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What Is Dynamics?

What Is Dynamics?

A (Discrete) Dynamical System is simply a map

φ : S −→ S

from a set to itself. Dynamics is the study of the be-
havior of the points in S under iteration of the map φ.
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What Is Dynamics?

A (Discrete) Dynamical System is simply a map

φ : S −→ S

from a set to itself. Dynamics is the study of the be-
havior of the points in S under iteration of the map φ.

We write
φn = φ ◦ φ ◦ φ · · ·φ︸ ︷︷ ︸

n iterations

for the nth iterate of φ and

Oφ(α) =
{
α, φ(α), φ2(α), φ3(α), . . .

}

for the (forward) orbit of α ∈ S.
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What Is Dynamics?

A (Discrete) Dynamical System is simply a map

φ : S −→ S

from a set to itself. Dynamics is the study of the be-
havior of the points in S under iteration of the map φ.

We write
φn = φ ◦ φ ◦ φ · · ·φ︸ ︷︷ ︸

n iterations

for the nth iterate of φ and

Oφ(α) =
{
α, φ(α), φ2(α), φ3(α), . . .

}

for the (forward) orbit of α ∈ S.

A primary goal in the study of dynamics is to classify
the points of S according to the behavior of their orbits.
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What Is Dynamics?

Polynomials and Rational Maps

The classical theory of dynamical systems studies how
the iterates of polynomial and rational maps act on R
or C.
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Polynomials and Rational Maps

The classical theory of dynamical systems studies how
the iterates of polynomial and rational maps act on R
or C.

The degree of a rational function

φ(z) =
F (z)

G(z)
=

adz
d + ad−1z

d−1 + · · · + a1z + a0

beze + be−1ze−1 + · · · + b1z + b0

is the larger of d and e.
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The classical theory of dynamical systems studies how
the iterates of polynomial and rational maps act on R
or C.

The degree of a rational function

φ(z) =
F (z)

G(z)
=

adz
d + ad−1z

d−1 + · · · + a1z + a0

beze + be−1ze−1 + · · · + b1z + b0

is the larger of d and e.

We will always assume that deg(φ) ≥ 2 .
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What Is Dynamics?

Polynomials and Rational Maps

The classical theory of dynamical systems studies how
the iterates of polynomial and rational maps act on R
or C.

The degree of a rational function

φ(z) =
F (z)

G(z)
=

adz
d + ad−1z

d−1 + · · · + a1z + a0

beze + be−1ze−1 + · · · + b1z + b0

is the larger of d and e.

We will always assume that deg(φ) ≥ 2 .

A rational function is the same as a rational map (mor-
phism)

φ : P1 → P1

from the projective line to itself.
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What Is Dynamics?

Some Dynamical Terminology

A point α is called periodic if

φn(α) = α for some n ≥ 1.

The smallest such n is called the period of α.
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φn(α) = α for some n ≥ 1.

The smallest such n is called the period of α.

If φ(α) = α, then α is a fixed point.

Arithmetic Dynamics – 3–



What Is Dynamics?

Some Dynamical Terminology

A point α is called periodic if

φn(α) = α for some n ≥ 1.

The smallest such n is called the period of α.

If φ(α) = α, then α is a fixed point.

A point α is preperiodic if some iterate φi(α) is pe-
riodic, or equivalently, if its orbit Oφ(α) is finite.
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A point α is called periodic if

φn(α) = α for some n ≥ 1.

The smallest such n is called the period of α.

If φ(α) = α, then α is a fixed point.

A point α is preperiodic if some iterate φi(α) is pe-
riodic, or equivalently, if its orbit Oφ(α) is finite.

A wandering point is a point whose orbit is infinite.
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Some Dynamical Terminology

A point α is called periodic if

φn(α) = α for some n ≥ 1.

The smallest such n is called the period of α.

If φ(α) = α, then α is a fixed point.

A point α is preperiodic if some iterate φi(α) is pe-
riodic, or equivalently, if its orbit Oφ(α) is finite.

A wandering point is a point whose orbit is infinite.

An Example: The Map φ(z) = z2

• 2 and 1
2 are wandering points.

• 0 and 1 are fixed points.
• −1 is a preperiodic point that is not periodic.

• −1+
√−3
2 is a periodic point of period 2.
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What is Arithmetic Dynamics?
Arithmetic Dynamics is a relatively new field in which
classical problems in the theory of Diophantine equa-
tions and arithmetic geometry are transposed into the
setting of dynamical systems.
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What is Arithmetic Dynamics?
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classical problems in the theory of Diophantine equa-
tions and arithmetic geometry are transposed into the
setting of dynamical systems.

The following associations gives a flavor of the corre-
spondence:
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What is Arithmetic Dynamics?
Arithmetic Dynamics is a relatively new field in which
classical problems in the theory of Diophantine equa-
tions and arithmetic geometry are transposed into the
setting of dynamical systems.

The following associations gives a flavor of the corre-
spondence:

Diophantine Dynamical
Equations Systems

rational and integral ←→ rational and integral
points on varieties points in orbits

torsion points on ←→ periodic and preperiodic
abelian varieties points of rational maps
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What is Arithmetic Dynamics?
Arithmetic Dynamics is a relatively new field in which
classical problems in the theory of Diophantine equa-
tions and arithmetic geometry are transposed into the
setting of dynamical systems.

The following associations gives a flavor of the corre-
spondence:

Diophantine Dynamical
Equations Systems

rational and integral ←→ rational and integral
points on varieties points in orbits

torsion points on ←→ periodic and preperiodic
abelian varieties points of rational maps

In the rest of this talk I’ll survey some current areas of
research in arithmetic dynamics.
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Periodic Points from an Arithmetic Perspective

Periodic Points and Number Theory

For a dynamicist, the periodic points of φ are the real
or complex numbers satisfying an equation

φn(z) = z for some n = 1, 2, 3, . . ..
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Periodic Points and Number Theory

For a dynamicist, the periodic points of φ are the real
or complex numbers satisfying an equation

φn(z) = z for some n = 1, 2, 3, . . ..

A number theorist asks:

What sorts of numbers may
appear as periodic points?

Arithmetic Dynamics – 5–



Periodic Points from an Arithmetic Perspective

Periodic Points and Number Theory

For a dynamicist, the periodic points of φ are the real
or complex numbers satisfying an equation

φn(z) = z for some n = 1, 2, 3, . . ..

A number theorist asks:

What sorts of numbers may
appear as periodic points?

For example:

Question. Is it possible for a periodic point to be a
rational number?
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Periodic Points from an Arithmetic Perspective

Periodic Points and Number Theory

For a dynamicist, the periodic points of φ are the real
or complex numbers satisfying an equation

φn(z) = z for some n = 1, 2, 3, . . ..

A number theorist asks:

What sorts of numbers may
appear as periodic points?

For example:

Question. Is it possible for a periodic point to be a
rational number?

The answer is obviously

Yes.

We’ve seen several examples. This leads to the. . .
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Periodic Points from an Arithmetic Perspective

Periodic Points and Number Theory

Query. How many periodic points may be rational?
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Periodic Points and Number Theory

Query. How many periodic points may be rational?

This is a more interesting question. There are always
infinitely many complex periodic points, and in many
cases there are infinitely many real periodic points.

Among the infinitely many pe-
riodic points, how many may be
rational numbers?
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Periodic Points from an Arithmetic Perspective

Periodic Points and Number Theory

Query. How many periodic points may be rational?

This is a more interesting question. There are always
infinitely many complex periodic points, and in many
cases there are infinitely many real periodic points.

Among the infinitely many pe-
riodic points, how many may be
rational numbers?

The answer is given by a fundamental theorem:

Theorem. (Northcott 1949) A rational function
φ(z) ∈ Q(z) has only finitely many periodic points
that are rational numbers. More generally, a morphism
φ : PN → PN defined over a number field K has only
finitely many K-rational preperiodic points.
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Periodic Points from an Arithmetic Perspective

Proof (Sketch) of Northcott’s Theorem

Proof. Every math talk should have one proof, so I’ll
sketch the (fairly elementary) proof of Northcott’s result.
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Proof (Sketch) of Northcott’s Theorem

Proof. Every math talk should have one proof, so I’ll
sketch the (fairly elementary) proof of Northcott’s result.
An important tool in the proof is the height of a ra-
tional number p/q:

H
(p

q

)
= max

{|p|, |q|}.

Notice that for any constant B, there are only finitely
many rational numbers α ∈ Q with height H(α) ≤ B.
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Periodic Points from an Arithmetic Perspective

Proof (Sketch) of Northcott’s Theorem

Proof. Every math talk should have one proof, so I’ll
sketch the (fairly elementary) proof of Northcott’s result.
An important tool in the proof is the height of a ra-
tional number p/q:

H
(p

q

)
= max

{|p|, |q|}.

Notice that for any constant B, there are only finitely
many rational numbers α ∈ Q with height H(α) ≤ B.

Lemma. If φ(z) has degree d, then there is a constant
C = Cφ > 0 so that for all rational numbers β ∈ Q,

H
(
φ(β)

) ≥ C ·H(β)d.

This is intuitively reasonable if you write out φ(z) as
a ratio of polynomials. The tricky part is making sure
there’s not too much cancellation.
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Periodic Points from an Arithmetic Perspective

Proof (Sketch) of Northcott’s Theorem
Suppose that α is periodic, say φn(α) = α. We apply
the lemma repeatedly:

H
(
φ(α)

) ≥ C ·H(α)d

H
(
φ2(α)

) ≥ C ·H(
φ(α)

)d ≥ C1+d ·H(α)d
2

H
(
φ3(α)

) ≥ C ·H(
φ2(α)

)d ≥ C1+d+d2 ·H(α)d
3

... ...
H

(
φn(α)

) ≥ C ·H(
φn−1(α)

)d ≥ C1+d+···+dn−1 ·H(α)d
n
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Proof (Sketch) of Northcott’s Theorem
Suppose that α is periodic, say φn(α) = α. We apply
the lemma repeatedly:

H
(
φ(α)

) ≥ C ·H(α)d

H
(
φ2(α)

) ≥ C ·H(
φ(α)

)d ≥ C1+d ·H(α)d
2

H
(
φ3(α)

) ≥ C ·H(
φ2(α)

)d ≥ C1+d+d2 ·H(α)d
3

... ...
H

(
φn(α)

) ≥ C ·H(
φn−1(α)

)d ≥ C1+d+···+dn−1 ·H(α)d
n

But φn(α) = α, so we get

H(α) = H
(
φn(α)

) ≥ C(dn−1)/(d−1)H(α)d
n
.
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Proof (Sketch) of Northcott’s Theorem
Suppose that α is periodic, say φn(α) = α. We apply
the lemma repeatedly:

H
(
φ(α)

) ≥ C ·H(α)d

H
(
φ2(α)

) ≥ C ·H(
φ(α)

)d ≥ C1+d ·H(α)d
2

H
(
φ3(α)

) ≥ C ·H(
φ2(α)

)d ≥ C1+d+d2 ·H(α)d
3

... ...
H

(
φn(α)

) ≥ C ·H(
φn−1(α)

)d ≥ C1+d+···+dn−1 ·H(α)d
n

But φn(α) = α, so we get

H(α) = H
(
φn(α)

) ≥ C(dn−1)/(d−1)H(α)d
n
.

Then a little bit of algebra yields

H(α) ≤ C−1/(d−1).

This proves that the rational periodic points have bounded
height, hence there are only finitely many of them. QED

Arithmetic Dynamics – 8–



Periodic Points from an Arithmetic Perspective

Rational Periodic Points

We now know that φ(z) has only finitely many rational
periodic points. This raises the question:

How many rational periodic
points may φ(z) have?
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Periodic Points from an Arithmetic Perspective

Rational Periodic Points

We now know that φ(z) has only finitely many rational
periodic points. This raises the question:

How many rational periodic
points may φ(z) have?

If we don’t restrict the degree of φ, then we can get as
many as we want. Simply take φ to have large degree
and set

φ(0) = 1, φ(1) = 2, φ(2) = 3, . . . , φ(n− 1) = 0.

This leads to a system of n linear equations for the
coefficients of φ in the coefficients of φ, so if deg(φ) > n,
we can solve for the coefficients of φ.
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Periodic Points from an Arithmetic Perspective

A Uniformity Conjecture

Hence in order to pose an interesting question, we should
restrict attention to rational functions of a fixed degree.
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Periodic Points from an Arithmetic Perspective

A Uniformity Conjecture

Hence in order to pose an interesting question, we should
restrict attention to rational functions of a fixed degree.

Uniform Boundedness Conjecture for
Rational Periodic Points. (Morton–Silverman)
Fix an integer d ≥ 2. Then there is a constant C(d) so
that every rational function φ(z) ∈ Q(z) of degree d
has at most C(d) rational periodic points.
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A Uniformity Conjecture

Hence in order to pose an interesting question, we should
restrict attention to rational functions of a fixed degree.

Uniform Boundedness Conjecture for
Rational Periodic Points. (Morton–Silverman)
Fix an integer d ≥ 2. Then there is a constant C(d) so
that every rational function φ(z) ∈ Q(z) of degree d
has at most C(d) rational periodic points.

More generally,

Uniform Boundedness Conjecture (D,N, d).
There is a constant C(D, N, d) so that for every num-
ber field K/Q of degree D and for every morphism
φ : PN → PN of degree d defined over K, we have

#
(
PrePer(φ) ∩ PN (K)

) ≤ C(D,N, d).
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Periodic Points from an Arithmetic Perspective

Applications of the Uniformity Conjecture

• The special case (D,N, d) = (1, 1, 4) implies uni-
form boundedness of torsion points on elliptic curves
over Q (Mazur’s theorem), and (D, 1, 4) implies the
same for number fields of degree D (Merel’s theo-
rem).
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Applications of the Uniformity Conjecture

• The special case (D,N, d) = (1, 1, 4) implies uni-
form boundedness of torsion points on elliptic curves
over Q (Mazur’s theorem), and (D, 1, 4) implies the
same for number fields of degree D (Merel’s theo-
rem).

• Fakhruddin has shown that the general conjecture
implies uniform boundedness of torsion points on
abelian varieties of dimension N .
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Periodic Points from an Arithmetic Perspective

Rational Periodic Points of φc(z) = z2 + c

Even for very simple families of polynomials such as

φc(z) = z2 + c,

very little is known about the possible periods of rational
periodic points.
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Periodic Points from an Arithmetic Perspective

Rational Periodic Points of φc(z) = z2 + c

Even for very simple families of polynomials such as

φc(z) = z2 + c,

very little is known about the possible periods of rational
periodic points.

We can write down some examples:

φ(z) = z2 has 1 as a point of period 1,

φ(z) = z2 − 1 has −1 as a point of period 2,

φ(z) = z2 − 29
16 has −1

4 as a point of period 3,
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Periodic Points from an Arithmetic Perspective

Rational Periodic Points of φc(z) = z2 + c

Even for very simple families of polynomials such as

φc(z) = z2 + c,

very little is known about the possible periods of rational
periodic points.

We can write down some examples:

φ(z) = z2 has 1 as a point of period 1,

φ(z) = z2 − 1 has −1 as a point of period 2,

φ(z) = z2 − 29
16 has −1

4 as a point of period 3,

Can φ(z) = z2 + c have a
rational point of period 4?
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Periodic Points from an Arithmetic Perspective

Rational Periodic Points of φc(z) = z2 + c

Theorem.
(a) There are many values of c such that φc(z) has a
rational periodic point of period 1, 2, or 3.

(b) (Morton) The polynomial φc(z) cannot have a ra-
tional periodic point of period 4.

(c) (Flynn, Poonen, Schaefer) The polynomial φc(z)
cannot have a rational periodic point of period 5.

(d) (Stoll) The polynomial φc(z) cannot have a rational
periodic point of period 6 (conditional on the Birch–
Swinnerton-Dyer conjecture).
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Rational Periodic Points of φc(z) = z2 + c

Theorem.
(a) There are many values of c such that φc(z) has a
rational periodic point of period 1, 2, or 3.

(b) (Morton) The polynomial φc(z) cannot have a ra-
tional periodic point of period 4.

(c) (Flynn, Poonen, Schaefer) The polynomial φc(z)
cannot have a rational periodic point of period 5.

(d) (Stoll) The polynomial φc(z) cannot have a rational
periodic point of period 6 (conditional on the Birch–
Swinnerton-Dyer conjecture).

And that is the current state of our knowledge! No
one knows if φc(z) can have rational periodic points of
period 7 or greater. (Poonen has conjectured that it
cannot.)
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Integer Points in Orbits

Integers and Wandering Points

The orbit of a rational number α consists of rational
numbers, so a natural number-theoretic question is to
ask how often those rational numbers may be integers.

Question. Is it possible for an orbitOφ(α) to contain
infinitely many integers?

Arithmetic Dynamics – 14–



Integer Points in Orbits

Integers and Wandering Points

The orbit of a rational number α consists of rational
numbers, so a natural number-theoretic question is to
ask how often those rational numbers may be integers.

Question. Is it possible for an orbitOφ(α) to contain
infinitely many integers?

The obvious answer is Yes, of course it can. For exam-
ple, take φ(z) = z2 + 1 and α = 1.
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Integer Points in Orbits

Integers and Wandering Points

The orbit of a rational number α consists of rational
numbers, so a natural number-theoretic question is to
ask how often those rational numbers may be integers.

Question. Is it possible for an orbitOφ(α) to contain
infinitely many integers?

The obvious answer is Yes, of course it can. For exam-
ple, take φ(z) = z2 + 1 and α = 1.

More generally, if φ(z) is any polynomial with integer
coefficients and if we start with an integer point, then
the entire orbit consists of integers.

Are there any other possibilities?
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Integer Points in Orbits

Rational Functions with Polynomial Iterate

Here is an example of a nonpolynomial with an orbit
containing infinitely many integer points. Let

φ(z) =
1

zd
and let α ∈ Z.

Then

Oφ(α) =

{
α,

1

αd
, αd2

,
1

αd3 , αd4
,

1

αd5 , αd6
, . . .

}
.

Thus half the points in the orbit are integers.
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Integer Points in Orbits

Rational Functions with Polynomial Iterate

Here is an example of a nonpolynomial with an orbit
containing infinitely many integer points. Let

φ(z) =
1

zd
and let α ∈ Z.

Then

Oφ(α) =

{
α,

1

αd
, αd2

,
1

αd3 , αd4
,

1

αd5 , αd6
, . . .

}
.

Thus half the points in the orbit are integers.

This is not a surprising phenomenon, since φ2(z) = zd2

is a polynomial. And in principle, the same thing would
happen if some higher iterate of φ were a polynomial.
Somewhat surprisingly, this does not occur.
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Integer Points in Orbits

Rational Functions with Polynomial Iterate

Here is an example of a nonpolynomial with an orbit
containing infinitely many integer points. Let

φ(z) =
1

zd
and let α ∈ Z.

Then

Oφ(α) =

{
α,

1

αd
, αd2

,
1

αd3 , αd4
,

1

αd5 , αd6
, . . .

}
.

Thus half the points in the orbit are integers.

This is not a surprising phenomenon, since φ2(z) = zd2

is a polynomial. And in principle, the same thing would
happen if some higher iterate of φ were a polynomial.
Somewhat surprisingly, this does not occur.

Theorem. If some iterate φn(z) is a polynomial, then
already φ2(z) is a polynomial.
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Integer Points in Orbits

Integer Points in Orbits

It turns out that the examples coming from polynomials
are the only cases with orbits containing infinitely many
integer points.
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Integer Points in Orbits

It turns out that the examples coming from polynomials
are the only cases with orbits containing infinitely many
integer points.

Theorem. (Silverman) Let α ∈ Q be a wandering
point for φ, and assume that φ2(z) is not a polynomial.
Then the orbit Oφ(α) contain only finitely many inte-
gers.
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Integer Points in Orbits

Integer-Like Points in Wandering Orbits

There is a stronger, and more striking, description of
the extent to which orbiting points fail to be integral.

Arithmetic Dynamics – 17–



Integer Points in Orbits

Integer-Like Points in Wandering Orbits

There is a stronger, and more striking, description of
the extent to which orbiting points fail to be integral.

Start with some wandering α ∈ Q and write the points
in its orbit as fractions,

φn(α) =
An

Bn
∈ Q for n = 0, 1, 2, 3 . . . .
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Integer Points in Orbits

Integer-Like Points in Wandering Orbits

There is a stronger, and more striking, description of
the extent to which orbiting points fail to be integral.

Start with some wandering α ∈ Q and write the points
in its orbit as fractions,

φn(α) =
An

Bn
∈ Q for n = 0, 1, 2, 3 . . . .

Notice that φn(α) is an integer if and only if |Bn| = 1.
So the previous theorem says that |Bn| ≥ 2 for n > n0.
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Integer Points in Orbits

Integer-Like Points in Wandering Orbits

There is a stronger, and more striking, description of
the extent to which orbiting points fail to be integral.

Start with some wandering α ∈ Q and write the points
in its orbit as fractions,

φn(α) =
An

Bn
∈ Q for n = 0, 1, 2, 3 . . . .

Notice that φn(α) is an integer if and only if |Bn| = 1.
So the previous theorem says that |Bn| ≥ 2 for n > n0.

Theorem. (Silverman) Assume that neither φ2(z)
nor 1/φ2(z−1) are polynomials and that α ∈ Q has
infinite orbit. Then

lim
n→∞

log |An|
log |Bn| = 1.
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Integer Points in Orbits

Integer-Like Points in Wandering Orbits

• This theorem is the dynanmical analogue of Siegel’s
theorem that curves of genus g ≥ 1 have only finitely
many integer points. The proof is an adaptation of
Siegel’s proof.
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Integer-Like Points in Wandering Orbits

• This theorem is the dynanmical analogue of Siegel’s
theorem that curves of genus g ≥ 1 have only finitely
many integer points. The proof is an adaptation of
Siegel’s proof.

• However, the proof in the dynamical setting is more
complicated because the map φ is always ramified,
while Siegel was able to use unramified covering maps
of curves.
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Integer-Like Points in Wandering Orbits

• This theorem is the dynanmical analogue of Siegel’s
theorem that curves of genus g ≥ 1 have only finitely
many integer points. The proof is an adaptation of
Siegel’s proof.

• However, the proof in the dynamical setting is more
complicated because the map φ is always ramified,
while Siegel was able to use unramified covering maps
of curves.

• Ultimately the proof reduces to a Diophantine ap-
proximation problem.
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Integer Points in Orbits

Integer-Like Points in Wandering Orbits

• This theorem is the dynanmical analogue of Siegel’s
theorem that curves of genus g ≥ 1 have only finitely
many integer points. The proof is an adaptation of
Siegel’s proof.

• However, the proof in the dynamical setting is more
complicated because the map φ is always ramified,
while Siegel was able to use unramified covering maps
of curves.

• Ultimately the proof reduces to a Diophantine ap-
proximation problem.

• For particular functions and orbits it may be possible
to give an elementary proof of finiteness, but I don’t
know a general proof that does not ultimately rely
on Roth’s theorem or one of its variants.
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Additional Topics in Arithmetic Dynamics

Canonical Heights

Recall that a map φ of degree d more-or-less causes the
height to be raised to the dth power.
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Additional Topics in Arithmetic Dynamics

Canonical Heights

Recall that a map φ of degree d more-or-less causes the
height to be raised to the dth power.
For convenience, we introduce the logarithmic height

h
(a

b

)
= log H

(a

b

)
= log max

{|a|, |b|},

so
h
(
φ(α)

)
= dh(α) + O(1).
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Additional Topics in Arithmetic Dynamics

Canonical Heights

Recall that a map φ of degree d more-or-less causes the
height to be raised to the dth power.
For convenience, we introduce the logarithmic height

h
(a

b

)
= log H

(a

b

)
= log max

{|a|, |b|},

so
h
(
φ(α)

)
= dh(α) + O(1).

The canonical height associated to φ is

ĥφ(α) = lim
n→∞

1

dnh
(
φn(α)

)
.
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Canonical Heights

Recall that a map φ of degree d more-or-less causes the
height to be raised to the dth power.
For convenience, we introduce the logarithmic height

h
(a

b

)
= log H

(a

b

)
= log max

{|a|, |b|},

so
h
(
φ(α)

)
= dh(α) + O(1).

The canonical height associated to φ is

ĥφ(α) = lim
n→∞

1

dnh
(
φn(α)

)
.

One proves that the limit exists by using a telescoping
sum argument to show that the sequence is Cauchy.
(This idea is due to Tate.)
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Additional Topics in Arithmetic Dynamics

Properties of Canonical Heights

The canonical height has many nice properties:

Theorem.
(a) ĥφ(α) = h(α) + O(1).

(b) ĥφ

(
φ(α)

)
= dĥφ(α).

(c) ĥφ(α) ≥ 0.

(d) ĥφ(α) = 0 if and only if α is preperiodic.
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Properties of Canonical Heights

The canonical height has many nice properties:

Theorem.
(a) ĥφ(α) = h(α) + O(1).

(b) ĥφ

(
φ(α)

)
= dĥφ(α).

(c) ĥφ(α) ≥ 0.

(d) ĥφ(α) = 0 if and only if α is preperiodic.

There are many conjectures about classical (canonical)
heights that have analogs for dynamical heights, e.g.,

Dynamical Lehmer Conjecture. There is a con-
stant C = C(φ) > 0 so that for all algebraic num-
bers α ∈ Q̄ that are not preperiodic for φ,

ĥφ(α) ≥ C[
Q(α) : Q

].
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Additional Topics in Arithmetic Dynamics

A Dynamical Mordell Conjecture
Mordell’s conjecture (Faltings’ theorem) says that a curve
of genus g ≥ 2 has only finitely many rational points.
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A Dynamical Mordell Conjecture
Mordell’s conjecture (Faltings’ theorem) says that a curve
of genus g ≥ 2 has only finitely many rational points.

A generalization (Bombieri-Lang Conjecture) says that
the rational points on a variety of general type are sparse.
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A Dynamical Mordell Conjecture
Mordell’s conjecture (Faltings’ theorem) says that a curve
of genus g ≥ 2 has only finitely many rational points.

A generalization (Bombieri-Lang Conjecture) says that
the rational points on a variety of general type are sparse.

Using the analogy

Rational Points on Varieties ←→ Points in Orbits

Dynamical Mordell Conjecture.
Let φ : PN → PN be a morphism, let α ∈ PN be a
wandering point for φ, and let V ⊂ PN be a closed
subvariety. Suppose

Oφ(α) ∩ V is infinite.

Then there is a subvariety W ⊂ V of dimension ≥ 1
that is preperiodic for φ, i.e, φi+j(W ) ⊂ φi(W ).
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Additional Topics in Arithmetic Dynamics

A Dynamical Manin–Mumford Conjecture

The Manin–Mumford conjecture (Raynaud’s theorem)
says that if A is an abelian variety and if V ⊂ A is a
subvariety that contains infinitely many torsion points
of A, then V contains a translate of an abelian subvari-
ety of A.
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A Dynamical Manin–Mumford Conjecture

The Manin–Mumford conjecture (Raynaud’s theorem)
says that if A is an abelian variety and if V ⊂ A is a
subvariety that contains infinitely many torsion points
of A, then V contains a translate of an abelian subvari-
ety of A.

Using the analogy

Torsion on Abelian Varieties ←→ Preperiodic Points

Dynamical Manin–Mumford Conjecture.
Let φ : PN → PN be a morphism and let V ⊂ PN be
a closed subvariety. Suppose

PrePer(φ) ∩ V is infinite.

Then there is a subvariety W ⊂ V of dimension ≥ 1
that is preperiodic for φ.
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Additional Topics in Arithmetic Dynamics

Reduction Modulo p

A fundamental tool is Reduction Modulo p.
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Reduction Modulo p

A fundamental tool is Reduction Modulo p.

Example. Let E/Q be an elliptic curve and let p be
a prime for which E has good reduction. (This means
that Ẽ mod p is nonsingular.) Then

(
prime-to-p torsion in E(Q)

)
↪−→ Ẽ(Fp).
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Example. Let E/Q be an elliptic curve and let p be
a prime for which E has good reduction. (This means
that Ẽ mod p is nonsingular.) Then

(
prime-to-p torsion in E(Q)

)
↪−→ Ẽ(Fp).

We want an analogous result in dynamics.
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Reduction Modulo p

A fundamental tool is Reduction Modulo p.

Example. Let E/Q be an elliptic curve and let p be
a prime for which E has good reduction. (This means
that Ẽ mod p is nonsingular.) Then

(
prime-to-p torsion in E(Q)

)
↪−→ Ẽ(Fp).

We want an analogous result in dynamics.

A map φ : P1
Q→ P1

Q of degree d has good reduction

if the degree of the reduced map φ̃ : P1
Fp
→ P1

Fp
is also d.
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Reduction Modulo p

A fundamental tool is Reduction Modulo p.

Example. Let E/Q be an elliptic curve and let p be
a prime for which E has good reduction. (This means
that Ẽ mod p is nonsingular.) Then

(
prime-to-p torsion in E(Q)

)
↪−→ Ẽ(Fp).

We want an analogous result in dynamics.

A map φ : P1
Q→ P1

Q of degree d has good reduction

if the degree of the reduced map φ̃ : P1
Fp
→ P1

Fp
is also d.

I.e., φ = F (z)/G(z) has good reduction if F̃ (z) mod p
and G̃(z) mod p have no common roots in F̄p.
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Reduction Modulo p

A fundamental tool is Reduction Modulo p.

Example. Let E/Q be an elliptic curve and let p be
a prime for which E has good reduction. (This means
that Ẽ mod p is nonsingular.) Then

(
prime-to-p torsion in E(Q)

)
↪−→ Ẽ(Fp).

We want an analogous result in dynamics.

A map φ : P1
Q→ P1

Q of degree d has good reduction

if the degree of the reduced map φ̃ : P1
Fp
→ P1

Fp
is also d.

I.e., φ = F (z)/G(z) has good reduction if F̃ (z) mod p
and G̃(z) mod p have no common roots in F̄p.

Equivalently, φ has good reduction if it extends to a
scheme-theoretic morphism φ : P1

Z→ P1
Z.
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Additional Topics in Arithmetic Dynamics

Reduction of Periodic Points Modulo p

Let φ : P1
Q → P1

Q be a rational map of degree d that

has good reduction at p. Let α ∈ P1(Q) be a periodic
point of period n. The multiplier of φ at α is

λα(φ) = (φn)′(α).
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Reduction of Periodic Points Modulo p

Let φ : P1
Q → P1

Q be a rational map of degree d that

has good reduction at p. Let α ∈ P1(Q) be a periodic
point of period n. The multiplier of φ at α is

λα(φ) = (φn)′(α).

Theorem. Let

n = period of α in P1(Q).

m = period of α̃ mod p in P1(Fp).

r = order of λα(φ̃ mod p) in F∗p.
Then

n = m or mr or mrpe for some e ≥ 1.
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Reduction of Periodic Points Modulo p

Let φ : P1
Q → P1

Q be a rational map of degree d that

has good reduction at p. Let α ∈ P1(Q) be a periodic
point of period n. The multiplier of φ at α is

λα(φ) = (φn)′(α).

Theorem. Let

n = period of α in P1(Q).

m = period of α̃ mod p in P1(Fp).

r = order of λα(φ̃ mod p) in F∗p.
Then

n = m or mr or mrpe for some e ≥ 1.

There is also a bound for e due to Zieve.
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Additional Topics in Arithmetic Dynamics

Application to Rational Periodic Points

Since

#P1(Fp) = p + 1 and #F∗p = p− 1,

we clearly have

m ≤ p + 1 and r ≤ p− 1.

Hence

n = period of α = Kpe for some K ≤ p2 − 1.
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Application to Rational Periodic Points

Since

#P1(Fp) = p + 1 and #F∗p = p− 1,

we clearly have

m ≤ p + 1 and r ≤ p− 1.

Hence

n = period of α = Kpe for some K ≤ p2 − 1.

Corollary. Let p and q be the two smallest primes
of good reduction for φ. Let α ∈ P1(Q) be a periodic
point. Then

(period of α) ≤ (p2 − 1)(q2 − 1).
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Application to Rational Periodic Points

Since

#P1(Fp) = p + 1 and #F∗p = p− 1,

we clearly have

m ≤ p + 1 and r ≤ p− 1.

Hence

n = period of α = Kpe for some K ≤ p2 − 1.

Corollary. Let p and q be the two smallest primes
of good reduction for φ. Let α ∈ P1(Q) be a periodic
point. Then

(period of α) ≤ (p2 − 1)(q2 − 1).

With more work, one can significantly improve this es-
timate, but the bound will depend on φ.
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Additional Topics in Arithmetic Dynamics

Cyclotomic Fields

A cyclotomic field is a field extension of Q generated
by roots of unity, i.e., by preperiodic points of the map
φ(z) = z2.
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φ(z) = z2.

Cyclotomic fields are important Galois extensions of Q.
Their Galios groups are abelian.
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A cyclotomic field is a field extension of Q generated
by roots of unity, i.e., by preperiodic points of the map
φ(z) = z2.

Cyclotomic fields are important Galois extensions of Q.
Their Galios groups are abelian.

Frobenius maps z → zp give reasonably good geometric
control of the action of Galois.
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Cyclotomic Fields

A cyclotomic field is a field extension of Q generated
by roots of unity, i.e., by preperiodic points of the map
φ(z) = z2.

Cyclotomic fields are important Galois extensions of Q.
Their Galios groups are abelian.

Frobenius maps z → zp give reasonably good geometric
control of the action of Galois.

One can create cyclotomic units by taking expres-
sions of the form

ζi − ζj

ζk − ζ`
.

The set of all cyclotomic units has finite index in the
full unit group.
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Additional Topics in Arithmetic Dynamics

Dynamical “Cyclotomic” Fields

There is an analogous theory of “dynatomic fields”
generated over Q by adjoining all of the points of pe-
riod n.
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generated over Q by adjoining all of the points of pe-
riod n.

Dynatomic fields have Galois groups that are subgroups
of wreath product groups.
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Dynamical “Cyclotomic” Fields

There is an analogous theory of “dynatomic fields”
generated over Q by adjoining all of the points of pe-
riod n.

Dynatomic fields have Galois groups that are subgroups
of wreath product groups.

There is some control of the action of Galois because φ
acts as an element of Galois.
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Dynamical “Cyclotomic” Fields

There is an analogous theory of “dynatomic fields”
generated over Q by adjoining all of the points of pe-
riod n.

Dynatomic fields have Galois groups that are subgroups
of wreath product groups.

There is some control of the action of Galois because φ
acts as an element of Galois.

One can create dynatomic units of the form

φi(α)− φj(α)

φk(α)− φ`(α)
.

Arithmetic Dynamics – 27–



Additional Topics in Arithmetic Dynamics

Dynamical “Cyclotomic” Fields

There is an analogous theory of “dynatomic fields”
generated over Q by adjoining all of the points of pe-
riod n.

Dynatomic fields have Galois groups that are subgroups
of wreath product groups.

There is some control of the action of Galois because φ
acts as an element of Galois.

One can create dynatomic units of the form

φi(α)− φj(α)

φk(α)− φ`(α)
.

However, the dynatomic units generate only a portion
of the full group of units.

Arithmetic Dynamics – 27–
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Moduli Spaces in Arithmetic Dynamics

Parameter Spaces and Moduli Spaces

An enormously powerful tool throughout mathematics
is the use of parameter spaces and moduli spaces.
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is the use of parameter spaces and moduli spaces.
Let C be a collection of objects that we want to study
and let ∼ be an equivalence relation on C.

Example: C = {elliptic curves over C},
∼ is isomorphism.

Very roughly speaking, a parameter space for C is a
set with some additional structure whose points are in
one-to-one correspondence with the points of C.
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∼ is isomorphism.

Very roughly speaking, a parameter space for C is a
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Parameter Spaces and Moduli Spaces

An enormously powerful tool throughout mathematics
is the use of parameter spaces and moduli spaces.
Let C be a collection of objects that we want to study
and let ∼ be an equivalence relation on C.

Example: C = {elliptic curves over C},
∼ is isomorphism.

Very roughly speaking, a parameter space for C is a
set with some additional structure whose points are in
one-to-one correspondence with the points of C.

Similarly, a moduli space is a set with some addi-
tional structure whose points are in one-to-one corre-
spondence with the set of equivalence classes C/ ∼.

The “additional structure” might be as a manifold or
algebraic variety or scheme.
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Moduli Spaces for Dynamical Systems

The Space of Rational Functions

The space of rational functions

Ratd = {rational maps P1 → P1 of degree d}
has a natural structure as an algebraic variety.
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Moduli Spaces for Dynamical Systems

The Space of Rational Functions

The space of rational functions

Ratd = {rational maps P1 → P1 of degree d}
has a natural structure as an algebraic variety.

To see this, we identify a rational map

φ(z) =
Fa(z)

Fb(z)
=

adz
d + · · · + a1z + a0

bdz
d + · · · + b1z + b0

∈ Ratd

with a point in projective space,

[Fa, Fb] = [ad, ad−1, . . . , a0, bd, bd−1, . . . , b0] ∈ P2d+1.
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The Space of Rational Functions

The space of rational functions

Ratd = {rational maps P1 → P1 of degree d}
has a natural structure as an algebraic variety.

To see this, we identify a rational map

φ(z) =
Fa(z)

Fb(z)
=

adz
d + · · · + a1z + a0

bdz
d + · · · + b1z + b0

∈ Ratd

with a point in projective space,

[Fa, Fb] = [ad, ad−1, . . . , a0, bd, bd−1, . . . , b0] ∈ P2d+1.

The requirement that deg φ = d is equivalent to

Resultant(Fa, Fb) 6= 0,

so Ratd ⊂ P2d+1 is the complement of a hypersurface.
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Moduli Spaces for Dynamical Systems

The Conjugation Action of Aut(P1)
The dynamics of a rational map φ : P1 → P1 does not
depend on a particular choice of coordinates. Let

f ∈ PGL2 = Aut(P1)

be an automorphism of P1. The associated change of
coordinates for φ is given by conjugation

φf = f−1 ◦ φ ◦ f.
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The Conjugation Action of Aut(P1)
The dynamics of a rational map φ : P1 → P1 does not
depend on a particular choice of coordinates. Let

f ∈ PGL2 = Aut(P1)

be an automorphism of P1. The associated change of
coordinates for φ is given by conjugation

φf = f−1 ◦ φ ◦ f.

Thus we have a commutative diagram

P1 φf

−−→ P1yf

yf

P1 φ−→ P1
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The Conjugation Action of Aut(P1)
The dynamics of a rational map φ : P1 → P1 does not
depend on a particular choice of coordinates. Let

f ∈ PGL2 = Aut(P1)

be an automorphism of P1. The associated change of
coordinates for φ is given by conjugation

φf = f−1 ◦ φ ◦ f.

Thus we have a commutative diagram

P1 φf

−−→ P1yf

yf

P1 φ−→ P1

Notice that iteration of φf is given by

(φf )n = (f−1φf ) · · · (f−1φf ) = f−1φnf = (φn)f .
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Moduli Spaces for Dynamical Systems

Dynamical Moduli Spaces

Conjugation is the natural dynamical action of PGL2 =
Aut(P1) on Ratd, since the dynamical properties φ and φf

are the same.
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Dynamical Moduli Spaces

Conjugation is the natural dynamical action of PGL2 =
Aut(P1) on Ratd, since the dynamical properties φ and φf

are the same.

Definition. The moduli space of dynamical sys-
tems of degree d is the quotient space

Md = Ratd / PGL2

of Ratd by the conjugation action of PGL2.
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Dynamical Moduli Spaces

Conjugation is the natural dynamical action of PGL2 =
Aut(P1) on Ratd, since the dynamical properties φ and φf

are the same.

Definition. The moduli space of dynamical sys-
tems of degree d is the quotient space

Md = Ratd / PGL2

of Ratd by the conjugation action of PGL2.

More generally, we can look at

MN
d = RatNd / PGLN+1,

where

RatNd = {degree d rational maps PN → PN} ⊂ PL

and PGLN+1 = Aut(PN ) acts via conjugation.
Moduli Spaces in Arithmetic Dynamics – 4–



Moduli Spaces for Dynamical Systems

Dynamical Moduli Spaces: Existence

It is not clear, a priori, thatMd exists as anything more
than a set, but not surprisingly, we can endowMd with
a considerable amount of structure.
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Dynamical Moduli Spaces: Existence

It is not clear, a priori, thatMd exists as anything more
than a set, but not surprisingly, we can endowMd with
a considerable amount of structure.

Theorem. (a) (Milnor) The quotient

Md(C) = Ratd(C)/ PGL2(C)

has a natural structure as a complex orbifold.

(b) (Silverman) The quotient

Md = Ratd / PSL2

has a natural structure as a scheme over Z.
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Dynamical Moduli Spaces: Existence

It is not clear, a priori, thatMd exists as anything more
than a set, but not surprisingly, we can endowMd with
a considerable amount of structure.

Theorem. (a) (Milnor) The quotient

Md(C) = Ratd(C)/ PGL2(C)

has a natural structure as a complex orbifold.

(b) (Silverman) The quotient

Md = Ratd / PSL2

has a natural structure as a scheme over Z.

The construction of Md as a variety, or as a scheme
over Z, uses Mumford’s geometric invariant theory.
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Moduli Spaces for Dynamical Systems

The Construction of the Moduli Space Md

Mumford’s GIT provides larger sets of “stable” and
“semistable” points and associated quotient spaces:

Ratd ⊂ Ratsd ⊂ Ratssd ⊂ P2d+1,

Md ⊂ Ms
d ⊂ Mss

d .
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The Construction of the Moduli Space Md

Mumford’s GIT provides larger sets of “stable” and
“semistable” points and associated quotient spaces:

Ratd ⊂ Ratsd ⊂ Ratssd ⊂ P2d+1,

Md ⊂ Ms
d ⊂ Mss

d .

These quotients have various nice properties, such as:

Ms
d(C) =

Ratsd(C)

PGL2(C)
and Mss

d (C) is compact.

Moduli Spaces in Arithmetic Dynamics – 6–



Moduli Spaces for Dynamical Systems

The Construction of the Moduli Space Md

Mumford’s GIT provides larger sets of “stable” and
“semistable” points and associated quotient spaces:

Ratd ⊂ Ratsd ⊂ Ratssd ⊂ P2d+1,

Md ⊂ Ms
d ⊂ Mss

d .

These quotients have various nice properties, such as:

Ms
d(C) =

Ratsd(C)

PGL2(C)
and Mss

d (C) is compact.

Proposition. If d is even, then

Ms
d = Mss

d ,

so in this case there is a geometric quotient space
that is a natural compactification Md.

For even d, we write Md for Ms
d = Mss

d .
Moduli Spaces in Arithmetic Dynamics – 6–



Moduli Spaces for Dynamical Systems

Dynamical Moduli Spaces: Properties

In general, little is known about the geometry of dy-
namical moduli spaces. Only for maps of degree two is
there a complete description.
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Dynamical Moduli Spaces: Properties

In general, little is known about the geometry of dy-
namical moduli spaces. Only for maps of degree two is
there a complete description.

The complex orbifold structure of M2 turns out to be
surprisingly simple.

Theorem. (Milnor)

M2(C) ∼= C2 and M2(C) ∼= CP2.
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Dynamical Moduli Spaces: Properties

In general, little is known about the geometry of dy-
namical moduli spaces. Only for maps of degree two is
there a complete description.

The complex orbifold structure of M2 turns out to be
surprisingly simple.

Theorem. (Milnor)

M2(C) ∼= C2 and M2(C) ∼= CP2.

This structure carries over in the scheme-theoretic set-
ting, even in characteristic 2.

Theorem. (Silverman)

M2/Z
∼= A2

Z and M2/Z
∼= P2

Z.
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Moduli Spaces for Dynamical Systems

An Explicit Isomorphism M2
∼= A2

The isomorphism

(σ1, σ2) : M2 → A2

may be given quite explicitly, although it is somewhat
complicated. The image of a rational map

φ =
a2z

2 + a1z + a0

b2z2 + b1z + b0

is given by the formulas
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An Explicit Isomorphism M2
∼= A2

The isomorphism

(σ1, σ2) : M2 → A2

may be given quite explicitly, although it is somewhat
complicated. The image of a rational map

φ =
a2z

2 + a1z + a0

b2z2 + b1z + b0

is given by the formulas

σ1 =

a3
1b0 − 4a0a1a2b0 − 6a2

2b
2
0 − a0a

2
1b1 + 4a2

0a2b1 + 4a1a2b0b1 − 2a0a2b
2
1

+ a2b
3
1 − 2a2

1b0b2 + 4a0a2b0b2 − 4a2b0b1b2 − a1b
2
1b2 + 2a2

0b
2
2 + 4a1b0b

2
2,

a2
2b

2
0 − a1a2b0b1 + a0a2b

2
1 + a2

1b0b2 − 2a0a2b0b2 − a0a1b1b2 + a2
0b

2
2

σ2 =

− a2
0a

2
1 + 4a3

0a2 − 2a3
1b0 + 10a0a1a2b0 + 12a2

2b
2
0 − 4a2

0a2b1 − 7a1a2b0b1

− a2
1b

2
1 + 5a0a2b

2
1 − 2a2b

3
1 + 2a2

0a1b2 + 5a2
1b0b2 − 4a0a2b0b2

− a0a1b1b2 + 10a2b0b1b2 − 4a1b0b
2
2 + 2a0b1b

2
2 − b2

1b
2
2 + 4b0b

3
2.

a2
2b

2
0 − a1a2b0b1 + a0a2b

2
1 + a2

1b0b2 − 2a0a2b0b2 − a0a1b1b2 + a2
0b

2
2
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Moduli Spaces for Dynamical Systems

Multipliers of a Rational Map

A function on Md is a function on Ratd that is invari-
ant under the action of PGL2. We can construct such
functions using multipliers.
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Multipliers of a Rational Map

A function on Md is a function on Ratd that is invari-
ant under the action of PGL2. We can construct such
functions using multipliers.

Let α ∈ P1 be a periodic point of period n for φ. An
easy chain rule calculation shows that the multiplier

λφ(α) = (φn)′(α)

is PGL2-invariant, i.e.,

λf (α) = λφf (f−1α).

(If α = ∞, the fomula for λφ(α) is slightly different.)
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Multipliers of a Rational Map

A function on Md is a function on Ratd that is invari-
ant under the action of PGL2. We can construct such
functions using multipliers.

Let α ∈ P1 be a periodic point of period n for φ. An
easy chain rule calculation shows that the multiplier

λφ(α) = (φn)′(α)

is PGL2-invariant, i.e.,

λf (α) = λφf (f−1α).

(If α = ∞, the fomula for λφ(α) is slightly different.)

We form combinations of λφ(α) as α varies over the
points of period n, a set we denote by

Pern(φ) =
{
α ∈ P1 : φn(α) = α

}
.
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Multiplier Systems

Let
Pern(φ) = {α1, α2, . . . , αρ}, (ρ = dn + 1),

where the αi appear with multiplicities. We define

σ
(i)
n =

(
ith symmetric polynomial
in λφ(α1), . . . , λφ(αρ)

)
.

Then each σ
(i)
n (φ) is a rational function in the coeffi-

cients ad, . . . , a0, bd, . . . , b0 of φ.
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Multiplier Systems

Let
Pern(φ) = {α1, α2, . . . , αρ}, (ρ = dn + 1),

where the αi appear with multiplicities. We define

σ
(i)
n =

(
ith symmetric polynomial
in λφ(α1), . . . , λφ(αρ)

)
.

Then each σ
(i)
n (φ) is a rational function in the coeffi-

cients ad, . . . , a0, bd, . . . , b0 of φ.

Each σ
(i)
n (φ) is in the affine coordinate ring Z[Md], so

they can be used to define a morphism

(σ
(1)
n , σ

(2)
n , . . . , σ

(ρ)
n ) : Md −→ Aρ.
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Multiplier Systems

Let
Pern(φ) = {α1, α2, . . . , αρ}, (ρ = dn + 1),

where the αi appear with multiplicities. We define

σ
(i)
n =

(
ith symmetric polynomial
in λφ(α1), . . . , λφ(αρ)

)
.

Then each σ
(i)
n (φ) is a rational function in the coeffi-

cients ad, . . . , a0, bd, . . . , b0 of φ.

Each σ
(i)
n (φ) is in the affine coordinate ring Z[Md], so

they can be used to define a morphism

(σ
(1)
n , σ

(2)
n , . . . , σ

(ρ)
n ) : Md −→ Aρ.

More generally, we can use periodic points of different
periods to define a map

σN =
(
σ

(i)
n : 1 ≤ n ≤ N, 1 ≤ i ≤ ρn

)
: Md −→ AL.
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Moduli Spaces for Dynamical Systems

An Example: Rational Maps of Degree 2

The functions σ
(i)
n are not independent. For example:

d = 2 and n = 1.

A rational map φ of degree two has three fixed points,

Per1(φ) = FixedPoints(φ) = {α, β, γ}.
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An Example: Rational Maps of Degree 2

The functions σ
(i)
n are not independent. For example:

d = 2 and n = 1.

A rational map φ of degree two has three fixed points,

Per1(φ) = FixedPoints(φ) = {α, β, γ}.
σ

(1)
1 = λ(α) + λ(β) + λ(γ),

σ
(2)
1 = λ(α)λ(β) + λ(α)λ(γ) + λ(β)λ(γ),

σ
(3)
1 = λ(α)λ(β)λ(γ).

An elementary calculation shows that

σ
(3)
1 = σ

(1)
1 − 2,

and σ
(1)
1 , σ

(2)
1 give the isomorphism described earlier:

(σ
(1)
1 , σ

(2)
1 ) : M2

∼−−−−→ A2.
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McMullen’s Theorem

We might hope that sufficiently many of the σ
(i)
n give

an affine embedding of Md. This is not quite true.
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McMullen’s Theorem

We might hope that sufficiently many of the σ
(i)
n give

an affine embedding of Md. This is not quite true.

Theorem. (McMullen) If d is not a square, then for
all sufficiently large N , the map

σN : Md(C) −→ CL

is finite-to-one.
If d is a square, the same is true except for a line

that is mapped to a single point.
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McMullen’s Theorem

We might hope that sufficiently many of the σ
(i)
n give

an affine embedding of Md. This is not quite true.

Theorem. (McMullen) If d is not a square, then for
all sufficiently large N , the map

σN : Md(C) −→ CL

is finite-to-one.
If d is a square, the same is true except for a line

that is mapped to a single point.

As far as I know, this is still an open problem in char-
acteristic p.
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The Exceptional Set in McMullen’s Theorem

The exceptional line in McMullen’s Theorem is the set of
Lattès maps. These are rational maps φE,m constructed
from elliptic curves via diagrams

E
[m]−−→ Eyx

yx

P1
φE,m−−−→ P1

For fixed m, the maps φE,m all have the same multipli-
ers, but are not PGL2-conjugate for non-isomorphic E.
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The Exceptional Set in McMullen’s Theorem

The exceptional line in McMullen’s Theorem is the set of
Lattès maps. These are rational maps φE,m constructed
from elliptic curves via diagrams

E
[m]−−→ Eyx

yx

P1
φE,m−−−→ P1

For fixed m, the maps φE,m all have the same multipli-
ers, but are not PGL2-conjugate for non-isomorphic E.

Using elliptic curves with complex mulitplication and
the fact that class numbers of imaginary quadratic fields
go to infinity, it is not hard to prove that the degree of

σN : Md(C) −→ CL

is unbounded as d →∞.
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Questions Concerning the Geometry of Md
The space Ratd is rational, which means that there is
a generically 1-to-1 rational map

P2d+1 −→ Ratd .

This is clear, since Ratd is an open subset of P2d+1.

Moduli Spaces in Arithmetic Dynamics – 14–



Moduli Spaces for Dynamical Systems

Questions Concerning the Geometry of Md
The space Ratd is rational, which means that there is
a generically 1-to-1 rational map

P2d+1 −→ Ratd .

This is clear, since Ratd is an open subset of P2d+1.
It follows thatMd is unirational, i.e., there is a gener-
ically finite-to-1 rational map

P2d−2 −→Md.

Moduli Spaces in Arithmetic Dynamics – 14–



Moduli Spaces for Dynamical Systems

Questions Concerning the Geometry of Md
The space Ratd is rational, which means that there is
a generically 1-to-1 rational map

P2d+1 −→ Ratd .

This is clear, since Ratd is an open subset of P2d+1.
It follows thatMd is unirational, i.e., there is a gener-
ically finite-to-1 rational map

P2d−2 −→Md.

Questions.
1. M2

∼= A2 is rational. Is M3 rational?
2. What do the singularities of Md look like?
3. Let Md(n) classify rational maps of degree d with
a marked periodic point of period n. For fixed d,
is Md(n) of general type for sufficiently large n?
4. Same questions for the moduli spaces MN

d .
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Lang’s Height Conjecture

Conjecture. (Lang) Let E/Q be an elliptic curve
and let P ∈ E(Q) a nontorsion point. Then

ĥ(P ) ≥ c log
∣∣Disc(E/Q)

∣∣,
where c > 0 is an absolute constant.
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Lang’s Height Conjecture

Conjecture. (Lang) Let E/Q be an elliptic curve
and let P ∈ E(Q) a nontorsion point. Then

ĥ(P ) ≥ c log
∣∣Disc(E/Q)

∣∣,
where c > 0 is an absolute constant.

Intuition: If E is arithmetically complicated, then its
points are arithmetically complicated.
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Lang’s Height Conjecture

Conjecture. (Lang) Let E/Q be an elliptic curve
and let P ∈ E(Q) a nontorsion point. Then

ĥ(P ) ≥ c log
∣∣Disc(E/Q)

∣∣,
where c > 0 is an absolute constant.

Intuition: If E is arithmetically complicated, then its
points are arithmetically complicated.

Lang’s conjecture has applications to the distribution
of integer points on elliptic curves. Various weaker ver-
sions are known, and the conjecture has been proved
conditional on the ABC-conjecture.
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A Dynamical Analogue of Lang’s Height Conjecture

We fix an embedding

iM : Md ↪→ PL

and use it to define a height function

hM : Md(Q̄) −→ R, hM(φ) = h
(
iM(φ)

)
.

The height hM(φ) is a measure of the arithmetic com-
plexity of the rational map φ.
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A Dynamical Analogue of Lang’s Height Conjecture

We fix an embedding

iM : Md ↪→ PL

and use it to define a height function

hM : Md(Q̄) −→ R, hM(φ) = h
(
iM(φ)

)
.

The height hM(φ) is a measure of the arithmetic com-
plexity of the rational map φ.

Conjecture. Fix a number field K/Q. There is a
constant c > 0, depending only on K and the embed-
ding Md ↪→ PL, such that for all maps φ : P1 → P1

of degree d and all wandering points α ∈ P1(K),

ĥφ(α) ≥ chM(φ).
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Dynamical Modular Curves

Dynatomic Polynomials

The nth cyclotomic polynomial∏

k|n
(zk − 1)µ(n/k)

has as its roots the primitive nth-roots of unity.
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Dynamical Modular Curves

Dynatomic Polynomials

The nth cyclotomic polynomial∏

k|n
(zk − 1)µ(n/k)

has as its roots the primitive nth-roots of unity.

Similarly, the nth dynatomic polynomial associ-
ated to a polynomial φ(z) is

Φφ,n(z) = Φn(z) =
∏

k|n

(
φn(z)− z

)µ(n/k)
.
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Dynamical Modular Curves

Dynatomic Polynomials

The nth cyclotomic polynomial∏

k|n
(zk − 1)µ(n/k)

has as its roots the primitive nth-roots of unity.

Similarly, the nth dynatomic polynomial associ-
ated to a polynomial φ(z) is

Φφ,n(z) = Φn(z) =
∏

k|n

(
φn(z)− z

)µ(n/k)
.

The roots α of Φφ(z) are said to have formal pe-
riod n, because although they satisfy

φn(α) = α,

they occasionally have period strictly smaller than n.
(This is different from the cyclotomic case.)
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Dynatomic Polynomials (continued)

The polynomial φn(z)−z may have multiple roots. E.g.,

φ(z) = z2 − 3

4
, Φ2 =

(
z +

1

2

)2

, φ

(
−1

2

)
= −1

2
.

It is not clear that Φφ,n(z) is a polynomial, but we have:
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Dynatomic Polynomials (continued)

The polynomial φn(z)−z may have multiple roots. E.g.,

φ(z) = z2 − 3

4
, Φ2 =

(
z +

1

2

)2

, φ

(
−1

2

)
= −1

2
.

It is not clear that Φφ,n(z) is a polynomial, but we have:

Theorem. The dynatomic “polynomial” is indeed a
polynomial. Equivalently, for every point α,∑

k|n
µ(n/k) ordα

(
φn(z)− z) ≥ 0.
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Dynatomic Polynomials (continued)

The polynomial φn(z)−z may have multiple roots. E.g.,

φ(z) = z2 − 3

4
, Φ2 =

(
z +

1

2

)2

, φ

(
−1

2

)
= −1

2
.

It is not clear that Φφ,n(z) is a polynomial, but we have:

Theorem. The dynatomic “polynomial” is indeed a
polynomial. Equivalently, for every point α,∑

k|n
µ(n/k) ordα

(
φn(z)− z) ≥ 0.

More generally, every rational map φ : P1 → P1 has
an associated dynatomic polynomial Φφ,n(X,Y ). The

roots of Φφ,n define a dynatomic divisor in Div(P1),
and the theorem says that this divisor is effective (pos-
itive).
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Dynamical Modular Curves

The Dynatomic Polynomial of z2 + c

We now restrict attention to the family of quadratic
polynomials

φc(z) = z2 + c.
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The Dynatomic Polynomial of z2 + c

We now restrict attention to the family of quadratic
polynomials

φc(z) = z2 + c.

Every quadratic polynomial can be put into this form
via PGL2-conjugation. The family {φc} has long been
used as a testing ground for dynamical investigations.
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The Dynatomic Polynomial of z2 + c

We now restrict attention to the family of quadratic
polynomials

φc(z) = z2 + c.

Every quadratic polynomial can be put into this form
via PGL2-conjugation. The family {φc} has long been
used as a testing ground for dynamical investigations.

The nth-dynatomic polynomial for φc is a polynomial
in both z and c, so we will write it as

Φn(c, z) ∈ Z[z, c].
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The Dynatomic Polynomial of z2 + c

We now restrict attention to the family of quadratic
polynomials

φc(z) = z2 + c.

Every quadratic polynomial can be put into this form
via PGL2-conjugation. The family {φc} has long been
used as a testing ground for dynamical investigations.

The nth-dynatomic polynomial for φc is a polynomial
in both z and c, so we will write it as

Φn(c, z) ∈ Z[z, c].

Φ1(c, z) = z2 − z + c

Φ2(c, z) = z2 + z + (c + 1)

Φ3(c, z) = z6 + z5 + (3c + 1)z4 + (2c + 1)z3 + (3c2 + 3c + 1)z2

+ (c2 + 2c + 1)z + (c3 + 2c2 + c + 1)

Φ6(c, z) = z54 − z53 + 27cz52 + (−26c + 1)z51 + (351c2 + 13c− 1)z50 + · · ·
+ (c27 + 13c26 + 78c25 + 293c24 + 792c23 + · · · + 3c3 + c2 − c + 1)
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Dynamical Modular Curves

The Dynatomic Curve Y
dyn
1 (n)

The nth dynatomic curve Y
dyn
1 (n) is the affine

curve defined by the equation

Φn(y, z) = 0.
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The Dynatomic Curve Y
dyn
1 (n)

The nth dynatomic curve Y
dyn
1 (n) is the affine

curve defined by the equation

Φn(y, z) = 0.

A point

(c, α) ∈ Y
dyn
1 (n)

consists of a pair such that α is a periodic point of formal
period n for the polynomial φc(z) = z2 + c.
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Dynamical Modular Curves

The Dynatomic Curve Y
dyn
1 (n)

The nth dynatomic curve Y
dyn
1 (n) is the affine

curve defined by the equation

Φn(y, z) = 0.

A point

(c, α) ∈ Y
dyn
1 (n)

consists of a pair such that α is a periodic point of formal
period n for the polynomial φc(z) = z2 + c.

Notice the close analogy with the classical modular curve
Y1(n) whose points classify pairs

(E, P )

consisting of an elliptic curve E and a point P ∈ E of
order n.
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Dynamical Modular Curves

Rational Points on Y
dyn
1 (n)

A point (c, α) ∈ Y
dyn
1 (n) classifies polynomials z2 + c

with a point α of formal period n, and this classification
respects the field of definition of the underlying object.
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Rational Points on Y
dyn
1 (n)

A point (c, α) ∈ Y
dyn
1 (n) classifies polynomials z2 + c

with a point α of formal period n, and this classification
respects the field of definition of the underlying object.

In particular, the set of rational points

Y
dyn
1 (n)(Q)

classifies all quadratic polynomials with Q-coefficients
having a Q-rational periodic point of (formal) period n.
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Rational Points on Y
dyn
1 (n)

A point (c, α) ∈ Y
dyn
1 (n) classifies polynomials z2 + c

with a point α of formal period n, and this classification
respects the field of definition of the underlying object.

In particular, the set of rational points

Y
dyn
1 (n)(Q)

classifies all quadratic polynomials with Q-coefficients
having a Q-rational periodic point of (formal) period n.

Thus the uniformity conjecture for quadratic polynomi-
als is equivalent to the statement:

Y
dyn
1 (n)(Q) = ∅ for sufficiently large n,

and the strong uniformity conjecture asserts that

Y
dyn
1 (n)(Q) = ∅ for all n ≥ 4.
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Dynamical Modular Curves

The Dynatomic Curve X
dyn
1 (n)

The curve Y
dyn
1 (n) has a unique nonsingular comple-

tion, which we denote by X
dyn
1 (n).
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The Dynatomic Curve X
dyn
1 (n)

The curve Y
dyn
1 (n) has a unique nonsingular comple-

tion, which we denote by X
dyn
1 (n).

The finitely many points in the complement

X
dyn
1 (n)r Y

dyn
1 (n)

are called the cusps of X
dyn
1 (n). They correspond to

degenerations of the dynamical system φc(z) = z2 + c
and its marked point of formal period n.
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The Dynatomic Curve X
dyn
1 (n)

The curve Y
dyn
1 (n) has a unique nonsingular comple-

tion, which we denote by X
dyn
1 (n).

The finitely many points in the complement

X
dyn
1 (n)r Y

dyn
1 (n)

are called the cusps of X
dyn
1 (n). They correspond to

degenerations of the dynamical system φc(z) = z2 + c
and its marked point of formal period n.

Theorem. (Bousch, Morton) The curve X
dyn
1 (n) is

geometrically irreducible.

Moduli Spaces in Arithmetic Dynamics – 22–



Dynamical Modular Curves

The Dynatomic Curve X
dyn
1 (n)

The curve Y
dyn
1 (n) has a unique nonsingular comple-

tion, which we denote by X
dyn
1 (n).

The finitely many points in the complement

X
dyn
1 (n)r Y

dyn
1 (n)

are called the cusps of X
dyn
1 (n). They correspond to

degenerations of the dynamical system φc(z) = z2 + c
and its marked point of formal period n.

Theorem. (Bousch, Morton) The curve X
dyn
1 (n) is

geometrically irreducible.

The proofs are far from trivial and ultimately depend on
dynamical arguments. (Remark: There are families for
which the analogous dynatomic curves are reducible.)
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Dynamical Modular Curves

The Dynatomic Curves Y
dyn
0 (n) and X

dyn
0 (n)

There is a natural automorphism of Y
dyn
1 (n) defined by

φ̂ : Y
dyn
1 (n) −→ Y

dyn
1 (n),

(y, z) 7−→ (y, z2 + y) =
(
y, φy(z)

)
.

This automorphism extends to X
dyn
1 (n).
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The Dynatomic Curves Y
dyn
0 (n) and X

dyn
0 (n)

There is a natural automorphism of Y
dyn
1 (n) defined by

φ̂ : Y
dyn
1 (n) −→ Y

dyn
1 (n),

(y, z) 7−→ (y, z2 + y) =
(
y, φy(z)

)
.

This automorphism extends to X
dyn
1 (n).

Note that φ̂n = 1. The quotients of Y
dyn
1 (n) and X

dyn
1 (n)

by the action of φ̂ are denoted

Y
dyn
0 (n) = Y

dyn
1 (n)/φ̂,

X
dyn
0 (n) = X

dyn
1 (n)/φ̂.
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The Dynatomic Curves Y
dyn
0 (n) and X

dyn
0 (n)

There is a natural automorphism of Y
dyn
1 (n) defined by

φ̂ : Y
dyn
1 (n) −→ Y

dyn
1 (n),

(y, z) 7−→ (y, z2 + y) =
(
y, φy(z)

)
.

This automorphism extends to X
dyn
1 (n).

Note that φ̂n = 1. The quotients of Y
dyn
1 (n) and X

dyn
1 (n)

by the action of φ̂ are denoted

Y
dyn
0 (n) = Y

dyn
1 (n)/φ̂,

X
dyn
0 (n) = X

dyn
1 (n)/φ̂.

The points of Y
dyn
0 (n) classify pairs (c,O), where O is

the orbit of a point of formal period n for φc(z) = z2+c.
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Dynamical Modular Curves

The Genera of X
dyn
1 (n) and X

dyn
0 (n)

Bousch and Morton found explicit, but rather messy,

formulas for the genera of X
dyn
1 (n) and X

dyn
0 (n). The

genera grow quite rapidly:

n 1 2 3 4 5 6 7 8 9 10
genus X1(n) 0 0 0 2 14 34 124 285 745 1690
genus X0(n) 0 0 0 0 2 4 16 32 79 162
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The Genera of X
dyn
1 (n) and X

dyn
0 (n)

Bousch and Morton found explicit, but rather messy,

formulas for the genera of X
dyn
1 (n) and X

dyn
0 (n). The

genera grow quite rapidly:

n 1 2 3 4 5 6 7 8 9 10
genus X1(n) 0 0 0 2 14 34 124 285 745 1690
genus X0(n) 0 0 0 0 2 4 16 32 79 162

Recall that Stoll proved (conditional on B–Sw-D):

Theorem. For c ∈ Q, the polynomial z2 + c has no
Q-rational periodic point of exact period 6.
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The Genera of X
dyn
1 (n) and X

dyn
0 (n)

Bousch and Morton found explicit, but rather messy,

formulas for the genera of X
dyn
1 (n) and X

dyn
0 (n). The

genera grow quite rapidly:

n 1 2 3 4 5 6 7 8 9 10
genus X1(n) 0 0 0 2 14 34 124 285 745 1690
genus X0(n) 0 0 0 0 2 4 16 32 79 162

Recall that Stoll proved (conditional on B–Sw-D):

Theorem. For c ∈ Q, the polynomial z2 + c has no
Q-rational periodic point of exact period 6.

The proof relies on the fact that the genus of X
dyn
0 (6) is

(barely) small enough to allow arithmetic computations.
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The Map from Ratd to Md

We let 〈 〉 denote the natural map

〈 〉 : Ratd −→Md.
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We let 〈 〉 denote the natural map

〈 〉 : Ratd −→Md.

Suppose that φ ∈ Ratd(Q̄) satisfies

〈φ〉 ∈ Md(Q).

Note that this does not necessarily mean that φ itself is
defined over Q.
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We let 〈 〉 denote the natural map

〈 〉 : Ratd −→Md.

Suppose that φ ∈ Ratd(Q̄) satisfies

〈φ〉 ∈ Md(Q).

Note that this does not necessarily mean that φ itself is
defined over Q.

What it does mean is that for every σ ∈ Gal(Q̄/Q), the
map σ(φ) is PGL2(Q̄)-conjugate to φ.
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Fields of Definition and Field of Moduli

The Map from Ratd to Md

We let 〈 〉 denote the natural map

〈 〉 : Ratd −→Md.

Suppose that φ ∈ Ratd(Q̄) satisfies

〈φ〉 ∈ Md(Q).

Note that this does not necessarily mean that φ itself is
defined over Q.

What it does mean is that for every σ ∈ Gal(Q̄/Q), the
map σ(φ) is PGL2(Q̄)-conjugate to φ.

Question: Does this imply that there is some change
of variables f ∈ PGL2(Q̄) such that

φf ∈ Ratd(Q).
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Two Examples

Example 1. The polynomial

φ(z) = z2 + 2
√

2z + 1−
√

2

is not defined over Q, but the change of variables

f (z) = z −
√

2

transforms it to

φf (z) = f−1 ◦ φ ◦ f (z) = φ(z −
√

2) +
√

2 = z2 − 1.

Thus not only is

〈φ〉 ∈ M2(Q),

but we can find a change variables f ∈ PGL2(Q̄) such
that

φf ∈ Rat2(Q).
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Two Examples

Example 2. The rational map

φ(z) =
√−1

(
z − 1

z + 1

)3

has the property that

φ(z) = φg(z) with g(z) = −1/z,

where denotes complex conjugation.
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Two Examples

Example 2. The rational map

φ(z) =
√−1

(
z − 1

z + 1

)3

has the property that

φ(z) = φg(z) with g(z) = −1/z,

where denotes complex conjugation.

On the other hand, it is not hard to prove that

φf (z) /∈ Ratd(Q) for all f ∈ PGL2(Q̄).

Moduli Spaces in Arithmetic Dynamics – 27–



Fields of Definition and Field of Moduli

Two Examples

Example 2. The rational map

φ(z) =
√−1

(
z − 1

z + 1

)3

has the property that

φ(z) = φg(z) with g(z) = −1/z,

where denotes complex conjugation.

On the other hand, it is not hard to prove that

φf (z) /∈ Ratd(Q) for all f ∈ PGL2(Q̄).

Thus although φ seems as if it should be defined over Q,
it is not possible to change variables and make it actually
defined over Q.
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Fields of Definition and Field of Moduli

Let φ ∈ Ratd(Q̄).

Definition. A Field of Definition for φ is any
field K for which there is an f ∈ PGL2(Q̄) such that

φf ∈ Ratd(K).

Definition. The Field of Moduli of φ is the small-
est field K such that

〈φ〉 ∈ Md(K).
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Fields of Definition and Field of Moduli

Let φ ∈ Ratd(Q̄).

Definition. A Field of Definition for φ is any
field K for which there is an f ∈ PGL2(Q̄) such that

φf ∈ Ratd(K).

Definition. The Field of Moduli of φ is the small-
est field K such that

〈φ〉 ∈ Md(K).

Equivalently, let

Gφ =
{
σ ∈ Gal(Q̄/Q) : ∃g ∈ PGL2(Q̄) with σ(φ) = φg}.

Then

Kφ = Field of Moduli of φ = Fixed field of Gφ.
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The Automorphism Group of a Rational Map

We are going to give a cohomological formulation for
the question of whether the field of moduli is a field of
definition:

FOM = FOD?
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The Automorphism Group of a Rational Map

We are going to give a cohomological formulation for
the question of whether the field of moduli is a field of
definition:

FOM = FOD?

Definition. Let φ ∈ Ratd. The automorphism
group of φ (group of self-similarities) is

Aut(φ) = {f ∈ PGL2 : φf = φ}.
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The Automorphism Group of a Rational Map

We are going to give a cohomological formulation for
the question of whether the field of moduli is a field of
definition:

FOM = FOD?

Definition. Let φ ∈ Ratd. The automorphism
group of φ (group of self-similarities) is

Aut(φ) = {f ∈ PGL2 : φf = φ}.

Example.

φ =
az

bz2 + c
, Aut(φ) = {z,−z}.
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Fields of Definition and Field of Moduli

A Cohomological Criterion

We make the simplifying assumption that

Aut(φ) = 1.

Then for every σ ∈ Gal(Q̄/Kφ) there is a unique ele-

ment gσ ∈ PGL2(Q̄) satisfying

σ(φ) = φgσ.
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A Cohomological Criterion

We make the simplifying assumption that

Aut(φ) = 1.

Then for every σ ∈ Gal(Q̄/Kφ) there is a unique ele-

ment gσ ∈ PGL2(Q̄) satisfying

σ(φ) = φgσ.

Proposition. (a) The map

Gal(Q̄/Kφ) −→ PGL2(Q̄), σ −→ gσ,

is a 1-cocycle.

(b) The field of moduli Kφ is a field of definition for φ
if and only if σ → gσ is a coboundary, i.e.,

FOM = FOD ⇐⇒ [gσ] = 0 in H1(Gal, PGL2
)
.
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Some Cases of FOM = FOD

Using the cohomological criterion, one can prove the
following.

Theorem. Let φ ∈ Ratd(Q̄). Then

FOM = FOD for φ

in the following two situations:

(a) φ(z) has even degree.

(b) φ(z) is a polynomial.
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Some Cases of FOM = FOD

Using the cohomological criterion, one can prove the
following.

Theorem. Let φ ∈ Ratd(Q̄). Then

FOM = FOD for φ

in the following two situations:

(a) φ(z) has even degree.

(b) φ(z) is a polynomial.

The theorem is true even in the case that Aut(φ) 6= 1,
although the proof is more complicated.
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Some Cases of FOM = FOD

Using the cohomological criterion, one can prove the
following.

Theorem. Let φ ∈ Ratd(Q̄). Then

FOM = FOD for φ

in the following two situations:

(a) φ(z) has even degree.

(b) φ(z) is a polynomial.

The theorem is true even in the case that Aut(φ) 6= 1,
although the proof is more complicated.

Proof Ideas. Interpret the elements of H1(Gal, PGL2)
as twists of P1. Then use the given properties of φ to
prove that the twists have a rational point, hence are
trivial.
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And In Conclusion, . . . A Blatant Advertisement

For those who are
interested in learning
more about arithmetic
dynamics, there is now
an introductory
graduate textbook on
the subject.

Graduate Texts
in Mathematics 241

Joseph H. Silverman

The Arithmetic of
Dynamical Systems

Springer

www.math.brown.edu/~jhs/ADSHome.html
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