
Orbital analytic classification of germs of families
unfolding a codimension 1 resonant saddle

or saddle-node

Part of the work done in collaboration with
Colin Christopher (resonant saddle) and Loı̈c
Teyssier (saddle-node)
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Motivation

Vector fields have normal forms. Very often the
change to normal form is generically divergent.

Why?

Resonant vector fields

ẋ = x(1+Au)

ẏ = −
p
q y(1+η)(1+Bu)

u = xpyq

with u = ε invariant.

Saddle-nodes

ẋ = x2 −ε
ẏ = y(1+ ax)
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The interpretation of the formal invariant a(ε)

Let

µ± =
λ1(±

√
ε)

λ2(±
√
ε)

where λ1(±
√
ε) is the small eigenvalue.

Then

a(ε) =
1
µ+

+
1
µ−
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General philosophy

We have the coalescence of two objects, each
with its local model. The local model do not
match in general.

Resonant vector fields
a singular point
and an
invariant manifold

(A limit cycle for the Hopf bifurca-
tion)

Saddle-nodes
a saddle
and a
node

or two hyperbolic points
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One example of obstruction

Generically a saddle-node has no analytic center manifold

εε−
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Conclusion 1

Conclusion 1: When we unfold a system with no analytic center
manifold, then the analytic separatrices of the two singular
points do not match.

Indeed a non resonant node is linearizable

ẋ = λx
ẏ = y

Solutions

y = Cx
1
λ

For λ 6= 1
n all solutions but

y = 0 are ramified.
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ẏ = y

Solutions

y = Cx
1
λ

For λ 6= 1
n all solutions but

y = 0 are ramified.

12 Motivation Workshop Fields, June 2009



Conclusion 1

Conclusion 1: When we unfold a system with no analytic center
manifold, then the analytic separatrices of the two singular
points do not match.

Indeed a non resonant node is linearizable
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The parametric resurgence phenomenon

Conclusion 2: When we unfold a
system with no analytic center
manifold then the node is non
linearizable as soon as resonant.
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Explanation of Conclusion 2

If the node is resonant then the local model at the node is the normal

form
ẋ = x

n
ẏ = y+Axn.

If A = 0, then all solution curves at the node (except x = 0 ) are
analytic of the form y = Cxn.

This case is obviously impossible when unfolding a system with

ramification for ε= 0 and we are forced to have A 6= 0, yielding that

all solutions (except x = 0) are of the form

y = nAxn lnx+Cxn
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Other general rules

To understand we have
I considered x,y ∈ C,
I unfolded.
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Still another general rule

It is difficult to give an
explanation which makes a
full turn in ε.

Indeed, after a turn, the
saddle and the node are
exchanged.
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Link with Borel-summability

This is the interpretation of one singularity in
the Borel plane.

What about the others?

The right singularity controls (in the limit) the
sequence of resonances 1 : 1

n n ∈ N large.
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The left singularities control the saddle

The left singularities “control” (in the limit)
sequences of resonances 1 : −

p
q+np n ∈ N large.
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Duality: vector fields – diffeomorphisms

Two germs of families of vector fields unfolding
a saddle-node are analytically orbitally
equivalent if and only if the holonomies of their
strong separatrices are conjugate.

Vector fields

ẋ = x2 −ε

ẏ = y(1+ ax)+ f0(x)+O(y2)

Diffeomorphisms

fε(x)= x+(x2−ε)(1+O(|x,ε|))

x f(x)
Σ

x

y
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ẏ = y(1+ ax)+ f0(x)+O(y2)

Diffeomorphisms

fε(x)= x+(x2−ε)(1+O(|x,ε|))

x f(x)
Σ

x

y

23 Duality: vector fields – diffeomorphisms Workshop Fields, June 2009



Same for resonant vector fields

Two germs of families of vector fields unfolding
a codimension 1 resonant saddle p ′ : q are
analytically orbitally equivalent if and only if
the holonomies of their x-separatrices (or
y-separatrices) are conjugate.

Vector fields

ẋ = x
ẏ = y

(
−(

p ′
q +η)+A(η)u

+O(u2)
)

Diffeomorphisms

fε(y) =
(

exp(2πip
q)−α

)
y

+
exp(2πi p

q )

q yq+1 + . . .

p≡−p ′ (mod q)
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Modulus of orbital classification for a saddle-node

We give a description for ε in a ramified sector
V.
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Sectors U± in x

0 8

0

8

0

8

Over U±×D we can bring the vector field to the
model by an analytic change of coordinate.

28 Modulus of classification Workshop Fields, June 2009



The space of leaves

Over each U±×D the space
of leaves is C, hence
equipped with a rigid
canonical coordinate.
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The modulus

The modulus (ψ0
ε̂,ψ

∞̂
ε ) measures the change of

leaf coordinate.

0 8

0

8

0

8
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The structure of the modulus

I ψ0
ε̂ : (C,0) → (C,0)

I ψ∞̂
ε is an affine map

I On the middle sector, the transition Lε̂ is
linear with a wild coefficient (no limit when
ε̂→ 0).

0 8

0

8

0

8
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The realizability condition

On the auto-intersection of V we have two different
descriptions of the dynamics: they should describe
equivalent dynamics

0 8

0

8

0

8

This is also a sufficient condition!
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The compatibility condition

For parameter values in the auto-intersection of
V the two singular points are linearizable over
new sectors Uup and Udown.

The corresponding canonical leaf coordinate is
obtained so that the return map is linear.

Hence it is obtained by linearizing either
I Lε̂ ◦ψ0

ε̂ or
I Lε̂ ◦ψ∞̂

ε
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The Glutsyuk invariant

It is obtained by the change of leaf-coordinate
from Uup to Udown.

We let

{
ε= ε̂

ε̃= e2πiε̂
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The linearizing maps

We get the linearizing maps

I h
0,∞

for L◦ψ0,∞

I h̃0,∞ for L̃◦ ψ̃0,∞

0 8

0

8

0

8

I h
∞

and h̃0 are attached to the upper point

I h
0

and h̃∞ are attached to the lower point

39 The realizability condition Workshop Fields, June 2009



The linearizing maps

We get the linearizing maps

I h
0,∞

for L◦ψ0,∞
I h̃0,∞ for L̃◦ ψ̃0,∞

0 8

0

8

0

8

I h
∞

and h̃0 are attached to the upper point

I h
0

and h̃∞ are attached to the lower point

40 The realizability condition Workshop Fields, June 2009



The linearizing maps

We get the linearizing maps

I h
0,∞

for L◦ψ0,∞
I h̃0,∞ for L̃◦ ψ̃0,∞

0 8

0

8

0

8

I h
∞

and h̃0 are attached to the upper point

I h
0

and h̃∞ are attached to the lower point

41 The realizability condition Workshop Fields, June 2009



The linearizing maps

We get the linearizing maps

I h
0,∞

for L◦ψ0,∞
I h̃0,∞ for L̃◦ ψ̃0,∞

0 8

0

8

0

8

I h
∞

and h̃0 are attached to the upper point

I h
0

and h̃∞ are attached to the lower point

42 The realizability condition Workshop Fields, June 2009



The compatibility condition

h̃0 ◦ (h
∞

)−1 = LA ◦ h̃∞ ◦ (h
0
)−1 ◦LB

for LA and LB some linear maps
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The modulus space

Theorem
Any analytic map a(ε) and any family (ψ0

ε̂,ψ
∞̂
ε )

I with ψ∞̂
ε an affine map

I satisfying the compatibility condition
can be realized as the modulus of orbital analytic
classification of a germ of analytic family of
saddle-nodes unfolding a saddle-node of codimension
1:

ẋ = x2 −ε

ẏ = y(1+ ax)+ f0(x)+O(y2)
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Next steps and perspectives

I generalize to higher codimension

I improve the realizability condition

Similar theorems exist
I for the resonant diffeomorphism and the

resonant saddle
I for systems of linear differential equations

(C. Lambert). In particular the non triviality
of the entries of the Stokes matrices imply
the existence of logarithmic terms at the
bifurcating regular points.
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