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The original problem: Perturbed McMillan familyx
y

 F−→

 y

−x+ µ
2y

1 + y2
+ εV ′(y, h, ε)


where

• They are area preserving maps.

• µ = coshh, h > 0, ε ∈ R,

• V =
∑
k≥2 Vky

2k is a holomorphic function in
B = { (y, h, ε) ∈ C3 | |y| < y0, |h| < h0, |ε| < ε0 }

• V ′ is odd in y and even in h,

• there exists C > 0 such that |V ′(y, 0, ε)| ≤ C|y|5 for |y| < y0,
|ε| < ε0.
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The original problem: Dynamics around the origin

• (0, 0) is a fixed point for all h, ε.

• Spec DF (0, 0) = {eh, e−h} =⇒ (0, 0) is a weakly hyperbolic point.

• h is the characteristic exponent.

• (0, 0) has invariant unstable and stable curves, Wu,s

• Wu,s admit natural parametrizations

zu,s(t) = (xu,s(t), yu,s(t)),

such that
F (zu,s(t)) = zu,s(t+ h).
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The integrable case

When ε = 0, the McMillan family is integrable.

H0(x, y) = (x2 − 2µxy + y2 + x2y2)/(2γ), γ = sinhh,

is a first integral.
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Reversibility

McMillan maps of this family are reversible:

F−1 = R ◦ F ◦R, R(x, y) = (y, x),

that is, conjugated with its inverse by an involution (R−1 = R).

Consequences:

• if zu(t) is a natural parametrization of Wu, zs(t) = R ◦ zu(−t) is a
natural parametrization of W s.

• the intersections of Wu with y = x are homoclinic points

• for ε = 0, separatrix intersects transversely y = x =⇒ homoclinic
points for |ε| small.
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Perturbed case: the problem
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problem: to give an asmptotic formula for the area of one of the lobes
between Wu and W s.

6



Perturbed case. Previous results

When V is entire and

ε = O(h6/ lnh), h→ 0+

Delshams & Ramı́rez-Ros (98) proved that the separatrix splits.

The area of one of the lobes between Wu and W s is given by

A = 8πεV̂ (2π)e−π
2/h(1 +O(h2)), (1)

The leading term was obtained computing a Melnikov formula. Smallness
condition on ε is necessary in order that the Melnikov formula gives the right
prediction of the area.

The coefficient V̂ (2π) in formula (1) is the Borel transform of the perturbative
potential at 2π, where

V̂ (ζ) =
∑
n≥2

Vn
(2n− 1)!

ζ2n−1.
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Main Theorem

The area of the lobes between Wu and W s is given by

A = B0(ε)e−π
2/h(1 + o(1)), (2)

for |ε| < 1/2|V2|, 0 < h < h0(ε),

(o(1) stands for |o(1)| ≤ g(h), with limh→0+ g(h) = 0).

That is, the formula is valid for independent ε and h.

Moreover,
B0(ε) = 8πεV̂ (2π) +O(ε2).
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Techniques used

We do

• use outer approximations far from the singularities of the homoclinic
nonperturbed separatrix,

• use resurgence theory to study the solutions of the inner equations
and their difference,

• use matching techniques to continue functions up to distance
∼ h ln 1/h of the singularities

•We do not use flow box coordinates
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Parametrizations of Wu,s

Symmetries imply that natural parametrizations of Wu,s are

zu,s(t) = (xu,s(t), yu,s(t)) = (ξu,s(t− h/2), ξu,s(t+ h/2)).

where ξ(t) satisfies

ξ(t+ h) + ξ(t− h) = µ
2ξ(t)

1 + ξ2(t)
+ εV ′(ξ(t)),

with boundary conditions

lim
t→−∞

ξ(t) = 0, for ξu

and

lim
t→∞

ξ(t) = 0, for ξs.

Moreover, we will require ξ(−h/2) = ξ(h/2), which implies that zu(0) = zs(0)

is a homoclinic point.
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Finding ξu and ξs: Outer expansions (I)

ξu,s are both solutions of the difference equation

ξ(t+ h) + ξ(t− h) = µ
2ξ(t)

1 + ξ2(t)
+ εV ′(ξ(t)), µ = coshh

with different boundary conditions.

Expanding formally the solution in h,

ξ(t, ε, h) =
∑
k≥0

h2k+1ξk(t, ε),

and imposing the boundary conditions

lim
t→−∞

ξk(t, ε) = 0, ( lim
t→+∞

ξk(t, ε) = 0) ξk(−h/2, ε) = ξk(h/2, ε),

gives the same (divergent) expansion for ξu and ξs.
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Finding ξu and ξs: Outer expansions (II)

Integrable case.

When ε = 0, the map is integrable and we obtain:

ξu(t, 0, h) = ξs(t, 0, h) = ξ0(t, h) =
γ

cosh t
, γ = sinhh.

Its closest singularities to the real line are ±iπ/2.

General case.

Although the series
∑
k≥0 h

2kξk is divergent, it satisfies (in some domain, at
distance δ > h from ±iπ/2)

|ξu(t, ε, h)−
N−1∑
k=0

h2k+1ξk(t, ε)| ≤ CN
h2N+1

|t± iπ/2|2N+1
.

It is the outer expansion. Since the outer expansion is the same for ξs, this implies

that ξu and ξs coincide beyond all orders.
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The problem: Inner expansions

Study the behavior of ξu,s for t close to iπ/2: change

z = (t− iπ/2)/h, φ(z) = ξ(iπ/2 + hz).

Full Inner Equation

φ(z + 1) + φ(z − 1) = F(φ(z), h, ε), (3)

where z 7→ φ(z) is the unknown scalar function and

F(y, h, ε) =
2(coshh)y

1 + y2
+ εV ′(y, h, ε), (4)
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The problem

The h2-expansion

We can expand

F(y, h, ε) =
∑
n≥0

h2nFn(y, ε). (5)

Looking for a solution of (3) in the form

φ =
∑
n≥0

h2nφn(z, ε)

and expanding in powers of h2.
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We get the “inner equation”

φ0(z+ 1) +φ0(z−1) = F(φ0(z), 0, ε) =
2φ0(z)

1 + φ0(z)2
+ εV ′(φ0(z), 0, ε)

(6)
and a system of “secondary inner equations”

φn(z + 1) + φn(z − 1) = Fn(z, ε), n ≥ 1, (7)

where the right-hand sides are determined inductively:

Fn = ∂yF(φ0, 0, ε)φn + fn,

fn is the coefficient of h2n in F(φ0 + h2φ1 + · · ·+ h2(n−1)φn−1, h, ε)
(while Fn is the coefficient of h2n in F(φ0 + h2φ1 + · · ·+ h2nφn, h, ε)).
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Study of the inner equation

• Determine ”formal solutions”(with respect to z) Φ̃n(z, ε; b) of
equations (7) depending on a free parameter b ∈ CN∗ .

• Φ̃n(z, ε; b) are generically divergent

• We will study the analytic continuations of their Borel transforms
Φ̂n(ζ, ε; b), which are analytic in a neighborhood of the origin.

• Borel-Laplace summation then leads to solutions Φsn and Φun
holomorphic in two different domains of the z-plane, the difference
between them being related to complex singularities of the Borel
transforms.

• The analysis of the singularities in the Borel plane will be performed
with the help of the alien derivations introduced by J. Écalle in his
resurgence theory, and will give access to the precise asymptotic
behaviour of Φsn − Φun.
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Formal solutions

Theorem For each ε, the inner equation has a unique odd formal
solution Φ̃0(z, ε) of the form −iz−1 +O(z−3).

The solutions φ̃ ∈ C((z−1))[[h2]] of the full inner equation which are odd
in z and such that [φ̃]0 = Φ̃0 are in one-to-one correspondence with the
sequences b ∈ CN∗ :

Φ̃(z, h, ε; b) = Φ̃0(z, ε) +
∑
n≥1

h2nΦ̃n(z, ε; b1, . . . , bn),

where Φ̃n(z, ε; b1, . . . , bn) ∈ z4n−1C[[z−1]] and the coefficients of the
formal series Φ̃n depend analytically on ε. .

Moreover,
b1 = 0 ⇔ ∀n ≥ 1, Φ̃n(z, ε; b1, . . . , bn) ∈ z2n−1C[[z−1]]

The general solution of (3) in C((z−1))[[h2]] is ±Φ̃(z + a(h), h, ε; b),
with arbitrary a(h) ∈ C[[h2]] and b ∈ CN∗ .
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The integrable case ε = 0

For ε = 0, we know explicitly the solution of (3) which is related to the
separatrix:

Φ0(z, h) = −i sinhh
sinh(hz)

= −iz−1 + ih
2

6 (z − z−1)− i h
4

360 (7z3 − 10z + 3z−1) + . . .

(8)

A certain choice b∗(0) of b leads to Φ̃(z, h, 0; b∗(0)) = Φ0(z, h).

In particular
Φ̃0(z, 0) = −iz−1 (9)

and Φ̃1(z, 0; b∗1(0)) = i
6 (z − z−1),

Φ̃2(z, 0; b∗1(0), b∗2(0)) = − i
360 (7z3 − 10z + 3z−1), etc.
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The integrable case ε = 0

All the series Φ̃n(z, 0; b1, . . . , bn) are convergent; in fact, they are
polynomials up to the factor z−1:

For any b ∈ CN∗ ,

∀n ≥ 1, Φ̃n(z, 0; b1, . . . , bn) ∈ z−1C[z].

When ε = 0 the formal solution is given by a convergent series.

For nonzero ε, the formal solutions of (3) are deformations of Φ0. But
they are divergent in z.

Wee shall deduce analytic solutions from them using resurgence theory.
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Borel transform

We define the Borel transform

B : C((z−1)) → C[[ζ]]

ϕ̃(z) 7→ ϕ̂(ζ)

where:

ϕ̃(z) =
∑
p≥−v

apz
−p, v ∈ N,

and

Bϕ̃(ζ) = ϕ̂(ζ) =
∑
p≥1

ap
ζp−1

(p− 1)!
.
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Borel transform

• It is a linear operator which cancels out the polynomial part of ϕ̃(z).

• ϕ̂(ζ) ∈ C{ζ} means that ϕ̃(z) is Gevrey-1, that is, there exist C,K > 0
such that |ap| ≤ CKpp!.

• ϕ̃(z) is convergent for |z| large enough, then ϕ̂(ζ) must define an entire
function of exponential type.

In the case of the formal solutions of our equations, we shall see that the
Borel transforms converge near the origin, but the holomorphic functions
of ζ thus defined are generically not entire: their analytic continuations
are singular at ±2πi (thus the formal solutions themselves are not
convergent).
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Borel transform

We consider the cut planeR0 = C \ ±2πi [1,+∞), which will be the
common holomorphic star of the BΦ̃n’s.

Definition 1 For any ρ ∈ (0, 2π), we set

R0
ρ =

{
ζ ∈ C | dist

(
[0, ζ], 2πi

)
≥ ρ, dist

(
[0, ζ],−2πi

)
≥ ρ
}
⊂ R0
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Borel transform

We define R̂ES(0) to be the set of all ϕ̂ ∈ C{ζ} such that

1. ϕ̂(ζ) extends analytically toR 0,

2. for each ρ ∈ (0, 2π), there exist τ, C > 0 such that |ϕ̂(ζ)| ≤ C eτ |ζ|

for ζ ∈ R0
ρ.

We also set R̃ES(0) = B−1 R̂ES(0).
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Borel transform

Theorem Let b ∈ CN∗ and n ∈ N. Then the Borel transform
Φ̂n(ζ, ε; b1, . . . , bn) of the formal solution Φ̃n(z, ε; b1, . . . , bn) is
convergent for |ζ| < 2π and defines a holomorphic function of two
variables in { (ζ, ε) ∈ C2 | ζ ∈ R0, |ε| < ε0 } which depends
polynomially on b1, . . . , bn. Moreover, for any ε′0 ∈ (0, ε0) and
ρ ∈ (0, 2π), there exist positive constants Cn, τn which depend
continuously on b1, . . . , bn, such that

|Φ̂n(ζ, ε; b1, . . . , bn)| ≤ Cn eτn|ζ|, ζ ∈ Rρß0, |ε| ≤ ε′0.

In particular Φ̃n(z, ε; b1, . . . , bn) ∈ R̃ES(0) for each ε.
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Borel-Laplace summation

Take ϕ̃(z) =
∑
p≥−v apz

−p belonging to R̃ES(0),

And the angle θ is such that the half-line of integration eiθR+ be
contained inR0

ρ.

The formula

(Sθϕ̃)(z) =
v∑
p=0

a−pz
p +

∫ eiθ∞

0

e−zζϕ̂(ζ) dζ (10)

defines a function Sθϕ̃ which is holomorphic in the half-plane
Πθ,τ = { z ∈ C | Re e(z eiθ) > τ },

where τ = τ(ρ), ρ ∈ (0, 2π).
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Borel-Laplace summation

Such angles correspond to two intervals:

θ ∈ I+
ρ =

[
−π2 + δ, π2 − δ

]
or θ ∈ I−ρ =

[
π
2 + δ, 3π

2 − δ
]
.

with δ = arcsin ρ
2π
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Borel-Laplace summation

Cauchy theorem: functions Sθϕ̃ corresponding to angles θ from the same
interval mutually extend.

We get two holomorphic functions:

S+ϕ̃(z) = (Sθϕ̃)(z) for any θ ∈ I+
ρ holomorphic in D+

ρ,τ =
⋃
θ∈I+ρ

Πθ,τ ,

and

S−ϕ̃(z) = (Sθϕ̃)(z) for any θ ∈ I−ρ holomorphic in D−ρ,τ =
⋃
θ∈I−ρ

Πθ,τ ,
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Borel-Laplace summation: properties

• The domains D+
ρ,τ and D−ρ,τ can be considered as sectorial

neighbourhoods of infinity of opening 2π − 2δ centred respectively
on R+ and R−

• ϕ̃ is the asymptotic expansion of S±ϕ̃ in the Gevrey-1 sense uniformly
in D±ρ,τ :

S±ϕ̃(z) ∼1 ϕ̃(z), z ∈ D±ρ,τ ,

• The intersection of D+
ρ,τ and D−ρ,τ has two connected components, in

which S+ϕ̃ and S−ϕ̃ generically do not coincide;

In fact, S+ϕ̃ and S−ϕ̃ mutually extend if and only if the original series ϕ̃
has positive radius of convergence (then the union D+

ρ,τ ∪ D−ρ,τ contains a
full neighbourhood of infinity, {|z| > R}, in which ϕ̃(z) converges
to S±ϕ̃(z)).

28



Borel-Laplace summation: properties

• By letting ρ vary in (0, 2π), we see that S+ϕ̃ and S−ϕ̃ admit an
analytic continuation to Ds =

⋃
D+
ρ,τ(ρ) and Du =

⋃
D−ρ,τ(ρ).

• R̃ES(0) is a differential subalgebra of C((z−1)) (it is stable by
multiplication and differentiation),the operators S± are differential
algebra morphisms (they map the product of formal series on the product
of analytic functions and they commute with ∂z) and they commute with
the shift operator ϕ̃(z) 7→ ϕ̃(z + 1).

Consequently, when S+ and S− can be applied to a formal solution of a
(possibly non-linear) difference equation, it yields an analytic solution of
this equation (Ecalle’s theory).
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Borel-Laplace summation: results

corollary

Let b ∈ CN∗ . Then there exist two decreasing sequences of domains Dsn
and Dun, each of which contains sectorial neighborhoods of infinity with
opening arbitrarily close to 2π centered respectively on R+ and R−, such
that for any n ∈ N, the functions

Φsn(z, ε; b1, . . . , bn) := S+Φ̃n, Φun(z, ε; b1, . . . , bn) := S−Φ̃n

are holomorphic for z ∈ Dsn, respectively z ∈ Dun, and |ε| < ε0, and solve
the inner equations

Moreover, for each ρ ∈ (0, 2π), there exists τn > 0 such that

Φs,un (z, ε; b1, . . . , bn) ∼1 Φ̃n(z, ε; b1, . . . , bn), z ∈ Dsρ,τn or Duρ,τn ,

and Φsn and Φun coincide for ε = 0.
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Borel-Laplace summation

The solutions Φsn and Φun are characterized by the beginning of their
asymptotic expansion: If, for ϕ̃(z) =

∑
p≥−v apz

−p, we denote

[ϕ̃]≤2 =
2∑

p=−v
apz
−p

(for instance
[
Φ̃0(z, ε)

]
≤2

= −iz−1, we indeed have

Proposition

Let b1, . . . , bn0 ∈ C, σ ∈ (2, 3], z0 ∈ Dun0
and ε ∈ C such that |ε| < |ε0|.

The functions (φn)0≤n≤n0 defined by φn(z) = Φun(z, ε; b1, . . . , bn) are
the only solutions of the inner equations, 0 ≤ n ≤ n0, such that each φn
is defined on the half-line z0 + R− and satisfies

φn(z) =
[
Φ̃n(z, ε; b1, . . . , bn)

]
≤2

+O
(
|z|−σ

)
.

Similarly for Φsn(z, ε; b1, . . . , bn), with z0 + R+
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The alien derivatives of the formal solution

Definition

Let ϕ̃ ∈ R̃ES(0). We say that ϕ̂ = Bϕ̃ has a simply ramified singularity at
ω = ±2πi if there exist reg(ζ) ∈ C{ζ} and
ψ̃(z) =

∑
p≥−v bpz

−p ∈ C((z−1)) (with v ∈ N), such that

ψ̂ = Bψ̃ ∈ C{ζ} and

ϕ̂(ζ) =
v∑
p=0

b−p
(−1)pp!

2πi(ζ − ω)p+1
+ψ̂(ζ−ω)

log(ζ − ω)
2πi

+reg(ζ−ω) (11)

for ζ ∈ R0 with |ζ − ω| small enough.

In this situation, we use the notation

∆ωϕ̃ = ψ̃. (12)
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The alien derivatives of the formal solution

• The Gevrey-1 formal series ψ̃ is indeed determined by ϕ̃ (by Bϕ̃ in
fact).

• ϕ̂ extends holomorphically to the universal cover of a punctured disc
centered at ω and ψ̂(ξ) is the variation (or monodromy) of ϕ̂ at ω + ξ

around ω, that is, the difference between two consecutive branches

ψ̂(ξ) = ϕ̂(ω + ξ)− ϕ̂(ω + ξ e−2πi)

• The polynomial part of ψ̃(z) is determined by the polar part of the
Laurent expansion at the origin of

∨
P (ξ) = ϕ̂(ω + ξ)− ψ̂(ξ)

log ξ
2πi

(which is meromorphic in a small disc centred at the origin);

• The regular function reg(ξ) depends on the branch of the logarithm
which is chosen in (11).
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The alien derivatives of the formal solution

•We have two linear operators ∆2πi and ∆−2πi defined on the subspace
of R̃ES(0) consisting of the formal series whose Borel transforms have
simply ramified singularities at ±2πi, with values in the space of
Gevrey-1 formal series C((z−1))Gev.

• These operators are particular instances of Ecalle’s alien derivations.

• They are indeed derivations: it can be proved that

∆ω (ϕ̃1ϕ̃2) = (∆ωϕ̃1) ϕ̃2 + ϕ̃1 (∆ωϕ̃2)

34



The alien derivatives of the formal solution

• It will turn out that the Φ̂n’s have simply ramified singularities at ±2πi.

•We will describe these singularities through the action of the alien
derivations ∆±2πi on Φ̃n.

•We will compute the alien derivations in term of some auxiliary formal
series Ψ̃1,n, Ψ̃2,n which we now introduce.
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The variational equation

”formal”variational equation associated with the formal solution
Φ̃(z, h, ε; b) = Φ̃0(z, ε) +

∑
n≥1 h

2nΦ̃n(z, ε; b1, . . . , bn):

Ψ(z + 1) + Ψ(z − 1) = ∂yF
(
Φ̃(z, h, ε; b), h, ε

)
Ψ(z),

for an unknown Ψ =
∑
n≥0 h

2nΨn(z) ∈ C((z−1))[[h2]].

variational equation associated with the solution
Φu(z, h, ε; b) = Φu0 (z, ε) +

∑
n≥1 h

2nΦun(z, ε; b1, . . . , bn) (formal in h,
analytic in z):

Ψ(z + 1) + Ψ(z − 1) = ∂yF
(
Φu(z, h, ε; b), h, ε

)
Ψ(z),

for an unknown Ψ =
∑
n≥0 h

2nΨn(z) with coefficients analytic in z.
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The ”formal”variational equation

We call normalized fundamental system of solutions a pair of solutions
(Ψ1,Ψ2) such that

Ψ1(z)Ψ2(z + 1)−Ψ1(z + 1)Ψ2(z) ≡ 1

There exists a normalized fundamental system of solutions (Ψ̃1, Ψ̃2) for
the ”formal”variational equation, of the form

Ψ̃j(z, h, ε; b) = Ψ̃j,0(z, ε) +
∑
n≥1

h2nΨ̃j,n(z, ε; b1, . . . , bn), j = 1, 2,

with all Ψ̃j,n ∈ R̃ES(0).
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The ”formal”variational equation

We obtain Ψ̃1, Ψ̃2 by using ”formally”the theory of linear difference
equations.

• Ψ̃1 = ∂zΦ̃ even in z, and Ψ̃2 odd in z.

• Ψ̃1,0(z, ε) = iz−2 +O(z−4), Ψ̃2,0(z, ε) = − i
5z

3 +O(z)

• Ψ̃1,n ∈ z4n−2C[[z−1]] and Ψ̃2,n ∈ z4n+3C[[z−1]] in general

• If we choose b1 = 0 then

Ψ̃1,n ∈ z2n−2C[[z−1]], Ψ̃2,n ∈ z2n+3C[[z−1]].
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The variational equation

Applying the Borel resumation process we obtain

• The formulas

Ψu
j =

∑
n≥0

h2nΨu
j,n, Ψu

j,n = S−Ψ̃j,n,

define a normalized fundamental system of solutions (Ψu
1 ,Ψ

u
2 ) for the

variational equation

We thus have at our disposal formal series Ψ̃1,n, Ψ̃2,n, and analytic
functions which admit them as Gevrey-1 asymptotic expansions.

The coefficients of these formal series can be determined inductively, as
was the case for the formal series Φ̃n.
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Computation of the alien derivatives of the formal solution

Theorem

Let b ∈ CN∗ . Then the Borel transforms Φ̂n(ζ, ε; b) have simply ramified
singularities at ±2πi whose alien derivatives can be computed as:

∆±2πiΦ̃n =
∑

n1+n2=n

(
A±n1

Ψ̃1,n2 + iB±n1
Ψ̃2,n2

)
, n ∈ N.

A±(h, ε; b) =
∑
n≥0A

±
n (ε; b1, . . . , bn)h2n

B±(h, ε; b) =
∑
n≥0B

±
n (ε; b1, . . . , bn)h2n,

and A±(h, ε; b) and B±(h, ε; b) are formal series in h2, the coefficients of
which are complex polynomials in b1, b2 . . . that depend analytically on ε
for |ε| < ε0 and vanish at ε = 0.
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Computation of the alien derivatives of the formal solution

The analytic functions A±0 (ε) and B±0 (ε) do not depend on b. One has

A±0 (ε) = εA±0,1 +O(ε2), A±0,1 = 2πDV̂0(±2π), (13)

B±0 (ε) = εB±0,1 +O(ε2), B±0,1 = ±4π2V̂0(±2π), (14)

where V̂0 is the entire function obtained as Borel transform with respect
to 1/y of a primitive of V ′(y, 0, 0):

V ′(y, 0, 0) =
∑
p≥5

vpy
p, V0(y) =

∑
p≥5

vp
yp+1

p+ 1
, V̂0(ξ) =

∑
p≥5

vp
ξp

(p+ 1)!
,

(15)
and D = 1

5ξ∂
5
ξ + ∂4

ξ + 1
3ξ∂

3
ξ + ∂2

ξ + 2
15ξ∂ξ + 2

15 Id.
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Computation of the alien derivatives of the formal solution

We can extend the action of the linear operators ∆ω to formal series in h2

by the formula

∆ω

(∑
h2nϕ̃n

)
=
∑

h2n∆ωϕ̃n

then we obtain:

∆±2πiΦ̃ = A±Ψ̃1 + iB±Ψ̃2.

This equation is an example of what is called the bridge equation in
Écalle’s terminology.
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Consequences for the splitting of separatrices

Let n ∈ N. Φ̂n has a simply ramified singularity at ω = 2πi, the variation

of which is ψ̂ =
∑
n1+n2=n

(
A+
n1

Ψ̂1,n2 + iB+
n1

Ψ̂2,n2

)
∈ R̂ES(0).

This implies that Φ̂n admits a multivalued analytic continuation through
the cut between 2πi and 4πi: if ζ = ω + ξ ∈ R0 with ξ ∈ R0, we can
consider Φ̂n(ω + ξ e2πi) = Φ̂n(ω + ξ) + ψ̂(ξ) as defining the branch of
the analytic continuation of Φ̂n which is obtained from the principal one
(the branch holomorphic inR0) by turning anticlockwise around 2πi.
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Consequences for the splitting of separatrices

Let λ ∈ (0, 1), β ∈ (0, π/2). Consider the path Γλ,β consisting of two
half-lines with vertex at 2π(1 + λ)i and angle β with respect to the
horizontal, oriented from left to right, as on
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Consequences for the splitting of separatrices

Let ε′0 ∈ (0, ε0). There exist constants C∗n, τ
∗
n > 0 which depend only on

λ, β, ε′0, b1, . . . , bn such that

|Φ̂n(ζ, ε; b1, . . . , bn)| ≤ C∗n eτ
∗
n|ζ−2π(1+λ)i|, ζ ∈ Γλ,β , |ε| ≤ ε′0,

where the branch of Φ̂n considered is determined by the convention that
the right part of Γλ,β lies inR0, while on its left part one should use the
branch of Φ̂n obtained by crossing the cut from right to left.
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Consequences for the splitting of separatrices

We now estimate the differences Φsn − Φun for z belonging to the
intersection of half-planes

Dn = { z ∈ C | Re (z eiβ) ≥ 2τ∗n and Re (z e−iβ) ≥ 2τ∗n }.

Taking τ∗n large enough, we can assume that Dn is contained in the lower
component of the intersection Dsn ∩ Dun.
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Consequences for the splitting of separatrices

Theorem

Let n ≥ 0. For any ε ∈ C such that |ε| ≤ ε′0 and any z ∈ Dn,

Φsn − Φun =
∑

n1+n2=n

(
A+
n1

Ψu
1,n2

+ iB+
n1

Ψu
2,n2

)
e−2πiz +R,

with |R| ≤ Kn|ε|e−2π(1+λ)|Im z|, (16)

where Kn = 2C∗n
ε′0τ
∗
n

.
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Consequences for the splitting of separatrices

Idea of the proof

For such ε and z, we can write

(Φsn − Φun)(z, ε; b1, . . . , bn) =
∫ eiβ∞

ei(π−β)∞
e−zζ Φ̂n(ζ, ε; b1, . . . , bn) dζ.

By the Cauchy theorem, we can deform the contour: Φsn − Φun = D +R

with

D =
∫
γβ

e−zζ Φ̂n dζ, R =
∫

Γλ,β

e−zζ Φ̂n dζ,

where the path Γλ,β was already defined, while γβ comes from ei(π−β)∞
inR0, encircles the point 2πi anticlockwise and goes back to ei(π−β)∞
(thus on another sheet of the Riemann surface of Φ̂n.
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Consequences for the splitting of separatrices
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Consequences for the splitting of separatrices

We can express Φ̂n along γβ by a formula of the form:

Φ̂n(ζ) =
v∑
p=0

b−p
(−1)pp!

2πi(ζ − ω)p+1
+ ψ̂(ζ − ω)

log(ζ − ω)
2πi

+ reg(ζ − ω)

with ω = 2πi; the change of variable ζ = 2πi + ξ then yields∫
γβ

e−zζ (−1)pp!
2πi(ζ−ω)p+1 dζ = e−2πiz zp,

∫
γβ

e−zζ ψ̂(ζ − ω) log(ζ−ω)
2πi dζ = e−2πiz

∫ ei(π−β)∞

0

e−zξψ̂(ξ) dξ,

thus the contribution of the singularity at 2πi is given by the operator S−

applied to the alien derivative ∆2πiΦ̃n:
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Consequences for the splitting of separatrices

D = e−2πizS−∆2πiΦ̃n =
∑

n1+n2=n

(
A+
n1

Ψu
1,n2

+ iB+
n1

Ψu
2,n2

)
e−2πiz.

As for the remainder R, we use the change of variable
ζ = 2π(1 + λ)i + ξ and get

|R(z, ε)| ≤≤ 2C∗n
τ∗n

e−2π(1+λ)|Im z|

• |e−2πiz| = e−2π| Immz| is exponentially small

•We know the asymptotics of the functions Ψu
j,n’s

• e−2π(1+λ)| Immz| is exponentially smaller.

The singularity analysis in the Borel plane gave us access to the precise
measure of the exponentially small splitting phenomenon.
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