^{-1}(0) = \emptyset$.

1.3. Separate analyticty.

Theorem 1.11. (Osgood's lemma) Let U be an open subset of \mathbb{C}^n and $f: U \to \mathbb{C}$ a locally bounded function which is holomorphic with respect to each variable separately. Then f is holomorphic in U.

Remark 1.12. In fact according to a theorem of Hartogs the assumption that f is locally bounded is superfluous. But the proof of the Hartogs theorem requires a more advanced tools.

Proof. We may assume that U = P(c, r) is a poly-cylinder. We shall proceed by the induction on n, the case n = 1 is trivial. We need a following

Lemma 1.13. Let Ω be an open subset of \mathbb{C} and let $g : \Omega \times [a, b] \to \mathbb{C}$ be a function. Assume that g(z, t) is bounded, holomorphic with respect to z and continuous with respect to t. Then the function

$$h(z):=\int_a^b g(z,t)dt$$

is holomorphic in Ω .

Proof of the lemma. Let us fix $c \in \Omega$ and $B := B(c, \rho) \subset \Omega$ a disk such that its boundary $\partial B \subset \Omega$. Then by the Cauchy formula we may write

$$g(z,t) = \frac{1}{2\pi i} \int_{\partial B} \frac{g(\xi,t)}{\xi - z} d\xi, \ z \in B.$$

Hence g is locally uniformly continuous with respect to z, since g is bounded. Thus g is continuous (i.e. with respect to (z, t)-variables). So, by Fubini's theorem, for $z \in B$ we can write

$$h(z) = \int_{a}^{b} \left(\frac{1}{2\pi i} \int_{\partial B} \frac{g(\xi, t)}{\xi - z} d\xi\right) dt = \frac{1}{2\pi i} \int_{\partial B} \frac{1}{\xi - z} \left(\int_{a}^{b} g(\xi, t) dt\right) d\xi$$

That is $h(z) = \frac{1}{2\pi i} \int_{\partial B} \frac{h(\xi)}{\xi - z} d\xi$, $z \in B$, which proves that h is holomorphic. So Lemma 1.13 follows.

To finish the proof of Theorem 1.11 we expand our function f on $P(c,r) \subset \mathbb{C}^n$ in the series

$$f(z) = \sum_{l=0}^{\infty} A_l(z')(z_n - c_n)^l$$

which converges absolutely, where $z' = (z_1, \ldots, z_{n-1})$. Again thanks to Cauchy's formula we have

$$A_{l}(z') = \frac{1}{2\pi i} \int_{|\xi - c_{n}| = \rho} \frac{f(z', \xi)}{(\xi - c_{n})^{l+1}} d\xi,$$

for any $0 < \rho < r_n$. Now, by Lemma 1.13, each function $A_l(z')$ is holomorphic with respect to each variable separately and locally bounded. Hence by the induction hypothesis each function $A_l(z')$ is actually holomorphic. Expanding $A_l(z')$ into a power series we find an expansion of f into a power series in the poly-cylinder P(c, r). Exercise: check the convergence.

Remark 1.14. Clearly Osgood's lemma is false in the real case. For instance consider $f(x, y) = \frac{x^3}{x^2+y^2}$, f(0, 0) = 0. Check that this function is continuous, analytic with respect to x and y, but not differentiable at the origin.

1.4. Cauchy-Riemann equations and consequences. Recall the classical basic function about holomorphic functions of 1 variable. Let $f: U \to \mathbb{C}$ be function, where U is an open subset of \mathbb{C} , then the following conditions are equivalent :

- (1) f is holomorphic in U;
- (2) f is \mathbb{C} -differentiable at any point of U;
- (3) f is \mathbb{R} -differentiable at any point of $a \in U$ and the (real) differential $d_a f : \mathbb{C} \to \mathbb{C}$ is actually \mathbb{C} -linear;
- (4) f is \mathbb{R} -differentiable and the Cauchy -Riemann equations are satisfied:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \ \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x},$$

where u = Re f and v = Im f.

Let us recall that if Y and Z are vector spaces over \mathbb{C} then they carry a unique structure of vector spaces over \mathbb{R} . Consider an \mathbb{R} -linear map $\varphi : Z \to Y$, then φ is \mathbb{C} - linear if and only if

$$\varphi(iz) = i\varphi(z), \ z \in Z.$$

Now we can state the main theorem about holomorphic functions in several variables.

Theorem 1.15. Let $f: U \to \mathbb{C}$ be function, where U is an open subset of \mathbb{C}^n . Then f is holomorphic in U if and only if f is continuous (even merely locally bounded) and $\frac{\partial f}{\partial z_k}$, $k = 1, \ldots, n$ (complexes derivatives) exists at any point in U.

Proof. Apply Osgood's lemma and use the above results in 1 variable. \Box

Definition 1.16. Let U be a an open subset of \mathbb{C}^n , we say that a map $F = (f_1, \ldots, f_k) : U \to \mathbb{C}^k$ holomorphic if each f_j is holomorphic.

Proposition 1.17. A map $F = (f_1, \ldots, f_k) : U \to \mathbb{C}^k$ is holomorphic if and only if F is C^1 in the real sense and the differential $d_a f$ is \mathbb{C} linear at every $a \in \mathbb{C}$.

Proof. This is an immediate consequence of Theorem 1.15.

Thus we obtain the following basic properties of holomorphic maps.

Corollary 1.18.

- (1) If f and g are holomorphic then also, $(f+g), (fg), (\frac{f}{g})$ (where defined) are holomorphic.
- (2) If G and F are holomorphic maps, then $G \circ F$ is holomorphic.
- (3) If F is holomorphic such that F^{-1} exists and d_aF is an isomorphism for each $a \in U$ (the last assumption is actually superfluous), then F^{-1} is holomorphic.
- (4) Implicit function theorem holds in the holomorphic setting.

Note that the explicit and direct estimates in the above statements for poly-radius of convergence are not obvious at all.

1.5. **Real analytic functions.** Let W be an open subset in \mathbb{R}^n and $f: W \to \mathbb{R}$ an analytic function. This means that for any $a \in W$ the function f can be expanded in a power series in $P_{\mathbb{R}}(a, r)$ for some $r = r(a) \in \mathbb{R}^n_+$, where

 $P_{\mathbb{R}}(a,r) := \{ z \in \mathbb{R}^n : |z_i - a_i| < r_i, \ i = 1, \dots, n \} = \mathbb{R}^n \cap P_{\mathbb{C}}(a,r).$ Here $P_{\mathbb{C}}(a,r) := \{ z \in \mathbb{C}^n : |z_i - a_i| < r_i, \ i = 1, \dots, n \}.$

Proposition 1.19. There exist an open set $\widetilde{W} \subset \mathbb{C}^n$, $W \subset \widetilde{W}$ and holomorphic function $\widetilde{f} : \widetilde{W} \to \mathbb{C}$ such that $\widetilde{f}|_W = f$. Moreover $(\widetilde{W}, \widetilde{f})$ are unique in the following sense. If $\widetilde{W}_1 \subset \mathbb{C}^n$ is an open set and $\widetilde{f}_1 : \widetilde{W}_1 \to \mathbb{C}$ a holomorphic function such that $\widetilde{f}_1|_W = f$, then there exists an open set $U \subset \mathbb{C}^n$, $W \subset U$ and such that $\widetilde{f}_1|_U = \widetilde{f}|_U$.

We shall call the holomorphic function $\widetilde{f}: \widetilde{W} \to \mathbb{C}$ complexification of f.

Proof. Put $\widetilde{W} = \bigcup_{a \in W} P_{\mathbb{C}}(a, r(a))$. the function $\widetilde{f} := \bigcup_{a \in W} \widetilde{f}_a$. Here \widetilde{f}_a is the holomorphic function $P_{\mathbb{C}}(a, r(a))$ defined by the power series obtained at a. We leave as exercise details to be checked: that \widetilde{f} is well defined and the second part of the statement. Hint: use analytic continuation theorem.

Corollary 1.20. In Corollary 1.18 we may replace "holomorphic" by "real analytic".

Let U be an open subset of \mathbb{C}^n and $f : U \to \mathbb{C}$ a holomorphic function. We put $U^c = \{z \in \mathbb{C}^n : \overline{z} \in U\}$, where $\overline{z} := (\overline{z}_1, \ldots, \overline{z}_n)$ and $\overline{f}(z) := \overline{f(\overline{z})}$. Note that \overline{f} is actually holomorphic (check Cauchy-Riemann equations). Observe however that the function $z \mapsto \overline{f(z)}$ is not holomorphic if $f \neq const$.

Proposition 1.21. Let U be an open subset of \mathbb{C}^n and $f: U \to \mathbb{C}$ a holomorphic function. Then $f(x) \in \mathbb{R}^n$, for all $x \in U \cap \mathbb{R}^n$ if and only if $f = \overline{f}$ in a neighborhood of $U \cap \mathbb{R}^n$.

Proof. Prove that both conditions are equivalent to the fact that all coefficients of the Taylor expansion f at a point in $U \cap \mathbb{R}^n$ are real. \Box

1.6. Riemann extension theorem. Let U be an open subset of $\mathbb{C}^n = \mathbb{C}^{n-1} \times \mathbb{C}$ and let Z be a closed subset of U such that for any $z' \in C^{n-1}$ the set $(\{z'\} \times \mathbb{C}) \cap Z$ consists only of isolated points. We will say that Z is *negligible*.

Exercise 1.22. Assume that U is connected and that Z is negligible in U Show that $U \setminus Z$ is also connected.

 $\mathbf{6}$

Theorem 1.23. (Riemann extension theorem) Assume that $f : U \setminus Z \to \mathbb{C}$ is a holomorphic bounded function and that Z is negligible. Then f extends to a unique holomorphic function on U.

Proof. Let $z = (z', z_0) \in Z$, since Z is closed there exist $\delta, \varepsilon > 0$ such that

$$Z \cap (B(z',\delta) \times \{\xi : |\xi - z_0| = \varepsilon\}) = \emptyset,$$

where $B(z', \delta)$ is an open disk in \mathbb{C}^{n-1} . Let us define

$$\widetilde{f}(w,t) := \frac{1}{2\pi i} \int_{|\xi - z_0| = \varepsilon} \frac{f(w,\xi)}{\xi - t} d\xi$$

for $w \in B(z', \delta)$, $t \in B(z_0, \varepsilon)$. Note that, by Lemma 1.13 \tilde{f} is holomorphic with respect to each w_j -variable, it is holomorphic with respect to t-variable by the classical result, moreover it is bounded. Hence by Osgood's lemma (Theorem 1.11) our function \tilde{f} is holomorphic in $B(z', \delta), \times B(z_0, \varepsilon)$. Check that $\tilde{f} = f$ outside Z and prove the uniqueness.

2. WEIERSTRASS PREPARATION THEOREM

2.1. Symmetric polynomials and Newton sums. Let A be a commutative ring with unit. We say that a polynomial $P \in A[X_1, \ldots, X_k]$ is symmetric if for any permutation τ we have

$$P(X_{\tau(1)},\ldots,X_{\tau(k)})=P(X_1,\ldots,X_k).$$

Let us write

$$(T-X_1)\cdots(T-X_k)=T^k+\sigma_1T^{k-1}+\cdots+\sigma_k$$

where

$$\sigma_j := (-1)^j \sum_{\nu_1 < \dots < \nu_j} X_{\nu_1} \cdots X_{\nu_j}$$

Recall that σ_j is called *j*-th elementary symmetric polynomial. If ξ_1, \ldots, ξ_k are all the roots of $P = Z^k + a_1 Z^{k-1} + \cdots + a_k$, then we have Viéte formulas

$$a_j = \sigma_j(\xi_1, \ldots, \xi_n)$$

Important symmetric polynomials are Newton sums

$$s_l := \sum_{i=1}^k X_1^l + \dots + X_k^l$$

Lemma 2.1. There are polynomials $R_j \in \mathbb{Z}[Y_1, \ldots, Y_n]$ such that

$$\sigma_j = R_j(s_1, \ldots, s_k)$$

A celebrate theorem on symmetric polynomials claims the following.

Theorem 2.2. Let A be a commutative ring with unit and let $P \in A[X_1, \ldots, X_k]$ be symmetric polynomial, then there exist a unique $Q \in A[Y_1, \ldots, Y_k]$ such that

$$P = Q(\sigma_1, \ldots, \sigma_n)$$

If the ring A contains \mathbb{Q} , then there exist a unique $R \in A[Y_1, \ldots, Y_k]$ such that

$$P = R(s_1, \ldots, s_k).$$

2.2. Generalized discriminants. Let us consider a generic polynomial

$$P_c(z) = z^k + c_1 z^{k-1} + \dots + c_k$$

where $z \in \mathbb{C}$ and $c = (c_1, \ldots, c_k) \in \mathbb{C}^k$. Put

 $W_s := \{ c \in \mathbb{C}^k : P_c(z) \text{ has at most s distinct complex roots } \}.$ Let $K = \{1, \dots, k\}$ and put

$$\mathcal{D}_s(z_1, \dots, z_k) = \sum_{J \subset K \# J = k-s} \prod_{\mu < \nu; \, \mu, \nu \in J} (z_\mu - z_\nu)^2 \quad , \quad s = 0, \dots, k-1$$

Since $\mathcal{D}_s(z_1, \ldots z_k)$ is a symmetric polynomial, by Theorem 2.2 there exists $D_s \in \mathbb{C}[c_1, \ldots, c_k]$ such that $\mathcal{D}_s = D_s \circ \sigma$ where $\sigma = (\sigma_1, \ldots, \sigma_k)$. We call $D_s, s = 0, \ldots, k-1$ generalized discriminants of P.

Lemma 2.3.

$$W_s = \{ c \in \mathbb{C}^k : D_0(c) = \dots = D_{k-s-1}(c) = 0 \}$$

Proof. Indeed, if $c \in W_s$ and $\xi = (z_1, \ldots, z_k)$ are all the roots (with possible repetition) of $P_c(z)$, then $\#\{z_1, \ldots, z_k\} \leq s$, hence

$$\mathcal{D}_0(\xi) = \cdots = \mathcal{D}_{k-s-1}(\xi) = 0,$$

which implies $D_0(c) = \cdots = D_{k-s-1}(c) = 0.$

Let $c \in \mathbb{C}^k$ be such that $D_0(c) = \cdots = D_{k-s-1}(c) = 0$. Let $\xi = (z_1, \ldots, z_k)$ the complete sequence of roots of P_c . Assume that $c \notin W_s$, $s+1 \leq \#\{z_1, \ldots, z_k\} = l$. Let z_1, \ldots, z_t be all distinct l roots t of $P_c(z)$. Then

$$\mathcal{D}_j(z_1, \dots, z_k) = D_j(c) = 0$$
 if $j = 0, 1, \dots, k - s - 1$.

Since $k - l \le k - s - 1$,

$$0 = \mathcal{D}_{k-t}(z_1, \dots, z_k) = \prod_{\mu < \nu; \, \mu, \nu \in \{1, \dots, t\}} (z_{\mu} - z_{\nu})^2 \,,$$

which is absurd.

Note that $D := D_{k-2}$ is the *discriminant* of P, we have

$$D = \prod_{\mu < \nu} (z_{\mu} - z_{\nu})^2 = \pm \prod_{\nu = 1} P'(z_{\nu}).$$

In particular $D(c) \neq 0$ if and only if all roots of P_c are simple.

8

Corollary 2.4. Each W_s is algebraic.

2.3. Continuity of roots. Let us consider a generic polynomial

$$P_c(z) = z^k + c_1 z^{k-1} + \dots + c_k,$$

where $z \in \mathbb{C}$ et $c = (c_1, \ldots, c_k) \in C^k$. Suppose that for some r > 0 we have $|c_j| \leq r^j, j = 1, \ldots, k$, then

$$P(z) = 0 \Rightarrow |z| \le 2r.$$

Indeed we have

$$|z^k + c_1 z^{k-1} + \dots + c_k| \ge |z^k| \left(1 - \frac{r}{|z|} \dots - \frac{r^k}{|z^k|}\right) > 0,$$

if $\frac{r}{|z|} \leq \frac{1}{2}$. The following notion from general topology will be important in the next paragraphs.

Definition 2.5. A continuous map $f: X \to Y$, between two topological spaces is said to be proper, if for any compact $K \subset Y$ the inverse image $f^{-1}(K)$ is compact.

Proposition 2.6. If X and Y are locally compact (i.e. every point has a compact neighborhood) then f is proper if and only for each $y \in Y$ there exists a neighborhood V such that $f^{-1}(V)$ is relatively compact (*i.e.* its closure is compact).

Proof. Exercise

Recall that we have a natural Viéte map

 $\sigma = (\sigma_1, \ldots, \sigma_n) : \mathbb{K}^n \to \mathbb{K}^n.$

So we have proved

Proposition 2.7. The map $\sigma : \mathbb{K}^n \to \mathbb{K}^n$ is proper and surjective if $\mathbb{K} = \mathbb{C}.$

Theorem 2.8. Let

$$P_c(z) = z^k + c_1 z^{k-1} + \dots + c_k,$$

where $c = (c_1, \ldots, c_k) \in \mathbb{C}^k$. Let z_1, \ldots, z_s be all distinct roots of P_c . Then for any $\varepsilon > 0$ there exists $\delta > 0$ such that:

if $c' \in \mathbb{C}^k$, $|c'-c| < \delta$, and $z' \in \mathbb{C}$ such that $P_{c'}(z') = 0$, then $|z'-z_j| < \varepsilon$ for some $j = 1, \ldots, s$.

Proof. Let r > 0 be such that $|c_j| \le r^j$, $j = 1, \ldots, k$, and put R := 2r. The set

$$K := \overline{B}(0,R) \setminus \bigcup_{j=1}^{\circ} B(z_j,\varepsilon)$$

is compact and nonempty if r is large enough. The map $(w, c) \mapsto$ $|P_c(w)|$ is continuous and strictly positive on the compact $z \times K$,

hence it is also strictly positive on $\overline{B}(z, \delta) \times K$ if $\delta > 0$ is small enough. Decreasing, if necessary, δ we may assume that $P_{c'}$ has no roots outside $\overline{B}(0, R)$, so the theorem follows.

2.4. Weierstrass preparation theorem. Let U an open neighborhood of $0 \in \mathbb{C}^n$, we write $z = (z', z_n) \in \mathbb{C}^{n-1} \times \mathbb{C} = \mathbb{C}^n$. Let $f : U \to \mathbb{C}$ be a holomorphic function. We shall say that f is k-regular at 0, if

$$\frac{\partial^j f}{\partial z_n^j}(0) = 0, \ j = 1, \dots, k - 1 \ and \ \frac{\partial^k f}{\partial z_n^k}(0) \neq 0.$$

In other words f is k-regular if $z_n \mapsto f(0, z_n) = z_n^k \varphi(z_n)$ with φ holomorphic and $\varphi(0) \neq 0$. We denote

$$P(\varepsilon, \delta) := P'(0, \varepsilon) \times B(0, \delta),$$

where $P'(0,\varepsilon)$ is a poly-disk of radius ε . Let $c_j : P'(0,\varepsilon) \to \mathbb{C}, j = 1, \ldots, k$ be holomorphic functions, $c_j(0) = 0$. We call

$$P(z', z_n) = z_n^k + \sum_{j=1}^k c_j(z') z_n^{k-j}$$

a Weierstrass polynomial.

Remark 2.9. If $f = \sum_{l \ge l_0} P_l$ is the expansion into series of homogenous polynomials, $P_{l_0} \ne 0$, then any line L such that $L \not\subset P_{l_0}^{-1}(0)$ can be chosen as z_n -axis and f will be l_0 -regular.

Theorem 2.10. Let U an open neighborhood of $0 \in \mathbb{C}^n$. Let $f : U \to \mathbb{C}$ be a holomorphic function which is k-regular at 0. Then there exists $\varepsilon, \delta > 0$ a Weierstrass polynomial P in the poly-disk $P(\varepsilon, \delta)$ and holomorphic function φ nowhere vanishing in $P(\varepsilon, \delta)$ such that

$$f(z', z_n) = \varphi(z', z_n) P(z', z_n)$$

for $(z', z_n) \in P(\varepsilon, \delta)$. Moreover

- (1) P and φ are unique, P will be called the Weierstrass polynomial associated to f,
- (2) if f is real then P and φ are also real.

Proof. The uniqueness. Suppose that $f = \varphi P = \varphi_1 P_1$ in some polydisk $P(\varepsilon, \delta)$. By the continuity of roots may decrease δ in such way that if $z' \in B'(0, \varepsilon)$, $z_n \in \mathbb{C}$ and $P(z', z_n) = 0$, then $|z_n| < \varepsilon$. We may also assume this property for the polynomial P_1 . So for $z' \in B'(0, \varepsilon)$ two univariate monic polynomials

$$z_n \mapsto P(z', z_n), \ z_n \mapsto P_1(z', z_n)$$

have the same roots and with same multiplicities. Hence they are equal. It follows that $\varphi = \varphi_1$ in $P(\varepsilon, \delta) \setminus P^{-1}(0)$ which is dense in $P(\varepsilon, \delta)$, so $\varphi = \varphi_1$ in $P(\varepsilon, \delta)$.

Reality. The function f is real if and only if $f = \overline{f}$, hence

$$\varphi P = f = \overline{\varphi}\overline{P}$$

By the uniqueness we obtain $P = \overline{P}$, $\varphi = \overline{\varphi}$. So P and φ are real.

Existence. Let us fix ε such that $z_n \mapsto f(0, z_n)$ has no zeros in the punctured disk $\{0 < |z_n| \le \varepsilon\}$. Recall that k is the multiplicity of this function at $0 \in \mathbb{C}$. By the continuity argument there exists $\delta > 0$ such that if $z' \in P'(0, \delta)$, then $z_n \mapsto f(z', z_n)$ has no zeros in the circle $\{|z_n| = \varepsilon\}$.

According to the theorem of Rouché $z_n \mapsto f(z', z_n)$ has k zeros in the disk $\{|z_n| < \varepsilon\}$. Let us denote those zeros by $w_1(z'), \ldots, w_k(z')$. Put

 $P(z', z_n) := (z_n - w_1(z') \cdots (z_n - w_k(z')) = z_n^k + c_1(z')z_n^{k-1} + \cdots + c_k(z'),$ with $c_j(z') = \sigma_j(w_1(z'), \ldots, w_k(z'))$. To show that P is a Weierstrass polynomial it is enough to check that each $c_j(z')$ is holomorphic. By Theorem 2.2, it is enough to show that

$$S_j = s_j(w_1(z'), \dots, w_k(z')) = w_1(z')^j + \dots + w_k(z'))^j$$

are holomorphic for j = 1, ..., k. According to the theorem on logarithmic residus we have

$$S_j(z') := \frac{1}{2\pi i} \int_{|z_n|=\varepsilon} z_n^j \frac{\frac{\partial f}{\partial z_n}(z', z_n)}{f(z', z_n)} dz_n,$$

By Theorem 1.11 and Lemma 1.13 functions $S_j(z')$ are holomorphic. To conclude note that

$$\varphi(z', z_n) = \frac{f(z', z_n)}{P(z', z_n)}$$

is holomorphic and bounded in the complement of zeros of P. So by Riemann's Extension Theorem φ is actually holomorphic in $P(\varepsilon, \delta)$. Finally note that φ has no zeros in $P(\varepsilon, \delta)$ since zeros of f and P have the same multiplicities (with respect to z_n).

Remark 2.11. If $z_n \mapsto f(0, z_n) \not\equiv 0$, then f is k regular for some k. Hence, for z' close enough $0 \in \mathbb{C}^{n-1}$ the function $z_n \mapsto f(z', z_n)$ has at most k zeros in $B(0, \varepsilon)$. Assume now the contrary that $z_n \mapsto f(0, z_n) \equiv 0$ but $f \not\equiv 0$.

Can we bound the number of zeros (close to the origin) of $z_n \mapsto f(z', z_n)$? (provided that $z_n \mapsto f(z', z_n) \not\equiv 0$)

The answer is positive, the first (and forgotten for some time) solution (algebraic) was given by Bautin (1939), the second (geometric) is due to Gabrielov (1968) and become a milestone in the real analytic (more precisely subanalytic) geometry.

2.5. Weierstrass division theorem.

Theorem 2.12. Let U an open neighborhood of $0 \in \mathbb{C}^n$. Let $f; g : U \to \mathbb{C}$ be two holomorphic functions. Assume that f is k-regular at 0. Then there exists $\varepsilon, \delta > 0$ such that in the poly-disk $P(\varepsilon, \delta)$ we have

$$g = Qf + R$$

for $(z', z_n) \in P(\varepsilon, \delta)$, with R holomorphic in $P(\varepsilon, \delta)$ of the form

$$R(z', z_n) = \sum_{j=1}^{d} a_j(z') z_n^{k-j},$$

where d < k and $a_j : P'(0, \varepsilon) \to \mathbb{C}$ are holomorphic. Moreover

- (1) Q and R are unique (that is their Taylor series at 0 are unique),
- (2) if f and g are real then Q and R are also real.

Proof. Uniqueness.

Assume that $Qf + R = g = Q_1f + R_1$, then $0 = (Q - Q_1)f + (R - R_1)$. Hence it is sufficient to show that if $g \equiv 0$ then $Q \equiv 0$ and $R \equiv 0$. Indeed, for $z' \in \mathbb{C}^{n-1}$ close enough to 0 the function $z_n \mapsto f(z'; z_n)$ has k zeros in $\{|z_n| < \varepsilon\}$, this follows from Weierstrass Preparation Theorem. Hence $z_n \mapsto R(z', z_n)$ must have at least k roots. But degree of R is less than k so $R \equiv 0$, which implies $Q \equiv 0$.

Reality. The same argument as in the proof of Theorem 2.10.

Existence. By Preparation Theorem 2.10 we may assume that f is a Weierstrass polynomial. Also we may assume that f and g are holomorphic in a neighborhood of $\overline{P}(\varepsilon, \delta)$, moreover that $z' \in P'(0, \varepsilon), f(', z_n) = 0 \Rightarrow |z_n| < \varepsilon$.

Hence the function

$$Q(z', z_n) := \frac{1}{2\pi i} \int_{\{|\xi|=\varepsilon\}} \frac{g(z', \xi)}{f(z', z_n)} \frac{1}{\xi - z_n} d\xi,$$

is holomorphic in $P(\varepsilon, \delta)$, by By Theorem 1.11 and Lemma 1.13. On the other hand

$$g(z', z_n) = \frac{1}{2\pi i} \int_{\{|\xi|=\varepsilon\}} \frac{g(z', \xi)}{\xi - z_n} d\xi,$$

in $P(\varepsilon, \delta)$, so

$$(g - Qf)(z', z_n) = \frac{1}{2\pi i} \int_{\{|\xi|=\varepsilon\}} \frac{g(z', \xi)}{f(z', z_n)} \Gamma(z', \xi, z_n) d\xi,$$

where

$$\Gamma(z',\xi,z_n) := \frac{f(z',\xi) - f(z',z_n)}{\xi - z_n}.$$

Note that $z_n \mapsto \Gamma(z', \xi, z_n)$ is a polynomial of degree less than k, the coefficients are actually holomorphic in $P(\varepsilon, \delta)$. Thus R := Qf - g is

a polynomial in z_n of degree less than k, with coefficients holomorphic in $P'(0, \delta)$.

Remark 2.13. The division theorem holds also for formal power series, also in some refined version.

2.6. Decomposition of a Weierstrass polynomial into irreducible factors. We change a bit the notation. Let U an open subset connected subset of \mathbb{C}^n , we denote $\mathcal{O}(U)$ the ring of holomorphic functions on U. We consider a monic polynomial

$$P(u, z) = z^k + \sum_{j=1}^k c_j(u) z_n^{k-j}$$

with $c_i \in \mathcal{O}(U)$. Our goal is to show

Theorem 2.14. There are unique monic irreducible polynomials $Q_1, \dots, Q_l \in \mathcal{O}(U)[z]$ and integers ν_1, \dots, ν_l such that

$$P = Q_1^{\nu_1} \cdots Q_l^{\nu_l}.$$

Proof. We shall use generalized discriminants D_s . For s = 0, ..., k - 1 we put

$$\Delta_s(u) = D_s(c_1(u), \dots, c_k(u))$$

Hence Δ_s are holomorphic in U. Since U is connected we have two possibilities: either $\Delta_s \equiv 0$ or $\operatorname{Int} \Delta_s^{-1}(0) = \emptyset$. Let $r \leq k$ be such a integer that

$$\Delta_0 \equiv \cdots \Delta_{k-r-1} and \Delta_{k-r} \neq 0.$$

Let $\Omega := U \setminus \Delta_{k-r}^{-1}(0)$. According to Lemma 2.3 for any $a \in \Omega$ polynomial $z \mapsto P(a, z)$ has exactly r complex roots which we denote by $\xi_1(a), \ldots, \xi_r(a)$. Note that there is no natural way to label these roots, they should be seen as a set. However if we fix arbitrary an order as above, then we have, by the continuity of roots and Rouché's theorem the following :

Lemma 2.15. One can choose continuously roots ξ_j in a neighborhood of any point $a \in \Omega$.

As consequence each root ξ_j has a fixed multiplicity ν_j . It means that for b close enough to a

$$\frac{\partial^{\nu_j-1}P}{\partial z^{\nu_j-1}}(b,\xi_j(b)) = 0 \text{ and } \frac{\partial^{r_j}P}{\partial z^{r_j}}(b,\xi_j(b)) \neq 0.$$

Hence applying Implicit Function Theorem we obtain

Lemma 2.16. One can choose holomorphically roots ξ_j in a neighborhood of any point $a \in \widetilde{U}$.

Let $Z := P^{-1}(0) \cap (\Omega \times \mathbb{C})$ and let $\pi : Z \to \Omega$ denote the projection. It follows from Lemma 2.15 that π is a finite covering. Let Z_1, \ldots, Z_l be connected components, then (the restriction) $\pi : Z_i \to \Omega$ is again a finite (k_i -sheeted) covering (see Exercise 3.4 for the definition). Let us assume that $\xi_1(a), \ldots, \xi_{k_i}(a)$ are the roots $z \mapsto P(a, z)$ which correspond to the component Z_i . We put, for any $a \in \Omega$

$$c_q(a) = \sigma_q(xi_1(a), \dots, \xi_{k_i}(a)), \ q = 1, \dots, k_i.$$

Note that each c_q is holomorphic and locally bounded function, hence by the Riemann Extension Theorem it extends to a holomorphic function on U. So we can now define irreducible factors.

$$Q_i(u,z) := z^{k_i} + \sum_{q=1}^{k_i} c_q(u) z^{k_i - q}$$

We leave the uniqueness of the decomposition as an exercise.

Exercise 2.17. Show that P is irreducible if an only if its discriminant is non-identically vanishing in U.

2.7. The theorem of Puiseux.

Theorem 2.18. Let

$$P(u, z) = z^{k} + \sum_{j=1}^{k} c_{j}(u) z_{n}^{k-j},$$

where c_j are holomorphic functions in the disk $B(0,\delta) \subset \mathbb{C}$. Assume that P is irreducible and that the discriminant of P vanishes only at $0 \in \mathbb{C}$. Then there exists a holomorphic function $h : B(0, \delta^{1/k})\mathbb{C}$ such that

$$P(u^{k}, z) = \prod_{j=0}^{k-1} (z - h(\theta_{j}u)),$$

where $\theta_0, \ldots, \theta_{k-1}$ are the roots of unity of order k.

The idea of the proof: Consider $Z = P^{-1}(0) \setminus \{0\} \times \mathbb{C}$, the canonical projection $\pi : Z \to B^* := B(0, \delta) \setminus \{0\}$ is a k-sheeted covering. Since P is irreducible Z is connected. Let $B_k^* := B(0, \delta^{1/k}) \setminus \{0\}$. Now consider the map

$$\varphi: B_k^* \ni u \mapsto u^k \in B^*$$

this is also is a k-sheeted covering. Finally study the pull back of π by $\Phi(u,t) = (u^k,t)$, and show that $\Phi^{-1}(Z)$ has k connected components. Conclude the result.

3. More exercises

Exercise 3.1. Maximum Principle. Let $U \subset \mathbb{C}^n$ be open and connected. Let $f: U \to \mathbb{C}$ be a holomorphic function. Assume that there exists $a \in U$ such that

$$|f(a)| = \sup_{z \in U} |f(z)|,$$

then f is constant. More generally, show that if f is non-constant, then f is open. Is the last statement true for holomorphic maps $F: U \to \mathbb{C}^n$? (Consider F(x, y) = (x, xy).)

Exercise 3.2. Let $P(u, z) = z^k + c_1(u)z^{k-1} + \cdots + c_k(u)$, with c_j holomorphic in an open and connected $U \subset \mathbb{C}^n$. Put $Z := P^{-1}(0)$ and let $\pi : U \times \mathbb{C} \to U$ stand for the canonical projection. Show that $\pi|_Z$ - the restriction of π to Z, is open and proper. Which of these properties remain true in the real case ?

More generally (in the complex case) we can consider $\Omega = U \times V$, where $V \subset \mathbb{C}$ is open. What can be said about $\pi|_{Z \cap \Omega}$?

Exercise 3.3. Let $U \subset \mathbb{C}^n$ be open and connected. Let $f: U \to \mathbb{C}$ be a holomorphic non-constant function. Show that $U \setminus f^{-1}(0)$ is connected.

Exercise 3.4. Let M and N be two locally connected topological spaces. Recall that a continuous map $\varphi : M \to N$ is *covering*, if for each $y \in N$ there exists a neighborhood V of y such that $\varphi^{-1}(V) = \bigcup_{\alpha \in A} U_{\alpha} \neq \emptyset$ (a disjoint union of open sets) such that for each $\alpha \in A$ the map $\varphi|_{U_{\alpha}} : U_{\alpha} \to V$ is a homeomorphism. Assume that $\varphi : M \to N$ is a *finite covering* (i.e all fibers are finite). Prove the following:

- (1) if N is connected then all fibers have the same cardinality k, we will say that the covering is k-sheeted;
- (2) if N is connected and $M \subset M$ is an open and closed subset of M (e.g. \widetilde{M} may be a connected component of M), then $\varphi|_{\widetilde{M}} : \widetilde{M} \to N$ is again a covering.
- (3) let $\gamma : [0,1] \to N$ be a continuous arc, let $x_0 \in M$ be such a point that $\varphi(x_0) = \gamma(0)$, then there exists a unique $\widetilde{\gamma} : [0,1] \to M$ such that $\widetilde{\gamma}(0) = x_0$ and $\varphi \circ \widetilde{\gamma} = \gamma$.

Exercise 3.5. Let M and N be two locally compact topological spaces, show that $\varphi : M \to N$ is a finite covering if and only if φ is proper local homeomorphism.

Exercise 3.6. Chow's Theorem for hypersurfaces. Let $U \subset \mathbb{C}^n$ be open and convex neighborhood of $0 \in \mathbb{C}$. Let $f : U \to \mathbb{C}$ be a holomorphic function, denote $Z := f^{-1}(0)$. Assume that Z is homogenous that means: $z \in Z$, $|t| \leq 1 \Rightarrow tz \in Z$, equivalently that for any complex vector line $L \subset \mathbb{C}^n$ we have either $L \cap Z = L \cap U$ or $L \cap Z = \{0\}$. Show that Z is actually algebraic, precisely that there exists a homogenous polynomial $g =: \mathbb{C}^n \to \mathbb{C}$ such that $Z = U \cap g^{-1}$.